•  
  •  
 

Abstract

This work combines thermal and structural analyses to study the effect of fire on the elastic modulus of reinforced concrete beams. The thermal analysis uses the finite difference method to model the temperature distribution of a reinforced concrete beam maintained at high temperature. The structural analysis, using the lumped method, is utilized to calculate the effective elastic modulus of reinforced concrete beams. The results of the thermal analysis are compared to the experimental results in the literature, and the analytically derived structural results are also compared with experimental data on the flexural behaviors of RC beams exposed to fire. The predicted and experimental temperature distribution in the concrete beam and deformation in the structural model agree with each other. The findings provide important information on the flexural behavior of BC beams exposed to fire.

COinS