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REVIEW

Underwater Image Enhancement Algorithm for Dual
Color Spaces

Xingsheng Shen, Yalin Song*, Shichang Li, Xiaoshu Hu

Henan University, Software College, Longting District, Kaifeng, 475000, China

Abstract

Targeting issues related to low contrast, blurring, and loss of detail prevalent in underwater image enhancement
algorithms, we propose a dual-color space multiscale residual network (DMR-SCNet) based on SCNet. First, we
introduce the HSV color space feature extraction module, which aims to optimize the color representation and saturation
of underwater images. Subsequently, we propose the RGB color space denoising module, which focuses on repairing the
content and structure of underwater images to enhance their clarity and visual quality. Finally, by designing the residual
attention (RAB) module, we aim to further refine the detailed representation and feature extraction of underwater im-
ages.
The results obtained from assessments conducted on the UIEBD and EUVP datasets indicate that the proposed method

outperforms current prevalent deep learning methodologies, showing superior performance in terms of the peak signal-
to-noise ratio (PSNR), structural similarity index (SSIM), and underwater image quality measure (UIQM). Our findings
moreover indicate that DMR-SCNet yields substantial improvements in underwater image enhancement within diverse
underwater environments. This approach shows promise for implementation in underwater image processing to
markedly enhance the overall quality and usefulness of underwater imagery, offering broad applications in underwater
visual data enhancement.

Keywords: Underwater image enhancement, Image processing, Convolutional neural network, Residual learning

1. Introduction

T he ocean covers approximately 71% of the
Earth's surface. In light of the scarcity of re-

sources on land, the development and use of marine
resources have drawn significant attention from
nations worldwide. Underwater images are essen-
tial for exploring and utilizing underwater re-
sources. Frequently, such images degrade because
of absorption and scattering, which are influenced
by wavelength and distance. Water absorbs more
red light than blue and green light, leading to an
absorption effect and the characteristic blue‒green
color cast of underwater images. Scattering phe-
nomena, such as forward and backward scattering,
are caused by the suspension of sediment particles
in water. These particles create uniform background

noise and a foggy appearance, thus degrading
image quality. Poor-quality underwater images can
negatively affect subsequent underwater visual
tasks, including underwater target detection and
classification, as well as other visual processing
tasks. The substandard quality of underwater im-
ages significantly hampers activities such as un-
derwater resource exploration, underwater
archaeology, and marine military operations.
Hence, it is crucial to develop a more proficient
approach to enhancing subaquatic images to obtain
superior underwater image quality and to further
investigate the marine world.
Early methods for enhancing underwater images

can be divided into two main categories: physical
model-based methods and nonphysical models.
Nonphysical model image enhancement techniques
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aim to enhance image data at the pixel level without
considering the physical processes involved in
image generation. Thus, they adjust pixel intensity
or color values to enhance image quality while
disregarding the influence of optics, sensors, or
other physical phenomena related to image forma-
tion. These methods include histogram stretching
[1], histogram equalization [2], white balancing [3],
grayscale edge assumption [4], and methods based
on retinex theory [5]. Physical model-based ap-
proaches address underwater image enhancement
as an image restoration challenge. This technique
diminishes the complexity of coping with ambiguity
through an inverse problem solution that utilizes
prior information from natural images. Common
algorithms in this category include the dark channel
prior method [6], red channel prior method [7],
adaptive attenuation curve prior method [8], and
minimum information prior method [9]. While
conventional algorithms consider the causes of
degradation in underwater images and the impact
on image pixel values, they possess certain limita-
tions and frequently fail to yield exceptional out-
comes when applied to underwater images.
However, the use of deep learning techniques has

led to impressive improvements in underwater
image quality. The algorithm proposed by Water-
Net et al. [10] utilizes a gated fusion network ar-
chitecture for underwater image enhancement.
Although the quantitative analysis results are sub-
par, there is significant potential for improvement.
Li et al. [11] introduced a UWCNN network model
that leverages deep learning techniques to improve
the clarity and detail of images captured in under-
water environments, taking into account the unique
characteristics and prior knowledge of underwater
scenes. However, accurate predictions by a single
model are unachievable, and there exists an issue of
overcompensation for images that exhibit significant
attenuation. Slam et al. [12] introduced FUnIE-GAN,
a computational model that exhibits high processing
efficiency and demonstrates effective color restora-
tion capabilities for underwater images. However,
the model is trained primarily on synthetic image
pairs, thereby disregarding the inherent differences
between virtual and actual scene images. Conse-
quently, its efficiency tends to deteriorate when
evaluated on real-world data. Gong et al. [13] pro-
posed an underwater image enhancement method
based on color feature fusion. This method takes
advantage of the characteristics of underwater light
propagation and adopts a multichannel feature
extraction strategy. It uses convolution blocks of
different sizes to extract features from the three
channels of red, green and blue to effectively

capture global and local information in underwater
images. In addition, the researchers introduced an
attention mechanism to design a residual enhance-
ment module, thus enhancing feature representa-
tion. However, depending on water conditions, this
method may be overenhanced or underenhanced.
Li et al. [14] proposed a novel neural network
structure named the multi-channel attention
network (MCANet). This network effectively in-
tegrates features in different color spaces by intro-
ducing a multicolour space encoder and uses the
multichannel attention path aggregation strategy to
acquire deeper global and local features of an image
from multiple dimensions. Finally, the network's
ability to perceive and learn from image features is
continuously improved by embedding and stacking
multichannel attention modules multiple times.
In summary, while deep learning algorithms focus

more on color correction in enhancing underwater
images, thereby amplifying their effectiveness, most
of them use only a single color space for image
enhancement without considering the complex
environment of the underwater image. A single
color space cannot comprehensively process the
chromatic details within the image or improve the
color saturation, hue, or other aspects of the
problem.
Given these issues, we propose a model for

enhancing underwater images in dual-color space.
The primary contributions of this study can be
summarized as follows:

1. The present study introduces the structure of
both the RGB color model and the HSV color
model. Among the array of color models, the
HSV color space can be globally adjusted using a
neural curve after the deep learning convolution
layer. This adjustment effectively enhances the
background and tone of underwater images.
Subsequently, the processed underwater image
is further refined using an RGB color space
denoising network.

2. The performance of the RGB denoising network
is improved. Based on the U-Net architecture,
this paper modifies each convolution module by
employing multiscale expansion convolution
instead of conventional convolution. This
approach enables more effective extraction of
multiscale features, expansion of the receptive
field, and utilization of contextual information. A
more comprehensive understanding of the vi-
sual information and composition within the
image facilitates the precise elimination of noise
in underwater images and the subsequent
restoration of clear visuals.
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3. A module called the residual attention block
(RAB) module is proposed. We suggest incor-
porating channel attention and spatial attention
mechanisms into the convolutional layer, along
with the addition of skip connections for feature
fusion. The objective is to improve the perfor-
mance of underwater image restoration tasks by
reducing noise propagation and improving the
overall usability of the restored images. This
study aims to provide information and enhance
the quality of images.

2. Related work

2.1. HSV color model and RGB color model feature
extraction

Wang et al. [15] proposed the UIEĈ 2-Net model,
which combines the RGB color space and HSV color
space into a unified convolutional neural network.
The network consists of three modules, followed by
RGB pixel-level blocks to achieve basic denoising and
removal of the cast; the HSV color space global
adjustment block, which employs a layer of neural
curves to adjust the luminance, hue, and saturation of
underwater images; and the attention module, which
assigns weight to the output of the RGB and HSV
blocks at thepixel level using anattentionmechanism,
aiming to achieve superior enhancement for under-
water images. According toUIEC 2̂-Net,we introduce
the HSV color space feature extraction module to
improve the color deviationofunderwater images and
introduce the pixel weight of the HSV color space in
the attention module to enhance image quality.
FU et al. [16] proposed the SCNet model, which

performs normalization separately for spatial and
channel dimensions at every scale of the U-Net ar-
chitecture to obtain multiscale representations.
Specifically, spatial normalization is conducted
using instance whitening techniques to mitigate the
impact of varying water conditions at the skip con-
nections of the U-Net model [17]. PONO-MS [18] is
added to the network to input the previous activa-
tions in the U-Net encoder. Both the mean and
standard deviation are used to direct the models
toward the matching decoder modules of the U-Net
architecture, while using a 1 � 1 convolution to
optimize the channel. PONO-MS is normalized
across channels. This method enables the model to
grasp the structural intricacies of a particular input
image effectively by extracting relevant features and
reinjecting/transmitting them to the subsequent
layer, which can effectively improve network per-
formance. However, during training, the network

lacks crucial information regarding the image con-
tent. In this paper, we construct an RGB color space
denoising module based on the SCNet model and
enhance the restoration of underwater images by
improving the convolutional layer and attention
block of the SCNet.

2.2. Multiscale dilated convolution

In a traditional convolutional neural network
(CNN), the convolution operation typically involves
using a fixed-size convolutional kernel to conduct
convolutions on the input data. This method may
have some limitations when dealing with objects or
features at different scales. Multiscale convolution
solves the inability of traditional convolution oper-
ations to capture features of various scales by
incorporating multiple convolution kernels of
differing sizes.
The main idea of multiscale convolution is to apply

convolutional operations to an image at different
scales, thereby considering both local details and
global structures to improve denoising effects. Mul-
tiscale convolution isprevalent in thedomainof image
processing. Zhang et al. [19] introduced the concept of
a multiscale convolutional network (DnCNN) for
image denoising. The DnCNN structure consists of
multiple convolutional layers and residual connec-
tions, which reduce noise through the learning of re-
siduals. Lehtinen et al. [20] proposed a denoising
method that does not require clean image data. It
employs multiscale convolution to train a denoising
network by applying multiple random trans-
formations and reconstructions to noisy images to
generate training data. With the introduction of
dilated convolution [21], many researchers have
combined dilated convolution with multiscale
convolution for various visual tasks. For instance,
Chenet al. [22] proposed theDeepLabnetwork,which
combines multiscale convolution and dilated convo-
lution for semantic image segmentation tasks. In the
context of image denoising, Liu et al. [23] presented an
image restoration method that utilizes a combination
of multilevel wavelet transforms and convolutional
neural networks, incorporating multiscale convolu-
tion and dilated convolution operations to address
image noise. Wang et al. [24] proposed an image-
denoising technique that leverages deep convolu-
tional neural networks and incorporates multiscale
convolution and dilated convolution to accomplish
multiscale feature fusion.
The incorporation of the multiscale dilated

convolution module in this study is predicated
on the distinctive attributes of both multiscale
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convolution and dilated convolution. The integra-
tion of the convolution layer into the RGB denoising
module aims to enhance the model's field of view,
thereby facilitating the effective extraction of images
with varying scales and spatial ranges. The inclusion
of characteristics that can capture both overall and
specific features is paramount in preserving the
structural integrity of an image and enhancing the
effectiveness of image denoising.

2.3. Attention mechanism and residual connections

The integration of the attention mechanism has
been demonstrated to augment the model's expres-
sive and learning capacities, enabling it to effectively
address intricate tasks and handle extensive datasets.
By employing a dynamic focus on crucial elements of
the input, the model can enhance its information
processing capabilities, leading to improved perfor-
mance and generalization. Park et al. [25] introduced
a lightweight attention module called the channel
and spatial attention mechanism (CBAM), as depic-
ted in Fig. 1. This module enhances the representa-
tion ability of feature maps by incorporating channel
attention and spatial attention mechanisms. Thus, it
can effectively distinguish between useful informa-
tion and noise in the image, thereby improving the

denoising effect. He et al. [26] introduced the residual
network (ResNet), which incorporates the novel
concept of residual blocks. By incorporating residual
connections within these blocks, the network can
learn mapping of both identity and differences. This
approach effectively addresses the issue of vanishing
gradients and allows for increased network depth.
Based on the aforementioned concepts, the RAB

module incorporated in the proposed model in-
troduces the CBAM attention mechanism and re-
sidual connection. This integration allows the model
to effectively capture residual information and
assign appropriate weights to features, thereby
emphasizing the importance of certain features
through increased attention. The performance of the
image enhancement model is thus enhanced.

3. Dual-color space multiscale residual
network model (DMR-SCNet)

In this paper, we introduce a novel dual-color
space multiscale residual network model. The
model consists of three main modules: the HSV
color space feature extraction module, the RGB
color space denoising module, and the residual
attention block (RAB) module. The overall archi-
tecture of our model is shown in Fig. 2.

Fig. 1. Diagram of CBAM attention structure.

Fig. 2. DMR-SCNet model structure diagram.
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3.1. HSV color space feature extraction module

The RGB color space is a prevalent color model
employing three channels, red (R), green (G), and
blue (B), to define the colors within an image. It is
difficult to restore the image using only the RGB
space; however, the chromatic details in underwater
images can be seriously distorted and shifted as a
result of light propagation and absorption within
water. To overcome this problem, this paper em-
ploys an approach that enhances the effectiveness of
underwater image restoration through the integra-
tion of the HSV (hue, saturation, value) color space.
A straightforward neural network curve layer is
introduced within the HSV color space to perform
piecewise linear scaling of HSV color attributes,
especially hue and saturation, thereby alleviating
the color distortion problem of underwater images.
According to UIEC 2̂-Net [15], we propose the

HSV color space feature extraction module. The
original underwater image serves as the input for
the feature extraction module within the HSV color
space. The RGB image is first transformed into an
HSV image, followed by three 3x3 convolutional
layers with a stride of 1. After each convolutional
layer, a leaky ReLU activation function and max
pooling are applied. After applying a global average
pooling layer that condenses the feature map into a
1x1xC shape, a fully connected layer is subsequently
appended to it, which is used to return the piece-
wise linear curve node. This curve resizes the pre-
dicted image by adjusting the pixel sizes through
the formula described in Equation (1).

S
�bI jli �¼k0 þ

XM�1

m¼0

ðkmþ1 � kmÞd
�
MbI jli �m

�
ð1Þ

where

dðxÞ¼
8<
:

0 x<0
x 0� x
1 x>1

� 1

M represents the number of predicted knot

points, bIjli denotes the value of the jth pixel in the 1st
color channel of the i-th image, and km represents
the value associated with node M. The core of the
HSV color space feature extraction module involves
multiplying the pixel value by the curve's scale
factor to obtain an enhanced global adjustment
image.
The HSV space separates the values of the three

channels of the imagedhue, saturation and value.
The image properties are optimized by the corre-
sponding adjustment curves. The optimized HSV

image is converted back to RGB space by differen-
tiable HSV to RGB conversion, and then the
resulting features are combined with the original
underwater input image through a long jump join,
passing the features to the RGB color space
denoising module of the model. This process im-
proves the stability of model training while
combining the basic features from the underlying
original image.

3.2. RGB color space denoising module

To address the issues of blurring or lack of detail
in underwater images with complex textures or
subtle structures, this study adopts a novel
approach. Specifically, we introduce an RGB color
space denoising module and incorporate a multi-
scale dilated convolution to replace the ordinary
convolution in the U-Net encoder and decoder
components. This modification aims to enhance the
network performance in handling underwater im-
ages with complex textures or subtle structures.
Ordinary convolution operations employ convolu-
tion kernels of fixed size, thereby lacking the ability
to directly capture multiscale information. There-
fore, the use of multiscale dilated convolution allows
the network to effectively extract features at various
scales, which enables the network to adapt to
feature changes occurring at different scales while
also capturing larger receptive field features.
Consequently, this approach enhances the net-
work's ability to comprehend the features present in
the image.
The multiscale dilated convolution structure is

based on the inception module. It consists of three
parallel convolution branches, each utilizing con-
volutions that are 3 � 3, 5 � 5, and 7 � 7. To decrease
the computational demands of the model, the 5 � 5
and 7 � 7 convolutions are decomposed, and
smaller, more lightweight 3 � 3 convolutions are
employed as substitutes. Different dilation rates are
applied to each parallel convolution branch to
perform dilated convolutions. By employing dilated
convolutions with varying dilation rates, this tech-
nique facilitates feature extraction at multiple scales,
thereby enhancing fine details in underwater im-
ages. This approach additionally aids in mitigating
concerns associated with diminished feature map
resolution and potential information loss that may
occur when multiple convolution layers are stacked.
Subsequently, the outputs from the three branches
are combined to extract spatial features at various
scales. Subsequently, a 1 � 1 convolution is
employed to modify the channel dimensions,

JOURNAL OF MARINE SCIENCE AND TECHNOLOGY 2024;32:157e169 161



thereby reducing the parameter count and compu-
tational load of the model for subsequent opera-
tions. Finally, to enable the addition of input and
output features in an elementwise addition, a re-
sidual connection is introduced by incorporating a
1 � 1 convolution. The purpose of this addition is to
enhance the network's ability to preserve and
transmit essential image information during
training, which facilitates the recovery of local
image features. Fig. 3 depicts the architecture of the
multiscale dilated convolution.

3.3. RAB residual attention module

While the encoder-decoder architecture of the
RGB color space denoising module effectively cap-
tures multiscale features through multiple upsam-
pling operations, it is nevertheless susceptible to the
loss of pixel-level spatial detail features. To preserve
the intricate texture characteristics present in the
input image, the CBAM module and residual con-
nections are employed within the RAB residual
attention module. As depicted in Fig. 4, the module
initially undergoes convolution and activation, fol-
lowed by another convolution operation. Subse-
quently, the CBAM attention module is employed,
and residual connections are utilized to address
these challenges when training a deep network. The
CBAM module aims to capture both spatial and
channel attention in images. The system comprises
two primary modules, namely, the channel attention
module (CAM) and the spatial attention module
(SAM).
The CAM submodule adaptively adjusts the

importance of different channels by learning chan-
nel weights to enhance the network expressiveness,
allowing the model to better capture the valuable
characteristics present within the input data and
thus improving underwater image enhancement.

The CAM submodule structure is shown in Fig. 5.
The input features (C �H �W) are first subjected to
global maxpooling and global average pooling to
obtain shape features (C � 1 � 1). The features are
subsequently input into a multilayer perceptron
(MLP) to learn the channel weight. This MLP
network consists of one or more fully connected
layers, each of which introduces nonlinearities using
a rectified linear unit (ReLU) activation function,
and the outputs of the MLP represent the weight
coefficient of each channel. The resulting features
from the MLP undergo elementwise summation,
followed by the application of a sigmoid activation
function, thereby producing the ultimate channel
attention weight.
The SAM submodule is used to adaptively adjust

the importance of each spatial position in the
feature map to more accurately grasp the spatial
dimensions of the features and restore the primary
content of the image so that the network can
discriminate diverse localized regions and will pay
more attention to more important and harder to
augment regions. Fig. 6 illustrates the structure of
the SAM submodule. First, the input feature map is
subjected to max-pooling and average-pooling op-
erations, resulting in two separate feature maps,
each with dimensions of (H � W � 1). The two
feature maps are then combined using the concat-
enation operation. Then, through a 7 � 7 convolu-
tion operation to change the feature map feature
channel to 1, the spatial attention feature is gener-
ated by a sigmoid activation function.

Fig. 3. Diagram of the multiscale dilated convolution structure.

Fig. 4. Diagram of the RAB module structure.
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The RAB module can enhance the model's overall
performance to effectively address quality
improvement and noise suppression in images.
Consequently, this approach can significantly
bolster underwater image enhancement. After the
RAB module and the application of a convolutional
layer, a tensor with 6 channels is generated. The first
three channels are multiplied by the result obtained
from the module that extracts features in the HSV
color space, while the remaining three channels are
multiplied by the output of the RGB color space
denoising module that has undergone a convolution
and a sigmoid activation function. Finally, the two
aforementioned results are combined to achieve a
high-quality enhanced underwater image.

3.4. Loss function

To maintain the edge information of the image
and enhance the texture similarity of the image, in
this paper, the mean square error (MSE) loss, con-
tent-aware loss and SSIM loss are used to train the
model. The MSE loss is the mean value of the
squared difference between the model output image
and the reference image. The MSE loss is sensitive
to outliers and better guides the model to learn
sample mapping from the global similarity space.
The MSE loss can be expressed as shown in Equa-
tion (2).

Lossmse ¼ 1
N

XN
i¼1

�
xi � yi

�2 ð2Þ

where N is the number of samples in each
training batch, xi denotes the augmented image

output by the model, and yi denotes the corre-
sponding reference image.
Inspired by the literature [27], this paper introduces

content-aware loss to enhance image details and
correct image colors. Perceived similarity is defined as
the Euclidean distance between the feature repre-
sentations of the augmented image and the clean in-
stances. The content-aware loss can be expressed as
shown in Equation (3).

Lossvgg ¼ 1
m

X�
4i;jðbIÞ �4i;jðIÞ

�2 ð3Þ

where 4i;j denotes the feature mapping obtained
through the jth convolution (after activation) before
the ith maximal pooling into within the pretrained
VGG16 network and m is the number of pixels of
the extracted feature map.
The SSIM loss is designed to improve the struc-

tural similarity between the feature representations
of the output image and the reference image. It can
be expressed as shown in Equation (4).

Lossssim ¼ 1� 1
N

XN
i¼1

SSIM ð4Þ

The final loss is a linear combination of the mean
square error loss, content perception loss and SSIM
loss. It can be expressed as shown in Equation (5).

Lossfinal¼l1Lossmse þ l2Lossvgg þ l3Lossssim ð5Þ

where l1, l2 and l3 are empirically set to 0.6, 0.3
and 0.1, respectively, to balance the proportions of
different losses.

Fig. 5. Diagram of the channel attention submodule structure.

Fig. 6. Diagram of the spatial attention submodule structure.
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4. Experiment

In this section, we initially present the dataset
employed in the experiments, the evaluation index
of underwater image enhancement, and the imple-
mentation details. Then, this paper makes a quan-
titative comparison with other deep learning
methods, including a subjective comparison and
objective evaluation index comparison. Finally, we
perform ablation experiments to validate the
contribution of each proposed module.

4.1. Dataset

We employ the publicly available underwater
image datasets UIEBD [10] and EUVP [12] for
training and testing our model, respectively. The
UIEBD dataset comprises 890 underwater images
paired with corresponding labels. The reference
images within the dataset are chosen subjectively
from 12 UIE results, including underwater images
from diverse waters and depths. In total, 800 images
were randomly selected and employed as the
training set, while the remaining 90 images were
designated for the test set. Due to the variability in
image sizes, during model training, we resized the
images to 128 � 128.
The EUVP underwater ImageNet dataset contains

underwater image data for different scenes, water
types, and lighting conditions. We randomly
divided this dataset into training and testing sets
maintaining an 8.5 to 1.5 ratio, where 3145 pairs of
images were trained and the remaining 555 pairs of
images were tested, including various real under-
water images such as low contrast, missing details,
and color distortion. Given that the EUVP dataset
contains images of various resolutions, including
sizes such as 800 � 600, 640 � 480, 256 � 256, and
224 � 224, we included a preprocessing step to
standardize these images to a consistent size of
256 � 256 before model training. Ensuring uniform
image dimensions during model training allowed
for better adaptation to the model's learning and
feature extraction procedures.

4.2. Experimental environment

Table 1 displays the precise experimental setup,
detailing the hardware and software configurations
essential for conducting the research. During the
training phase, the network training process
involved PyTorch framework implementation uti-
lizing the Adam optimizer with an initial learning
rate of 1e-4. A batch size of 1 is set, and the training
comprises 100 rounds.

4.3. Evaluation metrics

Objective evaluation metrics, specifically full-
reference metrics such as the peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM), are
employed. A higher PSNR indicates a closer content
resemblance between the output and reference im-
ages. Conversely, a higher structural similarity index
(SSIM) suggests greater structural similarity between
two images. The evaluation metric for enhancing
underwater images without reference is known as
the underwater image quality metric (UIQM).
The PSNR, a metric utilizing the mean squared

error (MSE), gauges signal distortion through a
comparison of the original and enhanced images. A
higher PSNR denotes diminished image distortion
and elevated image quality. Its formulation is illus-
trated in Equation (6).

PSNRðx;yÞ¼10 log10

�
2552

MSEðx;yÞ
�

ð6Þ

The SSIM, a metric for structural similarity,
quantifies the resemblance between the output
image (y) and the reference image (x). It accounts for
the structural information within images, evaluating
similarities in luminance, contrast, and structure.
SSIM values range between 0 and 1, with values
closer to 1 denoting heightened image similarity
and enhanced image quality. Its computation is
shown in Equation (7).

SSIMðx;yÞ¼
�
2mxmy þ c1

�
ðmx

2 þ my
2 þ c1

� �
2sxy þ c2

�
ðsx

2 þ sy
2 þ c2

� ð7Þ

In the formula, mx and my represent the brightness
means of x and y, sx2 and sy

2 represent the variances
of x and y, sxy is their covariance, and c1 and c2 are
constants with values c1 ¼ ð255� 0:01Þ2 and
c2 ¼ ð255� 0:03Þ2.
mx and mx signify the mean brightness values of x

and y, respectively, while sx
2 and sy

2 denote their
respective variances. The variable sxy represents the
covariance between x and y. Additionally, the con-
stants c1 and c2 are defined as c1 ¼ ð255� 0:01Þ2 and
c2 ¼ ð255� 0:03Þ2.

Table 1. Experimental environment.

Environment properties

System Ubuntu 18.04
CPU Intel(R) Xeon(R) Platinum 8350C

CPU @ 2.60 GHz
GPU RTX3090
CUDA 11.0
build environment PyTorch ¼ ¼ 1.7.0þPython 3.8
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UIQM [27] is derived from a weighted sum
comprising the underwater image colorfulness
measure (UICM), underwater image sharpness
measure (UISM), and underwater image contrast
measure (UIConM). While a higher UIQM score
typically indicates improved human visual percep-
tion, it may not consistently offer precise evaluations
of image quality, especially when considering no-
reference metrics. Therefore, in this paper, we use
the UIQM score as a reference. The UIQM is
calculated as shown in Equation (8).

UIQM¼C1 �UICMþC2 �UISMþC3 �UIConM

ð8Þ
According to [27], this paper sets the following

values: c1 ¼ 0.0282, c2 ¼ 0.2953, and c3 ¼ 3.5753.

4.4. Comparative analysis between different models

To evaluate the effectiveness of the proposed
approach, two real underwater datasets, namely, the
UIEBD and EUVP datasets, were selected. These
datasets were then compared with the most widely
used underwater image enhancement techniques,
including the fusion-based method (Fusion), the
unified dark channel prior method (UDCP),
WaterNet, UWCNN, FunIE-GAN, and SCNet. We
conducted a qualitative evaluation and quantitative
analysis of the methodology employed in this paper.

4.4.1. Objective analysis
This paper endeavors to thoroughly examine the

influences of modeling from diverse viewpoints,
seeking a comprehensive understanding of the
model's behavior across various scenarios and per-
spectives. To achieve this goal, we conducted
objective analysis experiments on the UIEBD and
EUVP datasets. The quantitative outcomes of
diverse algorithms for improving underwater im-
ages on the underwater image enhancement
benchmark dataset (UIEBD) are shown in Table 2.
The data in Table 2 distinctly demonstrate the su-
perior performance of the proposed model relative

to existing approaches, showcasing its dominance
across a broad spectrum of image quality metrics.
Our method demonstrates exceptional performance
on the limited dataset UIEBD.
Compared with SCNet, our method shows a

substantial improvement in PSNR of 4.5% and in
SSIM of 1.8%. Compared with the traditional
methods Fusion and UDCP, our method greatly
improves the metrics because Fusion is a relatively
good traditional method and can achieve results
close to those of deep learning methods. Compared
to the UWCNN algorithm, our method exhibits a
marginal increase in PSNR while maintaining
similar SSIM scores, suggesting similarity in image
structure and details between the two methods.
Conversely, compared to the FunIE-GAN algo-
rithm, our method demonstrates significant en-
hancements in both PSNR and SSIM, illustrating its
ability to capture image details and realistic color
perception. Additionally, when juxtaposed with the
WaterNet algorithm, our method displays substan-
tial improvements in both PSNR and SSIM metrics.
Compared to the UIEC 2̂-Net algorithm, our
method shows improvements in both the PSNR and
SSIM metrics. Notably, our method records the
lowest MSE values among the various algorithms,
indicating superior quality and closer alignment
with reference images in underwater image
enhancement. The experimental results presented
in Table 2 underscore the effectiveness of our pro-
posed method in enhancing underwater images,
showcasing its ability to closely replicate reference
images in terms of contrast, texture, structure, and
detail, thus ensuring higher-quality outcomes.
We evaluated the efficacy of our proposed method

using the EUVP dataset, employing evaluation
indices such as PSNR, SSIM, and UIQM, as depicted
in Table 3. The data in Table 3 demonstrate the
superior performance of our proposed model over
existing methodologies across various image quality
metrics. Specifically, compared with SCNet, our
method exhibits a remarkable improvement in
PSNR of 4.2% and in SSIM of 3.5%, demonstrating

Table 2. Quantitative comparison of different algorithms on the test set
UIEBD.

Methods PSNR SSIM MSE

Fusion 19.03 0.8021 859.61
UDCP 11.76 0.5101 5157.36
WaterNet 19.11 0.7964 797.60
FunIE-GAN 17.75 0.7893 1041.03
UWCNN 19.22 0.8706 742.58
UIEC^2-Net 20.33 0.8159 696.91
SCNet 20.48 0.8459 596.91
Ours 21.52 0.8612 407.53

Table 3. Quantitative comparison of different algorithms on the test set
EUVP.

Methods PSNR SSIM UIQM

Fusion 19.68 0.7014 2.79
UDCP 13.43 0.5300 2.31
WaterNet 21.53 0.7988 2.86
UWCNN 23.54 0.8263 2.65
FUnIE-GAN 20.14 0.6879 2.96
UIEC^2-Net 23.42 0.8315 2.95
SCNet 24.08 0.8232 3.07
Ours 25.10 0.8526 3.17
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its superiority in diverse underwater environments.
Compared with Fusion and UDCP, the proposed
method significantly improved the evaluated met-
rics, indicating that the traditional methods still
have limitations regarding complex underwater
image enhancement. Furthermore, in contrast to the
UWCNN, our method shows improvements in both
the PSNR and SSIM, indicating its ability to
generate higher-quality reconstructed images while
effectively reducing image noise. Similarly,
compared to WaterNet, our method demonstrates
substantial advancements in both PSNR and SSIM,
highlighting its ability to minimize color distortion
and enhance image details. Additionally, our
method achieves noteworthy improvements in
PSNR and SSIM over FunIE-GAN, suggesting the
limitations of the latter in handling real underwater
images. Compared with the UIEC 2̂-Net algorithm,
our proposed method shows improvements in all
the metrics. These results emphasize that our pro-
posed method effectively enhances the clarity,
contrast, color, and overall visual appeal in under-
water image enhancement (see Table 3).

4.4.2. Subjective analysis
To assess the effectiveness of the proposed

method in enhancing visual quality, subjective
analysis experiments were performed using the
UIEBD and EUVP datasets. This approach involved

a quantitative comparison with prominent deep
learning methods that have emerged in recent
years. The influence of different algorithms on the
UIEBD and EUVP test sets is visually depicted in
Figs. 7 and 8, highlighting their respective
enhancement effects on underwater images.
Figures 7 and 8 clearly show that the utilization of

WaterNet in image processing is a significant issue
because it intensifies the impact of color bias. Fusion
does not correct for the color bias, while the contrast
is low, and the details are not well expressed. In
addition, UDCP fails to restore the image effectively
and does not address the green color bias, making
the overall colors dull. When applying WaterNet for
image enhancement, the resulting enhanced image
exhibits a darker appearance while still preserving
the predominant blue and green backgrounds pre-
sent in the original image. Nevertheless, this pro-
cedure results in the loss of fine image details due to
blurring.
In the case of UWCNN, the network attempts to

compensate for color shifts in the underwater
environment with an overemphasis on the red
channel, resulting in a noticeable red color bias ef-
fect. Although this processing improves the sharp-
ness contrast of the image, it adversely affects the
overall color balance of the image and leads to
oversmoothing or blurring of the image details
during enhancement, which reduces the image's

Fig. 7. Processing results of different algorithms on the UIEBD test set (a) Original image; (b) Fusion; (c) UDCP; (d) WaterNet; (e) UWCNN; (f)
FunIE-GAN; (g) UIEC^2-Net; (h) SCNet; (i) Proposed method; (j) Reference image.
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ability to retain detail. FunIE-GAN effectively
removes the blue‒green color bias. However, this
approach can lead to problems; for example, the
enhanced image usually appears to be undersatu-
rated, which means that the colors in the image
appear to be softer, resulting in the loss of some
color features. Although this method can reduce the
blueegreen bias, it also results in less expressive
colors in the image, with some of the otherwise
vibrant colors becoming flatter. The consequence is
a reduction in the level of detail and vibrancy of
colors in the image. The UIEC 2̂-Net algorithm
effectively improves image clarity, but the color
correction of the water body is not obvious enough,
and a blue color bias is still present. The SCNet
method demonstrates a noticeable improvement,
but it fails to address blurring in certain parts of the
image, resulting in the loss of detail and poor clarity
in those areas. Although SCNet effectively restores
the dehydration characteristics of the image, its
enhancement effect was not as pronounced as that
of our model. Additionally, it does not sufficiently
address the problem of color casting, and it still
retains some of the distortion present in the original
image. In contrast, our method exhibits remarkable
color correction abilities, effectively eliminating
color biases, enhancing texture details, and refining
overall image clarity. Furthermore, it accurately
preserves the genuine color distribution present in
the original underwater image while augmenting
contrast and brightness to a certain extent. Conse-
quently, the proposed method generates images
enriched with detailed features, contributing to an
overall improvement in the quality and lifelike
representation of underwater images, offering
viewers a more realistic visual experience.
When evaluating the performance of deep

learning-based models, in addition to assessing

whether they effectively enhance the image quality,
the number of parameters and GFLOPS of the
model are also pivotal. These metrics not only
reflect the complexity and computational power of
the model but are also relate directly to the feasi-
bility and efficiency of real-time applications for
underwater robots. In particular, in complex and
changing underwater environments, the ability to
respond in real time and process data efficiently is
crucial for robots.
Table 4 shows that compared with the FunIE-

GAN algorithm, our proposed model decreases the
number of parameters; however, it slightly increases
them relative to the other algorithms. In terms of the
GFLOPs metrics, the proposed model shows better
results than all the other models.

4.5. Ablation study

To demonstrate the effectiveness of the HSV color
space feature extraction module, the multiscale
dilated convolution module, and the RAB module,
ablation studies were carried out using the UIEBD
dataset. The resulting average PSNR and SSIM
values obtained from these experiments are sum-
marized in Table 5. In the ablation studies, each of
the three modules, namely, the HSV color space
feature extraction module, multiscale dilated convo-
lution module, and RAB module, were individually

Table 4. Comparison of model performance metrics.

Model Parameters GFLOPs

WaterNet 1.07 � 106 140.91
UWCNN 4.00 � 104 1.63
FunIE-GAN 7.02 � 106 0.73
SCNet 8.17 � 105 5.88
UIEC^2-Net 3.14 � 106 7.06
Ours 5.24 � 106 5.27

Fig. 8. Processing results of different algorithms on the EUVP test set (a) Original image; (b) Fusion; (c) UDCP; (d) WaterNet; (e) UWCNN; (f) FunIE-
GAN; (g) UIEC^2-Net; (h) SCNet; (i) Proposed method; (j) Reference image.
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tested for experimentation. The findings clearly
indicate that all three modules played a significant
role in enhancing the outcomes. In terms of the
PSNR and SSIM, the multiscale dilated convolution
module achieved notable improvements of 4.5% and
1.8%, respectively. Subsequently, ablation experi-
ments were conducted to test two random combi-
nations of these three modules. The findings
demonstrate that the model's performance was
positively influenced by each pair of enhancements,
as evidenced by improvements in the PSNR and
SSIM. Notably, the combination of the HSV color
space feature extraction module and the multiscale
dilated convolution module resulted in substantial
improvements in PSNR and SSIM of 4.2% and 3.5%,
respectively. Furthermore, ablation studies were
conducted to evaluate the impact of all three mod-
ules when used together. The findings of the ablation
studies clearly show that this particular combination
produced the most favorable outcomes, exhibiting a
notable 4.5% enhancement in the peak signal-to-
noise ratio (PSNR) and a 1.8% improvement in the
structural similarity index (SSIM). The findings also
provide evidence that the incorporation of the HSV
color space feature extraction module, multiscale
dilated convolution, and RAB module, as proposed
in this research, enables the model to attain superior
outcomes and acquire underwater images of higher
quality.

5. Conclusion

In this paper, we introduce a new methodology
referred to as the dual-color-space multiscale re-
sidual network (DMR-SCNet), which is an
advancement built upon the foundation of the
SCNet architecture. DMR-SCNet is developed to
address the prevalent issues with underwater im-
ages, particularly low contrast and blurred details.
By effectively enhancing image quality, this
approach establishes a favorable foundation for
subsequent advanced visual tasks, such as under-
water target detection and recognition. First, the
issue of image color asymmetry is mitigated

through color space conversion, which is then
followed by curve adjustment. The proposed
module for denoising in the RGB color space in-
corporates multiscale expansion convolution
instead of ordinary convolution. This modification
enhances the model's performance by leveraging
the multiscale and multiresolution characteristics
of the feature map. Additionally, it refines the
learning process in terms of channel and space.
Finally, we propose the RAB module, which aims
to enhance image detail restoration and better
enhance important features by incorporating an
attentional mechanism and residual connectivity.
The experimental results confirm the ability of our
method to alleviate color bias, improve image
clarity, and augment contrast. Therefore, it repre-
sents a highly effective approach for enhancing
underwater images. Our study thus holds signifi-
cant value for future research on underwater
vision tasks because it contributes advancing ma-
rine resource exploitation and the exploration of
the marine environment.

Code, data, and materials availability

The analysis conducted in this study utilized
publicly available datasets. The specific dataset in-
formation can be accessed through the following
link: UIEBD, https://li-chongyi.github.io/proj%
5Fbenchmark.html; EUVP, https://irvlab.cs.umn.
edu/resources/euvp-dataset.
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