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Prediction of Mooring System Characteristics of the
Floating Barge Using Deep Neural Networks

Janghoon Seo °, Dong-Woo Park

@ Shipbuilding & Marine Simulation Center, Tongmyong University, Busan, Republic of Korea
® Autonomous Vehicle System Engineering Major, School of Electrical and Control Engineering, Tongmyong University, Busan,
Republic of Korea

Abstract

The present study establishes deep learning models to predict the tensions and inclinations of mooring lines of a
floating barge and verifies applicability of these models. Hydrodynamic and mooring analyses are conducted on the
dataset used for the deep learning models. Three types of neural network models include a deep neural network (DNN)
with input data representing the 6° of freedom motions of a floating barge, convolutional neural network (CNN) with
input images of the floating barge and mooring lines on a horizontal plane, and hybrid neural network (HNN) that
consolidates the characteristics of DNN and CNN models. The output labels for the deep learning models are the tension
and inclination of each mooring line. The models are trained using various hyperparameters, and the effect of the
hyperparameters on model performance is investigated. The accuracy of the established models is evaluated through
testing. The test results indicate that the DNN and HNN models outperform the CNN model, which is constrained by its
dependency on two-dimensional image input data. The DNN and HNN models are able to accurately predict the
mooring line tension and inclination under various environmental conditions, except for several peaks in harsh envi-
ronments. The present study shows that the established deep learning models have the potential to replace a mooring
monitoring system with fast and accurate predictions. Further research is required to investigate their applicability in
mooring systems with multiple mooring lines and turret mooring systems.

Keywords: Deep learning model, Floating barge, Mooring system analysis

1. Introduction based on the position of a floating structure ob-
tained from mooring system analysis. Thus a
mooring system analysis is essential for the design

loating offshore structures maintain their posi- > yols
of mooring and monitoring systems.

tions by the position keeping systems for safe ! -
operation. The mooring system is one of the most Various previous resear'ches have been Conducte.d
widely used position keeping systems. This system  O0! the analy51§ of mooring systems. Tl}e analysis
maintains the position of a floating structure using ~ generally considers the effects of environmental
the weight and elasticity of mooring lines. The conditions, hydrodynamic performance, and moor-
mooring system requires the monitoring system to 1§ system characteristics. Ormberg and Larsen [3]
ensure a safe operation [1,2]. A typical mooring comp'ared the results of coupled and uncoupled
monitoring system is designed to measure the ten- ~ MOOrNg analyses and concluded that the coupled
sion and inclination using sensors at the fairlead. analysis Prowdes more accurate results and better
Additionally, an auxiliary monitoring system is  a8rees with the mode_l test results than those from
required to prepare for equipment malfunction. It ~ the uncoupled analysis. Low and Langley [4] per-
derives the tension and inclination of mooring lines ~ formed a mooring analysis with the coupling of a
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hull, riser, and mooring system in the linearized
frequency domain. Linearized drag forces on the
risers and mooring lines provided good agreement
between results of analysis based on the frequency
and time domains.

In addition to the previous researches on coupling
effects, researches on mooring analysis, altering the
model of the mooring line, and the effect on extreme
value estimation have been conducted. Garret [5]
introduced the three-dimensional finite element
methods (FEM) which accounts for large deflections
and finite rotations with tension variation along the
line length. Davids and Mungall [6] proposed a
mooring analysis in the frequency domain with
simple equivalent springs. Their result was
compared with that of the FEM and significant dif-
ferences were found. Kim et al. [7] applied linear
and nonlinear FEM methods in a coupled mooring
analysis. The effect of the coupling stiffness of the
mooring system was remarkable when the wave
drift forces were large and the weight of the
mooring system is not negligible. Va’ zquez et al. [§]
compared the methodology of the extreme value
analysis of Weibull fitting, square root of the sum of
the squares, and linear sum. Among the extreme
value methodologies, the approach of the square
root of the sum of the squares underestimates the
extreme values. Stanisic et al. [9] assessed the
methodology of extreme response and the effect of
the number of realizations. Sagrilo et al. [10] inves-
tigated the effect of extreme methodology with
varying simulation times. Their results implied that
the Weibull approach relatively provides good
agreement and convergence depending on the
length of simulation time.

Mooring system analysis requires the high tech-
niques, computational equipment, and significant
time. To overcome these burdens, recent researches
have focused on predicting the performance of
mooring systems using deep learning technology.
Simoes et al. [11] predicted the tensions of mooring
lines and hawsers between floating production
storage and offloading (FPSO) vessel and shuttle
tanker in a tandem mooring system. A neural
network model was applied to predict complex dy-
namics for the FPSO tandem mooring system. Gua-
rize et al. [12] suggested a hybrid artificial neural
network (ANN) — FEM to perform dynamic analysis
of mooring lines and risers. The ANN-FEM meth-
odology provided faster performance for a long
response of time histories than a complete simula-
tion. Furthermore, de Pina et al. [13] compared the
performances between ANN and the wavelet
network (WN). The mooring line tensions and mo-
tion of the floating production system (FPS) were

compared among the results of FEM, ANN, and WN.
They suggested that the ANN and WN approaches
exhibited a rapid and inexpensive prediction
compared to the FEM. In addition, de Pina et al. [14]
expanded their research for the prediction of the
offset and tensions of the mooring system of an FPS
by using an ANN method. The azimuth, horizontal
distance between the anchor and fairlead, and pre-
tension and diameter of the mooring components
were selected as input variables with lower and
upper bounds under fixed environmental conditions.
Fairly accurate prediction results were achieved for
the offsets and tension by comparing them with the
results of a mooring analysis. Christiansen et al. [15]
suggested several error functions for an ANN and
applied these error functions instead of a general
error function. The application of a weighted error
function provided improved prediction by the ANN.
Mentes et al. [16] compared an ANN and adaptive
neuro-fuzzy inference system (ANFIS) for a tanker-
buoy mooring system. Results of ANN and ANFIS
showed reliable accuracies and applicability for the
mooring analysis. In addition to the aforementioned
researches, several previous researches have been
conducted to predict the performance of mooring
systems using deep learning methodology [17—19].

Deep learning techniques have been used to pre-
dict the damage of mooring lines. Chung et al. [20]
predicted the classification of a damaged mooring
line using deep neural networks (DNN). They
expanded their research using a recurrent neural
network (RNN) to detect the damage of mooring
lines [21]. The number of hidden layers was adjusted
and the results of the RNN model were compared
with those of a mooring analysis. Another study of
the detection of mooring line failure was performed
by Saad et al. [22]. The methodologies of multilayer
perceptron (MLP) and long short-term memory
(LSTM) were applied in their study of prediction on
the motion with mooring line breakage. The result of
LSTM showed better predictions of the motion of the
platform than that of MLP.

Through these previous research efforts, the ac-
curacy of mooring system analysis has been
improved and the applicability of deep learning
methodology to mooring system has been investi-
gated. However, these researches on mooring sys-
tem analysis have mainly focused on improving
accuracy and refinement of methodologies. In
earlier researches addressing the detection of
damaged lines [20,21], there are limitations related
to the time marching problem and only the classi-
fication of mooring line damage is predicted.

The auxiliary mooring monitoring system relies
on expensive analysis software and high-
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performance computers, incurring high mainte-
nance costs throughout the 20-year design life of
floaters. Additionally, software malfunctions neces-
sitate the presence of engineers onboard for main-
tenance, creating unnecessary burdens. For these
reasons, research is needed to confirm the potential
of deep learning models in replacing the mooring
analysis software used in auxiliary mooring moni-
toring systems. Additionally, research is required on
the accuracy of deep learning model predictions
based on the information obtained from the navi-
gator or sensors at operating sites.

In this study, we establish deep learning models
to predict the mooring line tension and inclination
of a mooring monitoring system. To achieve this, we
utilize images of the floating structure in the hori-
zontal plane, typically displayed on navigation
monitors, along with position information from the
sensors of the ship as input data. Three deep
learning models are trained by varying the hyper-
parameters. Subsequently, the tensions and in-
clinations of the mooring lines are predicted using
the established models. Additionally, we evaluate
the applicability of these models under different
environmental conditions, which were not used
during their establishment. Through this, we aim to
verify the feasibility of utilizing the deep learning
models in a mooring monitoring system.

2. Mooring system and environmental
conditions

2.1. Floating barge and mooring system

In the present study, typical barge is applied as
shown in Fig. 1 [23]. The length between perpen-
diculars, breadth and draft are 150.0 m, 50.0 m and
10.0 m, respectively. Detailed information for the
barge is presented in Table 1. A right-handed co-
ordinate system based on the midship, center line
and draft, is applied as shown in Fig. 2.

A spread mooring system with four mooring lines
are considered. The mooring system is symmetric
about the x- and y-axes. The mooring lines are
defined as ML1, ML2, ML3, and ML4 as shown in

Fig. 1. Hull shape of floating barge.

Table 1. Main particulars of floating barge.

Item Symbol ~ Value  Unit
Length between perpendicular LBP 150.0 m
Breadth B 50.0 m
Draft d 10.0 m
Displaced volume A 73,750 m3
Radius of gyration in roll motion Kxx 20.0 m
Radius of gyration in pitch motion  Kyy 39.0 m
Radius of gyration in yaw motion Kzz 39.0 m

@

v o]

(b)

Fig. 3. Definition of mooring system. (a) Mooring system configuration.
(b) Axial tension and inclination.
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Fig. 3(a). The fairleads are close to the corners of the
barge. A line orientation with 45° for each mooring
line is considered. The axial tension and inclination
from the horizontal plane of the mooring line are
defined in Fig. 3(b). The horizontal distance between
the anchor and fairlead is selected to 1000 m.
The water depth is considered to be 1500 m with a
flat seabed. The positions of the anchor and the
fairlead are presented in Table 2. The mooring line is
composed of top chain attached to the fairlead, mid
wire, and bottom chain attached to the anchors. The
length, diameter, weight and minimum breaking
load for each component is shown in Table 3. Each
mooring line has the same component and length.

2.2. Environmental conditions

Wave, wind, and current environmental condi-
tions are considered to perform the mooring system
analysis and establish the deep learning dataset, as
shown in Table 4. The wave and wind are modeled
using the Joint North Sea Wave Project JONSWAP)
and American Petroleum Institute (API) spectra,
respectively. A long-crested wave is assumed
without a spreading function. A steady current with
a constant velocity profile along to water depth is
considered. An omni-directional environmental
condition is considered, in which the wave, wind,
and current come from the same direction.

Table 2. Fairlead and anchor locations.

247

To establish the deep learning model, ENVI,
ENV2, and ENV3 are employed with environmental
directions from 0° to 90° with an interval of 15°.
ENV4, ENV5, and ENV6 are selected as benign,
median, and harsh conditions, respectively, com-
pared with ENV1, ENV2 and ENV3. ENV4, ENV5
and ENV6 are used to evaluate the additional per-
formance of the established deep learning models.
The directions of ENV4, ENV5, and ENV6 are 0°,
45°, and 90°.

3. Preparation of dataset by hydrodynamic and
mooring analysis

To prepare the dataset of the deep learning
models, the hydrodynamic analysis is performed to
derive the first order motion, second order wave
drift force, added mass, and the response amplitude
operator (RAO) of first order motions. The general
equation of motion in 6° of freedom (6-DOF) for the
barge based on the time domain is presented below.

(M A0 + B0+ )+ [ R(t— ) (B)dr

=Fi(t) 1)

where, t, {;, and F; represent the time, body motion,
and external force, respectively. M, A, B, C and R are

Line Fairlead Anchor
x from y from center z from x from y from z from
midship (m) line (m) draft (m) midship (m) centerline (m) draft (m)
ML1 50.0 25.0 -2.5 757.107 732.107 —1500.0
ML2 50.0 -25.0 -25 757.107 —732.107 —1500.0
ML3 —50.0 25.0 -2.5 —757.107 732.107 —1500.0
ML4 -50.0 -25.0 -25 —757.107 732.107 —1500.0
Table 3. Mooring line components.
Item Type Length Diameter Weight in Minimum
(m) (mm) water (kg/m) Breaking
load (kN)
Top chain R4 studless 100 105 241.448 10,754
Mid wire Spiral strand wire 1500 102 57.400 10,790
Bottom chain R4 studless 200 105 241.448 10,754

Table 4. Environmental conditions.

Item Wave Wind velocity Current velocity Direction from
Hs (m) Tp (s) Vw (m/s) Vc (m/s) ©)

ENV1 1.5 6.5 7.5 0.5 0.0—90.0

ENV2 25 8.5 11.5 0.9 15.0 interval

ENV3 35 10.5 15.5 1.3

ENV4 0.5 4.5 3.5 0.1 0, 45, 90

ENV5 2.0 7.5 9.5 0.7

ENV6 5.0 12.5 20.5 1.7
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the mass, added mass, damping, stiffness and
memory function, respectively.

The mooring line analysis for the barge is per-
formed based on catenary line characteristic solu-
tion in the time domain. The general equations of
catenary calculation are presented below.

wL . wLg
- () e ()
Lt

—&-E(H Hp) —

(2)
(L —Lo)

2wh _ AF. Lf—\/TZfHZ (3)

T 2
H—AE 1
<AE+> AE
2wh AELO_—\/TOZ—HOZ

H, :AE\/(IZ% +1>2 i
(4)

where, H, Hy, T and T, are horizontal tension, initial
horizontal tension, axial tension, and initial axial
tension, respectively. w is submerged unit weight of
mooring line and h is water depth. AE is the multi-
plication of cross-sectional area and elasticity of the
mooring line. L is the total length of the mooring
line underwater and Ly is the upstretched length of
the mooring line.

Hydrodynamic and mooring analyses are per-
formed by Ansys AQWA which is based on three-
dimensional radiation and diffraction approaches.
Wind and current force coefficients are applied
based on the definition from the Oil Companies
International Marine Forum (OCIMF) [24]. Low-
frequency linear damping coefficients are applied
from Bureau Veritas (BV) [25]. A three-dimensional
hydrodynamic panel model and mooring system are
presented in Fig. 4. The total simulation time is
12800 s with a time step of 0.1 seconds. The first 2000
s is not considered in the dataset of the deep
learning model to remove the transient effect. To
validate the hydrodynamic model and configura-
tion, the results of the hydrodynamic analysis for
the first order response amplitude operator (RAO)
and mean drift forces in the surge and sway di-
rections are compared with those of previous re-
searches as shown in Fig. 5 [23,26].

The results of the mooring system analysis used as
the dataset for the deep learning model are
assessed. The variations in the maximum offset of
the floating barge and the maximum tensions of the
mooring lines under different environmental con-
ditions are shown in Fig. 6. The maximum offset is
observed when the environmental load is applied

from the side of the floating barge, as shown in
Fig. 6(a). This can be attributed to an increase in the
environmental load due to an increase in the pro-
jection area. For the mooring line tensions, ML2 and
ML4 show the highest tension when the environ-
mental condition direction is 90° because these are
located in the direction of the environmental load,
as shown in Fig. 6(b). On the other hand, ML1 and
ML3 are located in the opposite direction to the
environmental condition from the side, resulting in
a lower tension. An increase in the magnitude of the
environmental load intensifies the directional vari-
ations in the offset and mooring line tension. This is
attributed to the relationship between the environ-
mental load and the magnitude of wave height,
wind velocity and current velocity.

4. Deep learning model

In the present study, both DNN and CNN are
utilized. Additionally, a hybrid deep learning model
that integrates DNN and CNN models is employed
and referred to as HNN. Typical architectures of the
three models are presented in Fig. 7. The DNN ar-
chitecture contains multiple hidden layers to train
and test the mooring line responses. Each layer
consists of multiple neurons, and each neuron is
connected to the neurons in the adjacent layer. The
DNN architecture is generally composed of input,
hidden, and output layers as shown in Fig. 7(a).
Input data is fed into the input layer, which pro-
cesses it and passes it to the hidden layers. These
layers compute on the data and pass it to the output
layer, which then generates the output label. The
layers are fully connected with weights (a;), bias (b;)
and activation function (f) as presented below.

Y =f(a;X; + b)) (5)

where X; is the input value at the input neuron of i
and Yj is the output value at the output neuron of j.
The activation function, denoted by f, determines
the output value based on the weighted sum of in-
puts and bias.

A CNN model utilizes convolutional and pooling
layers for feature extraction from input images [27].
The architecture of a typical CNN model is
composed of convolutional, pooling, and hidden
layers, as presented in Fig. 7(b). To extract relevant
features from input images, a typical CNN model
employs convolutional and max pooling layers. In
detail, input images are fed into the CNN model as
feature maps, where each convolutional layer gen-
erates output feature maps by applying a filter,
kernel and convolutional operator. This process
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(b)

Fig. 4. Hydrodynamic and mooring analysis model. (a) Hydrodynamic panel. (b) Perspective view of mooring system model.

encodes features from the input feature maps
into the output feature maps, using zero padding
to maintain the shape as the input feature
map changes during convolutional operations.

Subsequently, a max pooling layer is employed to
extract important features and transfer them to the
output feature map. As the convolutional layers
deepen, the size of the feature map decreases due to
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Fig. 5. Comparison of the response amplitude operators and mean drift forces of the barge. (a) Surge RAO in head sea. (b) Sway RAO in beam sea. (c)

Surge mean drift force in head sea. (d) Sway mean drift force in beam sea.

the max pooling layer, and more filters are applied.
This process enhances the feature extraction and
learning capabilities, and it is crucial for effectively
managing spatial dimensions and detecting diverse
features from the input feature map. The two-
dimensional array from the previously convolved
and pooled layers is then flattened into a one-
dimensional array and connected to hidden layers.
The image features extracted by the convolutional
layers are processed by the hidden layers and the
output of the hidden layers is fed into the output
layer to generate the predicted label.

The proposed HNN model simultaneously ac-
cepts the input image and input data to enhance the
input information as shown in Fig. 7(c). The con-
volutional layer extracts features from the input
image and the extracted features are flattened by the
flatten layer. The input data is then concatenated
with the flattened feature, and concatenated fea-
tures are fed into the hidden layers.

The DNN model utilizes 6-DOF motions as input
data. The CNN model takes the images of the
mooring lines and the barge on the horizontal plane
as input data. The HNN model takes both the
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6-DOF motions used in the DNN model and the inclination (§) at the fairlead location of each
images used in the CNN model as input simulta- mooring line.

neously. The output labels for the three models are The optimization function used for training is the
identically composed of the axial tension (T) and  ADAptive Moment estimation (ADAM) [28], and the
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Fig. 7. Typical deep learning models. (a) DNN model. (b)) CNN model. (b) HNN model.

Rectified Linear Unit (ReLU) [29] is employed as the
activation function. The mean squared error (MSE)
is utilized as the loss function for training the
models.

N
MSE = Z (Prediction; — True;)*
i=1

1
N
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where, Prediction; is the predicted value by the deep
learning model, True; is the result value from the
analysis and N is the number of dataset.

5. Results and discussion
5.1. Dataset

The dataset used for the deep learning models
consists of 6-DOF motions, axial tensions and in-
clinations of mooring lines extracted every 10 s from
the mooring system analysis. Typical input data,
input images, and output labels are shown in Fig. 8.
The input images used for the CNN and HNN
models have a resolution of 512 x 512 pixels and are
zoomed in close to the barge to better visualize its
motion (Fig. 8(a)). The dataset consists of 22,680 data
samples, which encompass all types and directions
of environmental conditions. The data is randomly
split into 80% for training and 20% for testing.

5.2. Training of deep learning models

The deep learning models are individually estab-
lished throughout training. To identify the optimal
deep learning model, a comprehensive hyper-
parameter study is conducted, by systematically
adjusting various hyperparameters to optimize their
performances.

To investigate the impact of the number of layers on
each model, the number of layers in the DNN, CNN,
and HNN models is varied as shown in Table 5. For
the case of DNN model, the number of hidden layers
is varied at 1, 3, and 5. Similarly, for CNN and HNN
models, the number of convolutional layers is varied
at 1, 3, and 5, while simultaneously varying the
number of hidden layers as 1, 3, and 5. The number of
neurons in the hidden layer is fixed at 100, while the
filter size of the convolutional layers was varied at 32,
64, 128, 256, and 512, respectively, starting from the
firstlayer. Fig. 9 illustrates the changes in the MSE for
each model with respect to the epoch. All the models
show sufficient convergence at epoch 1000. The DNN
model does not show significant differences based on
the number of hidden layers. CNN and HNN models
show differences based on the number of convolu-
tional layers, with the highest accuracy achieved
when there are five convolutional layers. As a result,
the DNN model with three intermediate hidden
layers, referred to as DH3, and the CNN and HNN
models with five convolutional layers and three in-
termediate hidden layers, referred to as C5H3, are
utilized for further study.

In addition to the impact of the number of layers,
the effects of the number of neurons are also
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Table 5. Hyperparameters of number of layers for the training deep
learning models.

Model Case Convolution Hidden
layer layer

DNN DH1 — 1
DH3 - 3
DH5 — 5
CNN C1H1 1 1
& C1H3 1 3
HNN C1H5 1 5
C3H1 3 1
C3H3 3 3
C3H5 3 5
C5H1 5 1
C5H3 5 3
C5H5 5 5
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investigated. The number of neurons in the hidden
layer is altered, and the filter size of the convolution
layer is simultaneously adjusted to investigate their
effects. The cases and definitions of the varied
hyperparameters are shown in Table 6. Deep
learning models are trained for each case, and the
MSE values at epoch 1000 are compared in Fig. 10.

For the DNN model, it can be observed that the
MSE level is high when the number of neurons is
small, and gradually converges to a lower value with
an increase in the number of neurons as shown in
Fig. 10(a). CNN and HNN models also converge to a
lower MSE level by capturing the image features
well as the number of filter and hidden layer in-
crease, as shown in Fig. 10(b) and (c). As a result, the
DH3-N3 architecture is selected as a representative
for the DNN model and the C5H3—N3 architecture
is selected as the representative for the CNN and
HNN models, both demonstrating the lowest MSE
levels. These established models are then utilized
for testing and prediction in further study.

5.3. Test of deep learning models

In test stage, the mooring line tension and incli-
nation are predicted using the established deep
learning models. The 6804 pieces of test data that
are not used for training are utilized. The tensions
and inclinations predicted by the DNN model are
compared with true values as presented in Fig. 11.
The solid lines and points represent the true and
predicted values, respectively. It can be observed
that most of the predicted values are clustered near
the true values indicated by the 45° angle. This
demonstrates the high accuracy of the established
DNN model in predicting mooring line tension and
inclination. In the region with high tension, some
predicted values show an increasing difference from
the true values. This is because the number of data
is relatively small compared to that of the region
with low tension, which lowers the prediction ac-
curacy by the DNN (Fig. 11(b)). In the case of incli-
nation, it can be observed that the values are
distributed marginally closer to the true value
compared to tension (Fig. 11(e), (f)).

The prediction results using the CNN model are
presented in Fig. 12. Overall, the predicted values of
the CNN model are distributed in a similar location
to that of the true value. However, they are more
scattered from the true value compared with the
DNN model as shown in Fig. 11. It is evident that the
distribution of the points becomes wider and the
error increases as the tension increases, especially
compared to the low tension range (Fig. 12(a), (d)).
This increase in error is because the input image
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Fig. 9. Convergence histories of MSE by hyperparameter study of the
number of layers. (a) DNN model. (b)) CNN model. (c) HNN model.

only represents the features of the barge motion and
line arrangement on the horizontal plane, as shown
in Fig. 8(a), and consequently does not adequately
capture features related to the heave, roll, and pitch.
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Table 6. Hyperparameters of the number of neurons and filters for the
training deep learning models.

Model Case Number of neurons Filters
(Hidden layers) (1st-2nd-3rd-4th-5th
convolutional layer)
DNN DH3-N1 10 -
DH3-N2 50 —
DH3-N3 100 -
CNN C5H3—N1 10 8-16-32-64-128

& C5H3—N2 50
HNN C5H3—N3 100

16-32-64-128-256
32-64-128-256-512

In contrast, the DNN model can reflect the motion
characteristics excluded in the CNN model because
it uses all the 6-DOF motions as input data. Addi-
tionally, the scatter of the mooring line inclination is
also more broadly distributed than that of the DNN
model.

The prediction results of the HNN model, which
consolidates the characteristics of the DNN and
CNN models, are in good agreement with the true
value, similar to the DNN results as shown in
Fig. 13. Most of the points are close to the 45° line.
These results confirm that 6-DOF motions are
dominant in estimating the tension and inclination
of the mooring system.

To quantitatively compare the errors of the three
models, the cumulative error of the predicted values
of each model is presented in Fig. 14. The cumulative
error is represented as the average of the relative
differences between the true values and predicted
values of all the mooring lines. In the case of tension,
the model with the lowest error is HNN, and 80% of
the test dataset shows an error of less than 1%. For
the DNN and CNN models, about 80% of the test
dataset has an error of less than 2% and 7%,
respectively. The inclination is more accurate than
the tension, and DNN and HNN mostly have an
error of less than 1%, whereas approximately 80% of
the test dataset for the CNN model has an error of
less than 2%. The higher prediction accuracy of
inclination compared to tension is attributed to the
relatively narrow range of the dataset and the more
even distribution of data within the range. As a
result, both the established DNN and HNN models
predict the characteristics of the mooring line well.

5.4. Prediction of mooring characteristics for other
environments

To verify the applicability of the established deep
learning model as a monitoring system, the tension
and inclination of the mooring line are predicted for
ENV4, ENV5, and ENV6, which are not used for
training and testing as shown in Table 4. ENV4 is
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MSE

selected as a benign environment, while ENV5
represents the median environment among those
used for training and testing. ENV6 is the harshest
environment among all the environmental
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conditions, and it is a condition outside of the Fig. 15 shows the distribution of true and pre-
training and test environment conditions. The  dicted values by the DNN and HNN models for
established DNN and HNN models are considered, ENV4, ENV5 and ENV6. The red bars represent the
which have high prediction accuracy during the test. ~ true values obtained through analysis, while the
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solid and dashed lines represent the predicted
values from the DNN and HNN models, respec-
tively. For ENV4, the distribution of predicted ten-
sions using the DNN model shows a difference

from the distribution of the true tension values at
the location where the most data is distributed, but
overall distribution of the predicted tensions is
similar to that of the true values. It can be
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confirmed that the inclination prediction results are
better matched than the distribution of the tensions.
This is because the prediction accuracy of both
models is higher for inclination, as shown in the test
results (Fig. 14). In the case of ENV5 and ENVE,
there is almost no noticeable difference in the dis-
tribution between true and predicted values, which
holds true for both tension and inclination (Fig. 15
(b), (c)).

Based on the test results, it is evident that the
prediction accuracy is relatively low in the high
tension range, which corresponds to a relatively
small dataset. This trend is not readily apparent
from the distribution of the entire dataset depicted

in Fig. 15. Therefore, the true and predicted values
for individual mooring lines under each environ-
mental condition are compared using time histories,
and the results are shown in Figs. 16—18. During the
simulation, we examine data from 8000 s to 10,000 s,
which represents a sufficiently developed period of
environmental conditions and changes in mooring
lines.

As illustrated in Fig. 6, the conditions under which
the mooring lines experience the maximum tension
are dependent on the direction of the environmental
conditions. For ML1 and ML3, the maximum
mooring line tension occurs when the environ-
mental loads are applied at 0°, while for ML2 and
ML4, it occurs at 90°. Based on this trend, the
representative conditions for each mooring line
under which the maximum environmental loads are
applied are presented in Figs. 16—18.

For ENVY4, the difference in the tension between
the mooring lines under different environmental
directions is not significant, as shown in Fig. 16. The
mooring line tension and inclination are close to the
true values in ENV4. However, a slight shift is
observed in the mooring line tension predicted by
the DNN model in ML4 (Fig. 16(d)). This trend ex-
plains the result of the distribution of tension is
being shifted to the lower part as shown in Fig. 15(a).
Similar trends can be seen in the tension of other
mooring lines, but the quantity of difference is not
significant as the environmental condition is benign.

The true and predicted values for ENV5 are
shown in Fig. 17. ML2 and ML4 exhibit high average
and peak mooring line tension at an environmental
direction of 90° compared with those of other di-
rections. This is attributed to their increased pro-
jection area, which proportionally amplifies the load
exerted by wind and current. In contrast, ML1 and
ML3 experience relatively lower tension. Overall,
the prediction results closely align with the true
values depending on the mooring lines. In partic-
ular, there is negligible variance between the true
and predicted values at the peaks of tension and
inclination. This can be attributed to the median
environmental condition falling between the con-
ditions used for training and testing.

As depicted in Fig. 18, there are discrepancies
between the predicted tension values and the true
values for several peaks in the ENV6 results. At
peak points, the excessive motion and positioning of
the floating barge occur, and such input data are not
included in the training of the DNN and HNN
models. As a result, at locations where excessive
mooring line tension and inclination occur, the
predictions of the trained models deviate from the
true values. However, except for some peak points,
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it can be observed that the tension and inclination
predicted through the DNN and HNN models
generally align well with the true values, even when
considering environments that are not used in the
training of the deep learning models. In conclusion,

to improve the accuracy and applicability of the
deep learning models in predicting the character-
istics of mooring lines, it is essential to select data
that cover the environmental conditions of the
operating area.
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Fig. 17. Predicted tensions (left column) and inclinations (right column) for ENV5 condition. (a) ML1 at 0° environmental direction. (b) ML2 at 90°

JOURNAL OF MARINE SCIENCE AND TECHNOLOGY 2024;32:244—265

True ------ DNN ===~ HNN
2000 66
- 655
~ 1800 g
z T 6
- N’
z s
& 1600 D 645
X
2] <
- =
P ‘T')' 64
= 1400 =
= 635
1200 L L L 63 L L
8000 8500 9000 9500 10000 8000 8500 9000 9500 10000
Time(s) Time(s)
(@
3500 64
? oo § 63}
o0
E 3000 )
2
é = 62
é 2500 | -§
z g o
= S
2000
.E 60
1500 L L A 59 L L -
8000 8500 . 9000 9500 10000 8000 8500 - 9000 9500 10000
Time(s) Time(s)
2200 66
o_— 65
=1]
2 2000 >
S
& 1800 é
z g el
e ol
1600
.E 62
1400 L L L 61 4 - :
8000 8500 9000 9500 10000 8000 8500 9000 9500 10000
Time(s) Time(s)
(©
3500 64
o8
;\ 3000 L
< z
= =
= =]
& 2500 =
2 =
= =
: 3
= 2000 =
—
1500 . L . 59 v v "
8000 8500 . 9000 9500 10000 8000 8500 . 9000 9500 10000
Time(s) Time(s)

@

environmental direction. (c) ML3 at 0° environmental direction. (d) ML4 at 90° environmental direction.



JOURNAL OF MARINE SCIENCE AND TECHNOLOGY 2024;32:244—265

True ------ DNN ------- HNN
3000 70
2500 ~ el
= g
Z g
= 2000 F = 66
= =
£ E
& 1500 s 6®F
s E
1000 - = el
500 : . 60 L : :
8000 8500 9000 9500 10000 8000 8500 . 9000 9500 10000
Time(s) Time(s)
(@
25000 70
20000 [ o [
z =
A 15000 Z
=7 =
E 10000 ;%
= 5
5 s =
2]
&= =
of - I
-5000 : ; ; 50 . v :
8000 8500 _ 9000 9500 10000 8000 8500 9000 9500 10000
Time(s) Time(s)
6000 72
=
~ %ﬂ 68 -
Z a0} )
- et
T s
5 E=Cy
S 2000 =
= 2 ef
—
° . . L 56 . . i
8000 8500 9000 9500 10000 8000 8500 _ 9000 9500 10000
Time(s) Time(s)
(©
25000 80
20000 | =
z g
2 15000 =7
~ =
£ 10000 ;%
=
2 g
E 5000 =
<
&= =
ok —
5000 . . . 0 . . .
8000 8500 . 9000 9500 10000 8000 8500 . 2000 9500 10000
Time(s) Time(s)

@)

263
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6. Conclusions

The present study establishes three deep learning
models to predict line tension and inclination of the
mooring systems of a floating barge. The first model
is DNN that takes into account the 6-DOF motion
values of the floating barge as input data. The sec-
ond model is CNN that uses images of the floating
barge and mooring lines in the horizontal plane as
input data. The final model, referred to as the HNN
model, consolidates the input data from the DNN
and CNN models. The output labels are defined as
axial tension and inclination for four mooring lines.
To construct a dataset for the deep learning models,
hydrodynamic and mooring analyses of the floating
barge are conducted.

A hyperparameter study is conducted to train the
three models. Initially, the number of layers is
adjusted to observe the change in the loss function
of MSE. Subsequently, variations are made to the
number of neurons in the hidden layer and the
number of filters in the convolutional layer to
establish the model with the highest accuracy.

The predictive accuracy of the three models is
evaluated by testing phase. While the DNN and
HNN models show similar prediction results to the
true values, the CNN model is found to have a
relatively lower accuracy. This is because the input
data for the CNN model is images of the horizontal
plane, which do not reflect the characteristics of
heave, roll and pitch motions. Additionally, the ac-
curacy is low for all the models in the high tension
region where the amount of data is relatively small,
and the prediction accuracy of inclination is higher
than tension where the data is relatively evenly
distributed.

To verify the applicability of the established
models, mooring line tension and inclination pre-
dictions are performed under environmental con-
ditions which are not used in training and testing,
and compared with the true values. The overall
distributions of the true and predicted tension and
inclination are compared, and it is confirmed that
most of the overall distributions are well matched.

Additionally, a comparison of the true and pre-
dicted values is performed using time history, and it
is confirmed that the predicted values are slightly
shifted under the benign condition. Under median
conditions, the overall predicted values show good
agreement with the true values. Under harsh con-
ditions, there are differences in several peaks be-
tween the true values and predicted values. This is
because the established DNN and HNN models are
not trained for excessive mooring line tension and
inclination.

The calculation times for the training and testing
of the DNN and HNN models, using the same re-
sources and graphic processing unit (GPU), are
approximately 0.5 and 6.0 hours, respectively. This
difference in training time is attributed to the input
data and model architecture. The DNN model re-
ceives scalar inputs and employs simple architec-
tures. In contrast, the HNN model utilizes image
inputs and includes multiple convolutional layers in
its architecture for extracting image features. How-
ever, the time required for prediction using estab-
lished deep learning models is not significant for the
DNN and HNN models.

Through this study, it is confirmed that the deep
learning models for predicting the characteristics of
mooring systems need to consider a suitable range of
environmental conditions. Additionally, it is evident
that there are limitations to relying solely on input
images from the horizontal plane. Furthermore,
when combining input images with 6-DOF data, we
obtain more accurate prediction results. The pro-
posed deep learning models, utilizing information
obtained from the floater at the operating site, are
expected to sufficiently replace the mooring moni-
toring system with highly accurate real-time pre-
dictions of mooring line tension and inclination.
Additionally, the use of the proposed deep learning
models as a mooring monitoring system is expected
to reduce the costs associated with establishing
analysis software and address maintenance issues.
Since the present study only considers a simple
floating barge with four mooring lines, the applica-
bility of the deep learning model to future spread
and turret mooring systems, which involve clustering
multiple mooring lines, should be investigated.
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