•  
  •  
 

Abstract

Industrial businesses must respond efficiently to market demands; therefore, industrial construction must accurately predict the project duration at the pre-investment stage. In practice, project duration predictions rely on the experience of project managers. To provide impartial expertise and quantitative estimate the predicted duration of constructing an industrial building, an extensive history of industrial building cases were collected to form a database. Principal component analysis was applied to the database to identify key factors to serve as input data for a back-propagation neural network (BP-NN) that was used to estimate the project duration. Three prediction models were identified and developed separately based on the total cost for large, medium, and small construction projects. The derived BP-NN prediction models are applicable for estimating construction duration during the initial stages of a projec

Included in

Engineering Commons

COinS