Abstract
Sloshing waves in moving tanks have been studied numerically, theoretically and experimentally in the past several decades. Most reported studies have been for tanks excited by forcing motion in a limited number of directions and with fixed excitation frequencies throughout the forcing. In the present study, a time-independent finite difference method is used to simulate fluid sloshing in the three-dimensional tanks with arbitrary depths and the tanks are subject to a range of excitation frequencies with motions that exhibit multiple degrees of freedom. The developed numerical scheme is verified by rigorous benchmark tests, and the advantage and efficiency of the method is also discussed. The wave motions that arise for a variety of water depths and a range of excitation frequencies are presented and discussed. The coupled motions of surge and sway are simulated with various excitation angles and frequencies. The ‘diagonal’, ‘single-directional’, ‘square-like’, ‘swirling’ and ‘chaotic’ waves are successfully obtained in this study and the transient response of sloshing waves in the tank is discussed in detail.
Recommended Citation
Wu, Chih-Hua and Chen, Bang-Fuh
(2012)
"TRANSIENT RESPONSE OF SLOSHING FLUID IN A THREE DIMENSIONAL TANK,"
Journal of Marine Science and Technology: Vol. 20:
Iss.
1, Article 4.
DOI: 10.51400/2709-6998.2419
Available at:
https://jmstt.ntou.edu.tw/journal/vol20/iss1/4