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RESEARCH ARTICLE

Adaptive Prediction Horizon Energy-saving
Collision-Free MPC of Ships Based on
Ship-Shore Cooperation

Han Xue*, Enjie Yang

College of Navigation, Jimei University, Xiamen 361021, Fujian, China

Abstract

In order to perform the close association between ship maneuvering control and energy consumption through the
control strategy, this paper designs an adaptive prediction horizon based energy-saving robust nonlinear model pre-
dictive control (APHERNMPC) for underactuated ships to deal with the actual control and state constraints during
berthing based on ship-shore cooperation. An improved Emperor Penguin Optimizer (EPO) method is proposed for
collision avoidance decision. To solve the problems of falling into local optimum and reducing the convergence speed,
the traditional EPO is improved based on Sobol sequence in order to enhance the diversity and ergodicity of the
population. The multi-ship encounter situation is tested based on ship-shore cooperation. The results show that the
consumed energy increases with the increase of the speed. In addition, when the intensity and direction of the envi-
ronmental disturbance are different, the energy consumption is also different. The energy consumed by the ships when
moving at different speeds and in different environmental intensities is discussed. Furthermore, the reasons for the
fluctuations in energy consumption with respect to the ship speed are analyzed.

Keywords: Underactuated ships, Model predictive control, Berthing control, Energy-saving, Ship collision avoidance,
Ship-shore cooperation

1. Introduction

1.1. Research background

W ith the increasing demand for energy and
the dual constraints of the environment

and the survival of enterprises, the energy conser-
vation and emission reduction of ships have been
widely studied. In previous studies, the energy
consumption was rarely considered in path plan-
ning. The water area at the wharf apron is a
restricted zone, and the traffic flow of nearby ships
is more complex, which greatly increases the diffi-
culty and risk of berthing. Therefore, to develop the
unmanned ship technology and improve the safety
of berthing, studying the automatic berthing control

is crucial. Although a great progress has been made
in ship collision avoidance and control, the
following problems still exist:

(1) The energy devices that can be carried by un-
manned ships are limited. In addition, it is
important to improve the endurance of these
ships in order to consider the energy consump-
tion as one of the goals in control algorithms.
Moreover, most of the collision avoidance and
control algorithms do not consider the energy
consumption.

(2) It may be difficult to deal with the identity con-
flict in multi-ship encounter situations. Most of
the studies on collision avoidance decision-
making focus on the collision avoidance
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opportunity in the case of give-way ships, while
less studies are conducted on the stand-on ships.

Therefore, it is very important to develop new
collision avoidance control mechanisms and algo-
rithms. This has a theoretical significance for ship
control.

1.2. Related work

Nowadays, ship berthing control has been
considered as one of the most challenging tasks. In a
recent study on ship auto berthing control [1], a
virtual navigation system, based on heuristic dy-
namic programming, was used to investigate the
berthing control of automatic ships. A robust neural
network was proposed to reconstruct the lumped
uncertainties [2]. An asymmetric barrier Lyapunov
function-based fixed-time ship berthing control was
also proposed [3]. The underactuated ship method,
based on nonlinear model predictive control, pro-
vided the optimal rudder angle and propeller speed
to perform the automation of the ship docking pro-
cess [4]. An automatic parking control strategy for 3
degree of freedom (DOF) underactuated surface
vehicles, based on concise backstepping, was pro-
posed [5]. Finally, a control method of autonomous
docking and undocking was proposed using the
adaptive mutated beetle swarm prediction algorithm
[6]. However, most of these studies only assume a
simple berth without the spatial constraints of the
restricted waters of the wharf, while actual control
and state constraints exist during berthing.
Model predictive control (NPC) is an efficient

method for ship berthing control, which allows to
solve this problem [7]. In the ship motion control
field, the model predictive controller was used to
generate a reference tracking speed that satisfies the
constraint [8]. An auxiliary time-varying tracking
controller was constructed in the nonlinear model
predictive control framework to assist the terminal
constraint design [9]. A NPC scheme was proposed
to track an underactuated ship with only two
available controls: the ship surge force and its yaw
moment [10]. A two-layer recurrent neural network
was used to iteratively solve the reconstructed
minimax optimization problem. In addition, a data-
driven predictive control method was proposed [11].
A nonlinear model predictive controller for ship
path tracking, under regular waves, was also pre-
sented in [12]. The study presented in [13] designed
such controller for the vertical motion attenuation of
passenger ships under irregular wave excitation.
Moreover, an event triggered nonlinear model
predictive control solution was developed using the

trajectory tracking of underactuated ships [14].
Finally, a robust nonlinear model predictive control
scheme was proposed for the dynamic positioning
of ships that are affected by time-varying environ-
mental disturbances and input saturation [15].
However, most of the studies presented in this
literature review aim at tracking a predetermined
reference trajectory with adjusting control gain. This
will lead to considerable energy consumption.
However, in the existing studies, the ship maneu-
vering control and energy-saving are always inde-
pendently analyzed, and thus their close correlation
is often neglected.
Studies on fuel consumption and ship motion

control algorithms have been recently emerged. For
instance, Li [16] proposed a nonlinear switching
feedback technology. The model predictive control
was used to improve the fuel efficiency and power
system stability [17]. The second order closed-loop
gain shaping controller had energy-saving effect
and smoothness [18]. The energy consumption was
considered during the control of underactuated
ships [19]. Moreover, using the simulation data of
irregular wave field, a circular path tracking analysis
of the designed controller was conducted, and the
tracking performance and energy consumption
were compared with those of the traditional control
method [20]. Osman and Nuri [21] estimated the
accurate volume of liquid while considering the trim
and heel conditions of the ship.
The swarm intelligence algorithms, such as the

Emperor Penguin Optimizer (EPO), are useful for
ship collision avoidance. Dhiman [22] proposed an
EPO for solving engineering problems. Baliarsingh
[23] analyzed the high-dimensional biomedical data
using an evolutionary multi-objective EPO. Ganesh
[24] developed a modified EPO method for the
optimal allocation that concerns energy storage
systems and phasor measurement units. Khalid [25]
comprehensively reviewed the existing EPOs. Khan
[26] studied the recycling waste classification using
the EPO. Lu [27] discussed a converged EPO for
bidding strategy in a day-ahead deregulated market
clearing price in China. Kaur [28] designed a multi-
objective EPO for global optimization. Dhiman [29]
studied a binary EPO for automatic feature selec-
tion. Xing [30] improved the EPO based multilevel
thresholding for color image segmentation.
Although the above methods could improve the
algorithm performance, they require a complex and
large-scale change, which causes a great limitation
in terms of computational load and cost in practical
applications. Therefore, this study improve the ef-
ficiency of energy saving while ensuring the accu-
racy and safety of the path following.
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1.3. Contributions

This study aims at adaptively selecting an appro-
priate prediction horizon for energy-saving, and
using EPO to select the turning angle for collision
avoidance in order to determine the desired vessel
course at the next moment. The relationship be-
tween collision avoidance and NMPC is summa-
rized as follows: the collision avoidance method
based on EPO designs an appropriate trajectory and
course similar to those of the MPC. This paper aims
at bridging the gap between manipulation control
and energy saving. Its main contributions are sum-
marized as follows:

(1) A novel energy-saving adaptive-prediction-ho-
rizon model predictive control is designed. The
close association between ship maneuvering
control and energy consumption is performed
using the control strategy. The asymptotic sta-
bility of the system is proved.

(2) An improved EPO method is proposed. To solve
the problems of falling into local optimum and
reducing the convergence speed, the traditional
EPO is improved based on Sobol sequence
where a quasi-random sampling method is
introduced in the initialization stage to enhance
the diversity and ergodicity of the population.

(3) A ship-shore cooperation method is proposed.
The multi-ship encounter situation is studied by
analyzing the effect of the ship-shore coopera-
tion under different combination modes based
on ship maneuverability and collision avoidance
rules.

2. Preliminaries and problem statement

2.1. Emperor penguin optimizer

The EPO is a swarm intelligent optimization al-
gorithm developed by Dhiman and Kumar in 2018
[22]. It consists in simulating the behavior of em-
peror penguins crowding together for heating dur-
ing the winter semester. It has few parameters and
high convergence accuracy. When the bad weather
comes, the penguins will huddle together to keep
out wind and cold conditions. The emperor pen-
guins gather to warm each other in the Antarctic
extreme winter when the temperature reaches
�40 �C. To stay warm, all the penguins make equal
contribution, their social behavior is extremely
united, and the labor partitioning is clear.
The algorithm consists of setting the position

range selected in the process of emperor penguin
curling up for heating within the mesh range of

polygon. In the gathering process, each emperor
penguin is adjacent to at least two others, and the
selection of neighbors is random. In the emperor
penguin clustering process, the range boundary is
an irregular polygon. The gradient g of the wind
around the emperor penguin cluster is used to
represent the boundary of the whole cluster, and the
wind speed is denoted by a. Its gradient is given by:

g¼Da ð1Þ

where m represents the polygon plane function, i
represents the imaginary constant, and b represents
the complex plane ordinate of the polygon bound-
ary that the penguin moves to.
A complex potential is reached by integrating

vector b with the wind speed a:

m¼aþ i b ð2Þ
The wind speed and cluster boundary can be

presented by Eqs. (1) and (2), respectively.
The harsh environment in the Antarctic allows the

emperor penguins to stay warm by gathering in cold
weather during migration. If the current gathering
radius (d ) is greater than 0.5, its temperature (W ) is
equal to zero. However, when d is smaller than 0.5,
W is equal to 1. The temperature gradient curve W
can be expressed as:

W¼W � tmax

x� tmax
ð3Þ

where tmax is the maximum number of iterations, x
is the current number of iterations, and temperature
W is given by:

W¼
�
0; d� 0:5
1; d<0:5

ð4Þ

The distance between the emperor penguins
within the cluster is expressed as the distance be-
tween the individual and the one in the center of the
cluster. The cluster distance is expressed as:

Lep¼
��FðGÞObestðxÞ-IOepðxÞ

�� ð5Þ

G¼BmoveðWþPaccÞRandomðÞ �W ð6Þ

Pacc¼
��ObestðxÞ-OepðxÞ

�� ð7Þ

I¼Randomð½0;1�Þ ð8Þ

F¼ xe�
x
4 � e�x ð9Þ

where Lep denotes the distance from the emperor
penguin to the center, x represents the current
number of iterations, G and I form the vector of

JOURNAL OF MARINE SCIENCE AND TECHNOLOGY 2024;32:41e57 43



influence factors used for defining the emperor
penguin volume to avoid conflicts between in-
dividuals, Obest(x) is the optimal solution in the x
iteration, Oep(x) represents the position vector of the
current emperor penguin, F represents the social
status of the emperor penguins allowing to distin-
guish between the best individuals and the ordinary
ones, Bmove is the moving step size which can be set
to 2.5, Pacc represents the precision of polygon mesh
by comparing the difference with the best, x and 4

are control parameters in the ranges of 2e3 and
1.5e2, respectively.
The individual in the emperor penguin cluster

updates the location information by moving to the
direction of the one in the cluster center. The loca-
tion update formula is expressed as:

Oepðxþ1Þ¼ObestðxÞ �GLep ð10Þ

where Oep(xþ1) represents the next generation up-
date position of the emperor penguin.
In the iteration process, once the mover is relo-

cated, the above parameters of the emperor penguin
are recalculated.

2.2. Sobol sequences

The Sobol sequence is a kind of quasi-random
sequences, as shown in Fig. 1. The method of sam-
pling the Sobol sequence is more uniform than that
of sampling the uniformly distributed random
sequence.
There is a quasi-random number sequence flaw in

the current. That is, the sample distribution is
inconsistent with the real distribution. This mainly
occurs in the following two situations: high sam-
pling cost with small number of samples and high
space dimension. The quasi-random sequence, also
known as low difference sequence, is used to
replace the uniformly distributed random sequence.
The Sobol random sequence is an example of this
kind of sequences. It has high distribution unifor-
mity and low time consumption. Fig. 1(a) shows a
scatter plot based on the Sobol random sequence
where the mutual overlap is eliminated. This pre-
sents a uniform distribution based on the sequence
of pseudo random numbers, where some points
overlap with each other due to randomness, as
shown in Fig. 1(b).

2.3. Collision avoidance

The velocity is denoted by vo ¼ ðvox;voyÞ, and that
of the target ship is denoted by vT ¼ ðvTx; vTyÞ. The
relative speed is computed as [31,32]:

vOT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvTx � voxÞ2 þ

�
vTy � voy

�2q
ð11Þ

The relative course is expressed as:

4R¼arctan
vTy � voy
vTx � vox

þ a0 ð12Þ

where a0 is computed as:

a0¼

8>><
>>:

0; vBx � vAx;vBy � vAy
180; vBx<vAx;vBy � vAy
180; vBx<vAx;vBy<vAy
360; vBx � vAx;vBy<vAy

ð13Þ

where RT denotes the distance, ð4A; lAÞ represents
the position, ð4B; lBÞ is the position of the target
ship, and aT is the azimuth which can be computed
as:

aT ¼arctan
4B �4A

lB � lA
þ a ð14Þ

The absolute value of the difference between
the azimuth aT and the relative course 4R is given by:

q¼j4R � aT j ð15Þ
The distance to closest point of approach

(DCPA) is computed as:

DCPA¼RT sin q ð16Þ
The time to the closest point of approach

(TCPA) is given by:

TCPA¼RT cos q
vOT

ð17Þ

The conditions of ship encountering are
defined as:
�
0�DCPA � 0:5nm
vOT � 4

ð18Þ

The ship motion is summarized in Fig. 2 [33].

2.4. Mathematical model of under-actuated USV

h, y, u, v, r, x, y, and J are the position and attitude
vector, velocity vector, surge velocity, sway velocity,
yaw velocity, surge position, sway position, and yaw
angle, respectively, as shown in Fig. 3. The mathe-
matical model of this motion is given by [34]:

_h¼RðJÞy ð19Þ

h¼½x y J �T ð20Þ

y¼½u v r �T ð21Þ
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where R is the rotation matrix:

R¼
2
4 cos J �sin J 0
sin J cos J 0
0 0 1

3
5 ð22Þ

The dynamic models of underactuated ships can
be calculated as:
8<
:

_x¼ u cosJ� v sinJ

_y¼ u sinJþ v cosJ
_J¼ r

ð23Þ

The velocity equation can be expressed as:
8>>>>>>>><
>>>>>>>>:

_u¼m22

m11
vr� d11

m11
uþ Fwx þ Fcx þ tu

m11

_v¼�m11

m22
ur� d22

m22
vþ Fwy þ Fcy

m22

_r ¼m11 �m22

m33
uv� d33

m33
rþNw þNc þ tr

m33

ð24Þ

where t u denotes the control input along the surge
direction, t r represents the control input along the
yaw direction, m11, m22, and m33 respectively
represent the first, second, and third elements on
the diagonal of the inertia matrix, d11, d22, and d33
are respectively the first, second, and third elements
on the diagonal of the linear hydrodynamic damp-
ing parameter matrix, X denotes the position and
speed vector, Fwx and Fwy are respectively the wind
disturbances along the surging and swaying di-
rections, Nw and Nc are respectively the wind and
current disturbances along the yawing direction, Fcx
and Fcy are respectively the current disturbances
along the surging and swaying directions.

2.5. Error dynamics of under-actuated USV

The desired position and speed vector is denoted
by Xd. The components of this vector are shown in
Eq. (26).

X¼½x y J u v r �T ð25Þ

Xd¼
�
xd yd Jd ud vd rd

�T ð26Þ

Xe¼
�
xe ye Je ue ve re

�T
¼ ½R I3 �TðX�XdÞ

ð27Þ

U¼½~tu;~tr�T ð28Þ

where xd and yd are respectively the desired surge
and sway positions, Jd, ud, vd, and rd are the desired

yaw angle, surge speed, sway speed, and yaw angle
speed, respectively.
Let Xe, xe, ye,J e, ue, ve, and re respectively denote

the errors of the position and speed vector, surge
position, sway position, yaw angle, surge speed,
sway speed, and yaw angle, the error dynamics can
then be written as:
8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

_xe ¼ reye þ rdye þ ue þ ð1� cosJeÞud � vd sinJe

_ye ¼�reye � rdye þ ve þ sinJeud þ ð1� cosJeÞvd
_Je ¼ re

_ue ¼m22

m11
ðvere þ vdre þ verdÞ � d11

m11
ue þ 1

m11
~tu

_ve ¼�m11

m22
ðuere þ uerd þ udreÞ � d22

m22
ve

_re ¼m11 �m22

m33
ðueve þ uevd þ udveÞ � d33

m33
re þ 1

m33
~tr

ð29Þ
The proof of Eq. (29) is shown in Appendix A.

3. Main results

The architecture of the proposed algorithm is
illustrated in Fig. 4.

3.1. Adaptive prediction horizon in MPC with
energy-saving

The prediction horizon, Np, refers to the length of
time to be predicted. As the prediction horizon in-
creases, the system's stability time also increases.
The increase in the prediction horizon of the
controller also leads to an increase in the solution
time, while an excessively small prediction horizon
may result in insignificant predictive effects.
Meanwhile, an appropriate prediction horizons is
necessary guarantee closed-loop stability. There is a
significant difference in the control effectiveness
between short-term prediction domain and long-
term prediction domain.
In this work, a dynamic and adaptive method for

adjusting the prediction horizon is designed to
balance the control performance and response ve-
locity. A large value of the prediction horizon at the
beginning stage can improve the tracking perfor-
mance of the controller. At the ending stage,
decreasing the value of the prediction horizon can
reduce the computational complexity of the con-
troller's solution. Compared to traditional control
strategies, The method proposed can balance both
dynamic and steady-state characteristics. This has
certain theoretical guidance significance for
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improving dynamic control performance. The sys-
tem's dynamic performance has been improved,
while maintaining good steady-state performance,
greatly reducing the influence of the fixed length of
the prediction horizon on control effectiveness.
Therefore, an adaptive prediction horizon MPC is

proposed to ensure a high closed-loop stability,
reduce the time for the system to enter the terminal
set, and thus achieve the desired performance:

Np¼min
	
Np minekXek;Np max


 ð30Þ
The energy consumption model of the un-

manned surface vehicle is introduced into the
dissipation function of the objective function.
The control goal is to design the control law and

ensure that all the signals are stable and energy-
efficient. The objective function minimizes the dis-
tance between the position of the ship in the pre-
diction interval and the corresponding point on the
reference trajectory, as well as the amount of the
control input which is positively correlated with
variable the energy consumption.
The discrete system model can be modeled as

below:

Xe;kþ1¼ f ðXe;k;UkÞ ð31Þ
Denote

Pk¼kXe;kk2Q þkUe;kk2O ð32Þ

where Xe,k is the error state of the system at time k.
Ue,k, Q and O are the input of the system at time k,
weighting matrix of the error state, and weighting
matrix of the input, respectively.
The objective function of the ship in the MPC

constrained optimization problem is set at the cur-
rent k as:

Jk¼
XNp

i¼1

�
i
Np

�n

Pk ð33Þ

where n is an integer.

Assumption 1. There exists >0 such that

P
�
f ðXe;UÞ�� PðXeÞ � �bðXeÞ ð34Þ

for a positive definite function b satisfying

bðXeÞ � mPðXeÞ;m > 0 ð35Þ
Lemma 1 [35]. Consider the system

x(kþ1) ¼ f(x(k)). If there exists a positive definite
bounded function V(x) such that V(0) ¼ 0 and for any
x s0, V(x) > 0, in the vicinity of the equilibrium
point x¼0, V(x) is continuous, and V(x(kþ1)) -
V(x(k)) � -a(jjx(k)jj), where a is a class K function,
then the system is asymptotically stable.

Theorem 1. For the closed-loop dynamics (31), the
state Xe¼0 is asymptotically stable.
The proof of Theorem 1 is shown in Appendix B.
The framework of Net-MPC is illustrated in Algo-
rithm 1.

Algorithm 1: Framework of Net-MPC

Input: the reference trajectory and the initial state Xd(0)
Output: the control strategy
1 Generate the prediction time domain Tp and the sampling in-

terval of MPC
2 while the termination condition is not met do
3 Calculate the objective function in MPC using Eq. (33)
4 Set the state and input of the MPC
5 Solve the MPC optimization problem at tk
6 Obtain the optimal control sequence predicted at tk
7 Update the prediction horizon using Eq. (30)
8 Construct the MPC constrained optimization problem at the

new sampling time
9 Coastal monitoring of whether there is a risk of collision for

vessels
10 Use EPO for collision avoidance until it converges to the

optimal solution
11 The shore assigns the priority, and the ships communicate and

share their new strategy decisions and predictions
12 end while

3.2. Ship-shore cooperation

The intelligent ship system has been developed
from single ship intelligence to a new form of
intelligent shipping based on ship-shore collabora-
tion. Through the intelligent equipment on board,
the information integration platform relies on data

 

Fig. 1. Sobol sequence.
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related services to perform ship-shore information
communication, and thus improve the efficiency,
economy, and security of the ship operations. The
navigation system based on ship-shore collabora-
tion can provide information service and mutual

collaboration enhancement, in order to optimize the
ship-shore resource allocation, improve the reli-
ability of ship navigation, and reduce the associated
costs.
The shore control center monitors whether the

ships are in danger of collision by analyzing and
processing the fusion data. If there exists a danger
of collision, it generates collision avoidance in-
structions according to the navigation conditions of
the ships, and sends them instructions of collision
avoidance, so that they can control their own
course and speed and optimize their local routes.
The core of the ship-shore collaboration consists in
conducting an integrated and systematic decision
system, and optimizing the allocation and balance
of information resources between the ship and
shore. It emphasizes the realetime interaction
and dynamic adjustment between the shore and
ship, and performs the reasonable division of labor
and cooperative control between the ship and
shore.
In the cooperative distributed architecture, each

ship has its own controller, which considers its own
interests and those of other ships, as well as the

Fig. 6. Framework of priority-based networked energy-saving nonlinear
MPC.

Fig. 5. Non-convexity of collision restraint using Goodwin's ship
domain.

Fig. 4. Method architecture.

Fig. 3. Model of the ship motion.

Fig. 2. Relative motion of ships.
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dynamic changes around ships. Each ship should
communicate and exchange its current measured or
estimated state, the predicted reference trajectory,
the model parameters, and the time stamp of each
sampling state with other ships in an encounter
situation. The ships send new predictions to each
other, and share the future status and position of
other ships.
Fig. 5 illustrates an example of the non-convexity

of collision constraint using the Goodwin's ship
domain [36], which is composed of three unequal
areas of sectors. In this figure, the white area is the
feasible movement set of ships while the red one is
the infeasible motion set, that is non-convex. The
method solves the non-convex optimization prob-
lem at each sampling time. The non-convexity is
derived from the non-convex feasible set formed by
the collision avoidance constraint.
The designed distributed policy update mecha-

nism allows the efficient functioning. The frame-
work of priority distributed predictive control
integrates the decentralization of the sensing access
strategy of sensors and the model predictive control
algorithm, by designing access threshold and
priority mechanisms, based on the prediction
sequence.
The framework of the priority-based networked

energy-saving controller is shown in Fig. 6.
In the above framework, the shore controls

several ships. Each ship is equipped with a Net-
MPC which consists of an optimizer, ship model,
control objective, and constraints. When the ship is
sailing normally, the course controller controls it to
follow the established path, and calculates the
collision risk in real-time using the collision risk
model according to its motion information and
those of the other ships. When the collision risk is
higher than the threshold, the ship enters the colli-
sion avoidance state. The collision avoidance course
is calculated. The MPC method is then used to
control the ship to avoid collision and turn, so as to
ensure its navigation safety.

3.3. Collision avoidance based on improved EPO

When a collision is detected, the sequence is
determined according to the reference trajectory of
the ship and the DCPA of the other ships [37]. Let x1
and x2 respectively denote the turning angle and
recovery time, the population fitness, based on the
five already described parameters, is then defined
as [38]:

f ¼w1
1

1þDCPA
þw2vx2 sin x1

þw3ðx1 � 30Þþw4
1

1þ TCPA

ð36Þ

where w1, w2, w3, and w4 are the weights.
A quantum particle swarm, based on the Sobol

random sequence, is introduced in the EPO to in-
crease the population diversity. Let [xmin, xmax] the
range of the optimal solution, the random number
kn 2 [0, 1], generated by the Sobol sequence, is
applied as follows:

xn¼xmin þ knðxmax-xminÞ ð37Þ
The Sobol sequence is first used to initialize the

population in order to ensure its diversity. After-
wards, when particles fly over the boundary and fly
out of the search domain, the diversity of the pop-
ulation decreases with the increase of the number of
particles at the boundary, which will affect the
global search ability of the algorithm. Therefore,
boundary mutation is applied to the particles. A
random number produced by the Sobol sequence is
used. After this processing, the diversity of the
population is increased to reach a greater extent.
Thus, the global search ability of the algorithm is
improved.
The calculation of the appropriate steering angle

avoids the collision, as each ship will leave its
original reference track as less as possible. In case of
imminent collision, it is necessary to keep a track to
avoid collision, and the deviation between the new
track and the reference track should be as small as
possible. After collision avoidance, the ships return
to the original reference track. The control objective
can only be achieved through collective behaviors,
and the feasible state set of each ship is a function of
its own and other ship states.

Table 2. Motion parameters of multiple ships.

Ship x/m y/m Course/� Speed/kn

Ship 1 0 0 45 12
Ship 2 �3143 11,000 105 11
Ship 3 11,786 1309 289 14

Table 1. Parameters of the ships.

Parameter Value

Length 4.88 m
Beam 2.44 m
Maximum thrust force 400 N
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Fig. 12. Surge, sway position and yaw angle curve of ship 2.

Fig. 11. Control input curve of ship 1.

Fig. 10. Motion curve of ship 1.

Fig. 9. Speed of ship 1.

Fig. 8. Surge and sway positions as well as yaw angle curve of ship 1.

Fig. 7. Encounter situation and collision avoidance results of the three
ships.
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Fig. 18. Control input curve of ship 3.

Fig. 17. Motion position of ship 3.

Fig. 16. Speed curve of ship 3.

Fig. 15. Surge, sway position and yaw angle curve of ship 3.

Fig. 14. Motion position of ship 2.

Fig. 13. Speed curve of ship 2.
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The framework of EPO for collision avoidance is
illustrated in Algorithm 2.

Algorithm 2 Framework of EPO for collision avoidance

Input: parameters and encounter situations.
Output: the optimal ship turning angle for collision avoidance.
1 The initial population of EPO is generated.
2 while the termination condition is not met do
3 Calculate the fitness using Eq. (36).
4 Determine the boundary range.
5 Calculate the temperature surrounding the cluster hierarchy.
6 Calculate the distance between the emperor penguins.
7 Update the positions of the emperor penguins.
8 end while

Remark 1. The input saturation is expressed as:

satðtÞ¼
8<
:

tmax; t� tmax

t; tmin<t<tmax

tmin; t� tmin

ð38Þ

where tmax and tmin are the upper and lower
bounds of t, respectively.
The study presented in [39] proved that for the

closed-loop system model and the saturation control
law, given the initial state Dx(kjk), positive definite
matrix J, weight adjustment parameters s and
b > 0, and g1 ¼ a g, if there exists 0 < a < 1 at time k,
matrices Y and Z, positive definite symmetric matrix
Q and positive definite auxiliary matrix G that satisfy
the following optimization problem, the control law
can stabilize the closed-loop system under input
saturation constraints.
The problem is given by:

min
g;Y;Z;G;Q

gþ bg1 ð39Þ

s:t: g� g1>0



c1 Z
ZT GþGT �Q

�
�0;c1 � ðtmax � trÞ2



c2 Z
ZT GþGT �Q

�
�0;c2 � ðtmin � trÞ2

Table 3. Energy consumption and tracking error with different predic-
tion horizons.

Np Energy Error

3 56.3031 4.7595
4 4.9470 0.2048
5 3.1264eþ04 0.1665
6 1.4775eþ04 0.0265
7 4.7523eþ05 0.1297
8 1.8003eþ04 0.0151
10 1.3390eþ06 0.1936
ours 1.3123eþ04 0.0146

Fig. 21. Motion curve while berthing.

Fig. 20. Speed of the ship while berthing.

Fig. 19. Positions while berthing.

JOURNAL OF MARINE SCIENCE AND TECHNOLOGY 2024;32:41e57 51



2
66664

GþGT�Q ðAnGþBnYÞT
�
J1=2G

�T �
s1=2Y

�T
AnGþBnY Q 0 0

J1=2G 0 g1I 0

s1=2Y 0 0 g1I

3
77775�0

2
66664

GþGT�Q ðAnGþBnUÞT �
J1=2G

�T �
s1=2U

�T
AnGþBnU Q 0 0

J1=2G 0 gI 0

s1=2U 0 0 gI

3
77775�0

Remark 2. It is illegal for the ships to navigate
without properly equipped sensors. As a result, the
vessel may be detained by international ports. The
ships should undergo regular international Port
State Control (PSC) inspections where their ship-
borne odometers, GPS systems, radars, and other
equipment are checked to ensure compliance with
international standards. The failure to meet these
standards may result in the detention of the vessel.
Therefore, in general, the ships are able to perceive
information about surrounding obstacles with the
assistance of these navigational aids, including
odometers, GPS systems, and radars. In addition, in
cases of poor visibility, the local maritime regula-
tions dictate the navigation of vessels. If the
approach performs under limited information about
the obstacles, the selected prediction horizon is
small since the recomputations will become more
frequent. If the velocity of the obstacles is uncertain,
the maximal velocity should be used instead for the
sake of safety. The maximal velocities of yachts,
container ships, and cargo ships are 20, 30, and 20
knots, respectively.
Remark 3. Compared with the algorithm pro-

posed by Li and Zhang [16] which focused on fre-
quency and time domain control for course keeping,
this work tracks the desired trajectory and used the
Matrix theory and state space.

4. Simulations

The ship model presented in [40] is used in the
simulation. The main parameters of the ship are
presented in Table 1.

4.1. Results of three ships

The considered scenario is presented in Table 2
and its visual representation is shown in Fig. 6.
The encountering situation of the three ships and

the collision avoidance are shown in Fig. 7. The
positional coordinate represents the position of the
Automatic Identification System (AIS) antenna,
which is generally located at the bridge of the ship.
Note that the line presents the course of the ship.
It can be seen from Fig. 7 that the system sensor

collects the status information of all the ships. It
determines that the priority is for the first ship, and
the priority of the second ship is higher than that of
the third one. The first and second ships will
maintain their reference trajectories. The third ship
knows from the received prediction status that the
first and second ships will keep the original track
and be direct sailing ships. It decides to temporarily
leave its original reference trajectory and turn 35� to
the right in order to avoid collision and paves the
way for the two other ships.
The position curve of ship 1 is shown in Fig. 8. Its

speed, motion, and input control curves are shown
in Figs. 9e11, respectively.
It can be seen from Fig. 8 that ship 1 can suc-

cessfully track the reference trajectory. The tracking
error approaches zero within a finite time.
It can be observed from Fig. 9 that the speed of

ship 1 is within the feasible range.
It can be seen from Figs. 10 and 11 that ship 1 can

successfully track a line, the overshoot and tracking
error are low, and the response speed of the control
system is high.
Figs. 12e14 show the position, speed, motion, and

control input curves of ship 2, respectively.
It can be seen from Fig. 12 that ship 2 can suc-

cessfully track the reference trajectory, and the
tracking error approaches zero within a finite
duration.

Fig. 22. Energy consumption under different surge velocities of different
control algorithms.

Table 4. Energy consumption under different surge velocities for the
MPC and the proposed algorithms.

u (m/s) MPC (J) ERNMPC (J)

8 5.74eþ07 9.92eþ06
7 5.04eþ07 4.75eþ06
6 6.48eþ06 3.75eþ06
5 5.99eþ06 1.26eþ06
4 5.30eþ06 3.16eþ05
3 1.72eþ06 8.86eþ04
2 3.32eþ04 2.78eþ04
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It can be observed from Fig. 13 that the speed of
ship 2 is within the feasible range. It can also be seen
from Fig. 14 that ship 2 can successfully track a line.
In addition, the overshoot and tracking error are
low, and the response speed of the control system is
high.
Figs. 15e18 show the position, speed, motion, and

control input curves of ship 3, respectively. Similar
behaviors to those of ships 1 and 2 are observed.
It can be deduced from the results presented in

Figs. 7e18 that the ship can follow the collision
avoidance path in a complete and stable way. This
proves the efficiency and practicability of the pro-
posed control strategy.

4.2. Berthing test

In this test, the initial position is (0 m, 0 m), the
dock is located at (1000 m, 2000 m), and the initial
surge velocity is 12 knots.
The position curve of the ship is shown in Fig. 19

while its speed and motion curves are shown in
Figs. 20 and 21, respectively.
It can be seen from Fig. 19 that ship 1 can suc-

cessfully track the reference trajectory and the
tracking error approaches zero within a finite time.
In addition, it can be observed from Fig. 20 that

the speed of ship 1 is within the feasible range.
It can also be seen from Figs. 20 and 21 that it can

successfully berth, the overshoot and tracking error
are low, and the response speed of the control sys-
tem is high.

4.3. Performance comparison

Table 3 presents the energy consumption and
tracking error with different prediction horizons.

Table 3 shows the sensitivity of the energy con-
sumption and tracking error with respect to the
chosen prediction horizon. It can be seen that with
large fixed prediction horizon, the energy con-
sumption is high, while in the case of small fixed
prediction horizon, the tracking error is high.
Therefore, the adaptive prediction horizon based
energy-saving robust nonlinear model predictive
control can outperform existing algorithms with
fixed prediction horizons. In other words, it is able
to obtain a balance between the energy consump-
tion and the tracking error.
The proposed algorithm is then compared with

the MPC method. The average energy consumption
of the two methods, under different surge velocities,
is presented in Table 4. A graphical representation
is also shown in Fig. 22.
Moreover, the tracking curves of different control

algorithms are shown in Fig. 23, where the blue
dashed line represents the tracking path controlled
by MPC, while the red solid line represents the
tacking path controlled by ERNMPC. It can be seen
that the control strategy is significantly improved.
MPC shows a greater overshoot and tracking error,
while ERNMPC can perform tracking within a
smaller overshoot, which results in reducing the
energy usage. Compared with the MPC, ERNMPC
has higher response speed, smaller overshoot, and
shorter system adjustment time.

Fig. 24. Comparison of different optimization algorithms.

Table 5. Comparison of cost.

Algorithms Best Worst Average

PSO 146.21 151.46 149.30
EPO 138.18 127.25 130.59
Sobol-EPO 113.86 116.15 114.24

Fig. 23. Comparison of different control algorithms.
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The comparison of cost is listed in Table 5.
The comparison of different optimization algo-

rithms is shown in Fig. 24.
The results in Table 5 and Fig. 24 demonstrate the

feasibility and superiority of the Sobol-EPO algo-
rithm. The Sobol-EPO outperforms the EPO in
terms of computational load.

4.4. Discussion

The energy consumption of the unmanned sur-
face ship is different in several wind directions. It
can be seen from Table 4 that the consumed energy
increases with the speed where the hydrostatic
resistance is gradually increasing. More energy is
consumed to overcome the hydrostatic resistance.
The saved energy is greater than the work done by
the increased hydrostatic resistance, and thus an
appropriate speed should be selected in the envi-
ronment for different strengths.
It is also deduced from Table 4 that, when the in-

tensity and direction of environmental load are
different, the saved energy is also different. The en-
ergy consumed by the unmanned surface ship when
it moves at different speeds and in different envi-
ronmental intensities, is also analyzed. The reasons
for the different amounts of consumed energy in the
case of different speeds are then determined.
In collision avoidance navigation activities,

communication is conducted on collision avoidance
information, fusion interaction, cognitive mecha-
nism, analytic methods, navigation decision, and
intelligent control. The system design significantly
affects the traditional ship-shore relationship, navi-
gation in the waterway, and collision avoidance in
complex waters, as well as the organization and
collaboration of ship traffic.

5. Conclusion

In this paper, an adaptive prediction horizon
based energy-saving robust model predictive con-
trol, referred to as APHERNMPC, is designed for
underactuated USVs to deal with the actual control
and state constraints during berthing. The existing
objective function of the model predictive control is
improved. The energy consumption is constructed
and considered as one of the objective functions in
the NMPC framework. Based on these constraints
and requirements, a novel actual control and state
constraint, during the berthing framework algo-
rithm, is proposed. At each sampling time, the finite
time domain optimal control problem is established
based on the nonlinear ship maneuverability.
Different berthing methods are implemented by

robust model predictive control under different
disturbances, including the direct berthing and the
turning round berthing method. The close associa-
tion between ship maneuvering control and energy
consumption is performed in the control strategy.
The proposed system is tested for ship trajectory
tracking control with the presence of wind and cur-
rent disturbances. In addition, this paper discusses
the energy consumed by the USV when it moves at
different speeds in different environmental in-
tensities. It also discusses the reasons for the differ-
ences in energy consumption when the speed varies.
In future work, we aim at improving the intelli-

gent energy-saving control method to deal with
automatic berthing. Reducing the actuator chatter
and improving the heading stability are also of our
interest.
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Appendix A

The proof of Eq. (29) is illustrated below.
Xe can be expressed as follow:

Xe¼

2
6666664

cosJ sinJ 0
�sinJ cosJ 0

0 0 1
1 0 0
0 1 0
0 0 1

3
7777775

2
6666664

x� xd
y� yd
J�Jd

u� ud

v� vd
r� rd

3
7777775

¼

2
6666664

cosJðx� xdÞ þ sinJ
�
y� yd

�
�sinJðx� xdÞ þ cosJ

�
y� yd

�
J�Jd

u� ud

v� vd
r� rd

3
7777775

ð40Þ

By differentiating Je, one can obtain:

_Je¼ _J� _Jd ¼ r� rd ¼ re ð41Þ

In addition, by differentiating ue, we can obtain

_ue¼ _u� _ud

¼m22

m11
ðvr� udrdÞ � d11

m11
ueþ 1

m11
~tu

¼m22

m11
ðvreþvrd � udrdÞ � d11

m11
ueþ 1

m11
~tu

¼m22

m11
ðvereþvdreþverdÞ � d11

m11
ueþ 1

m11
~tu

ð42Þ

where tud is the desired control input along the
surging direction. Then, the error of control input
along the surging direction is expressed as follow:
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~tu¼tu � tud ð43Þ
Similarly, by differentiating ve and re, one can

get the following equations:

_ve¼ _v� _vd¼ �m11

m22
ður� udrdÞ � d22

m22
ve

¼�m11

m22
ðuereþuerdþudreÞ � d22

m22
ve

ð44Þ

_re¼ _r� _rd

¼m11 �m22

m33
ðuv� udvdÞ � d33

m33
reþ 1

m33
~tr

¼m11 �m22

m33
ðueveþuevdþudveÞ � d33re

m33
þ ~tr
m33

ð45Þ

where trd is the desired control input along the
yawing direction. The error of control input along
the surge direction is

~tr ¼tr � trd ð46Þ
In addition, by differentiating xe, one can obtain:

_xe ¼ cosJð _x� _xdÞ � r sinJxeþ
sinJ

�
_y� _yd

�þ r cosJye
¼ cosJðu cosJ� v sinJ� ud cosJdþ
vd sinJd

�� r sinJxe þ r cosJye þ sinJ$
ðu sinJþ v cosJ� ud sinJd � vd cosJdÞ
¼ u� ud cosJe � vd sinJe�r sinJxe þ r cosJye
¼ ue þ ð1� cosJeÞud � vd sinJe
�r sinJxe þ r cosJye

ð47Þ

Referring to Eq. (40), where ye ¼ -sinJxe þ cosJye,
one can write:

sinJxe¼ðcosJ� 1Þye ð48Þ
By substituting Eq. (48) into Eq. (47), the new

expression of the differentiation of xe is expressed as
follow:

_xe¼ueþð1� cosJeÞud � vd sinJeþ rye
¼ reyeþ rdyeþueþð1� cosJeÞud � vd sinJe

ð49Þ

By differentiating ye, we can obtain

_ye¼�r cosJxe�r sinJye�sinJð _x�xdÞþcosJ
�
_y� _yd

�
¼�r cosJxe�r sinJye�sinJ

�
ucosJ�

vsinJ�ud cosJdþvd sinJdÞþcosJ$
ðusinJþvcosJ�ud sinJd�vd cosJdÞ
¼�r cosJxe�r sinJyeþvþ
ud sinJe�vd cosJe¼�r cosJxe�r sinJyeþveþ
sinJeudþð1�cosJeÞvd

ð50Þ
Referring to Eq. (40), where

xe ¼ cosJxe þ sinJye in Eq. (34), one can write:

sinJye¼ð1� cosJÞxe ð51Þ
Substituting Equation (51) into Equation (50)

results in:

_ye¼ � r cosJxe � r sinJyeþve
þsinJeudþð1� cosJeÞvd
¼�ryeþveþ sinJeudþð1� cosJeÞvd
¼�reye � rdyeþveþ sinJeudþð1� cosJeÞvd

ð52Þ

Thus, the error dynamics can be written as Eq.
(29).

Appendix B

The proof of Theorem 1 is illustrated below.

Proof. The cost function is computed as below:

Jkþ1¼PNp

�
f ðXe;UÞ�þ XNp�1

i¼1

�
i
Np

�n

Piþ1

¼ PNp

�
f ðXe;UÞ�þ XNp

i¼2

�
i� 1
Np

�n

Pi

¼ PNp

�
f ðXe;UÞ�þ XNp

i¼2

�
i� 1
i

�n� i
Np

�n

Pi

¼ PNp

�
f ðXe;UÞ�þ XNp

i¼2

�
i
Np

�n

Pi

þ
XNp

i¼2


�
i� 1
i

�n

� 1
��

i
Np

�n

Pi

ð53Þ

One can get the following equations:

XNp

i¼2

�
i
Np

�n

Pi¼ Jk � 1
Nm

p
Pk ð54Þ

Substituting Eq. (54) into Eq. (53) gives:

Jkþ1¼PNp

�
f ðXe;UÞ�þ Jk � 1

Nm
p
Pk �

XNp

i¼2



1

�
�
i� 1
i

�n�� i
Np

�n

Pi

ð55Þ

Denote:

l¼1�
�
Np � 1
Np

�n

�1�
�
j� 1
j

�n

; j�Np ð56Þ

Substituting Eq. (56) into Eq. (55) gives:

Jkþ1¼ JkþPNp

�
f ðXe;UÞ�� l

XNp

i¼2

�
i
Np

�n

Pi � 1
Nm

p
Pk

� JkþPNp

�
f ðXe;UÞ�� lPNp �

1
Nm

p
Pk

ð57Þ

Substituting Eq. (34) into Eq. (57) gives:

JOURNAL OF MARINE SCIENCE AND TECHNOLOGY 2024;32:41e57 55



Jkþ1� JkþPNp � bðXeÞ � lPNp �
1
Nm

p
Pk

¼ Jk � 1
Nm

p
Pkþð1� lÞPNp � bðXeÞ

ð58Þ

Substituting Eq. (35) into Eq. (58) gives:

Jkþ1 � Jk � 1
Nm

p
Pk � ðlþm� 1ÞPNp ð59Þ

Since lim
n/∞

1�
�
Np�1
Np

�n
¼ 1, there is a finite n such

that lþ m� 1 � 0.
Eq. (59) gives

Jkþ1 � Jk ð60Þ
The above expression indicates that Jk is boun-

ded. It demonstrates that the control sequence sat-
isfies the optimization problem and ensures that the
objective function value is bounded, making it a
feasible solution.
When Xe ¼ 0, the input is a feasible solution to the
optimization problem, corresponding to J ¼ 0. From
equations (32) and (33), it can be deduced that Jk � 0.
From equation (60), it can be observed that Jk is
monotonically decreasing and attains its minimum
value at Xe ¼ 0. Hence, it can be concluded that Jk is
continuous Xe ¼ 0. Thus, Jk is a Lyapunov function
for the closed-loop system. From Lemma 1, the
system is asymptotically stable.

Acknowledgement

This work was supported in part by the National
Natural Science Foundation of China (No. 52201411)
and Natural Science Foundation of Fujian Province
(No. 2021J01819, 2023I0019).

References

[1] Liu Q, Li T, Shan Q, Yu R, Gao X. Virtual guide automatic
berthing control of marine ships based on heuristic dynamic
programming iteration method. Neurocomputing 2021;437:
289e99.

[2] Zhang Q, Zhu G, Hu X, Yang R. Adaptive neural network
auto-berthing control of marine ships. Ocean Eng 2019;177:
40e8.

[3] Xue H, Ou Y. A novel asymmetric barrier Lyapunov func-
tion-based fixed-time ship berthing control under multiple
state constraints. Ocean Eng 2023;281:114756.

[4] Li S, Liu J, Negenborn RR, Wu Q. Automatic docking for
underactuated ships based on multi-objective nonlinear
model predictive control. IEEE Access 2020;8:70044e57.

[5] Y. Zhang, M. Zhang, Q. Zhang, “Auto-berthing control of
marine surface vehicle based on concise backstepping,” IEEE
Access, vol. 8, pp. ,197059-197067 2020.

[6] Wang L, Li S, Liu J, Wu Q, Negenborn RR. Ship docking and
undocking control with adaptive-mutation beetle swarm
prediction algorithm. Ocean Eng 2022;251. https://doi.org/
10.1016/j.oceaneng.2022.111021. Art. no. 111021.

[7] Feng G, Han Y, Li SE, Xu S, Dang D. Accurate pseudo-
spectral optimization of nonlinear model predictive control

for high-performance motion planning. IEEE Transactions
on Intelligent Vehicles 2022. https://doi.org/10.1109/TIV.
2022.3153633.

[8] Kong S, Sun J, Wang J, Zhou Z, Shao J, Yu J. Piecewise
compensation model predictive governor combined with
conditional disturbance negation for underactuated AUV
Tracking control. IEEE Trans Ind Electron 2022. https://
doi.org/10.1109/TIE.2022.3194637.

[9] Liang H, Li H, Xu D. Nonlinear model predictive
trajectory tracking control of underactuated marine vehicles:
Theory and experiment. IEEE Trans Ind Electron 2021;68(5):
4238e48.

[10] Yan Z, Wang J. Model predictive control for tracking of
underactuated vessels based on recurrent neural networks.
IEEE J Ocean Eng 2012;37(4):717e26.

[11] Wang L, Li S, Liu J, Wu Q. Data-driven model identification
and predictive control for path-following of underactuated
ships with unknown dynamics. Int J Nav Archit Ocean Eng
2022;14:100445. https://doi.org/10.1016/j.ijnaoe.2022.100445.

[12] Sandeepkumar R, Rajendran S, Mohan R, Pascoal A.
A unified ship manoeuvring model with a nonlinear model
predictive controller for path following in regular waves.
Ocean Eng 2022;243. https://doi.org/10.1016/j.ocean-
eng.2021.110165. Art. no. 110165.

[13] Kucukdemiral IB, Cakici F, Yazici H. A model predictive
vertical motion control of a passenger ship. Ocean Eng 2019;
186. https://doi.org/10.1016/j.oceaneng.2019.06.005. Art. no.
106100.

[14] Liu C, Hu Q, Wang X, Yin J. Event-triggered-based nonlinear
model predictive control for trajectory tracking of under-
actuated ship with multi-obstacle avoidance. Ocean Eng
2022;253. https://doi.org/10.1016/j.oceaneng.2022.111278. Art.
no. 111278.

[15] Yang H, Deng F, He Y, Jiao D, Han Z. Robust nonlinear
model predictive control for reference tracking of dynamic
positioning ships based on nonlinear disturbance observer.
Ocean Eng 2020;215. https://doi.org/10.1016/j.ocean-
eng.2020.107885. Art. no. 107885.

[16] G. Li, X. Zhang. Green energy-saving robust control for ship
course-keeping system based on nonlinear switching feed-
back. Ocean Eng 268, 15 January 2023, 113462.

[17] Haseltalab A, Negenborn RR. Model predictive maneuvering
control and energy management for allelectric autonomous
ships. Appl Energy 2019;251. https://doi.org/10.1016/j.ape-
nergy.2019.113308. Art. no. 113308.

[18] Min B, Zhang X, Wang Q. Energy saving of course keeping
for ships using CGSA and nonlinear decoration. IEEE Access
2020;8:141622e31.

[19] Zhang Y, Li S, Liu X. Adaptive near-optimal control of
uncertain systems with application to underactuated
surface vessels. IEEE Trans Control Syst Technol 2018;26(4):
1204e18.

[20] Zhang S, Wang J, Wen X, Zhao M, Zhang C, Cong X. “An
energy-saving control method for path following of an un-
manned surface vehicle in wave field,” Conference: 2018
International Symposium in Sensing and Instrumentation in
IoT Era (ISSI). 2018. https://doi.org/10.1109/
ISSI.2018.8538200.

[21] Osman Ü, Nuri A. Smart Sounding Table Using Adaptive
Neuro-Fuzzy Inference System. J Mar Sci Technol 2023;31:
273e82.

[22] Dhiman G, Kumar V. Emperor penguin optimizer: A bio-
inspired algorithm for engineering problems. Knowl Base
Syst 2018;159:20e50.

[23] Baliarsingh SK, Vipsita S, Muhammad K, Bakshi S. Analysis
of high-dimensional biomedical data using an evolutionary
multi-objective emperor penguin optimizer. Swarm Evol
Comput 2019;48:262e73.

[24] Ganesh S, Elangovan P, Jimreeves JSR, Subramaniyan J.
Modified emperor penguin optimizer for optimal allocation
of energy storage system and phasor measurement units.
Mater Today Proc 2021;45:7871e5. Part 9.

56 JOURNAL OF MARINE SCIENCE AND TECHNOLOGY 2024;32:41e57

https://doi.org/10.1016/j.oceaneng.2022.111021
https://doi.org/10.1016/j.oceaneng.2022.111021
https://doi.org/10.1109/TIV.2022.3153633
https://doi.org/10.1109/TIV.2022.3153633
https://doi.org/10.1109/TIE.2022.3194637
https://doi.org/10.1109/TIE.2022.3194637
https://doi.org/10.1016/j.ijnaoe.2022.100445
https://doi.org/10.1016/j.oceaneng.2021.110165
https://doi.org/10.1016/j.oceaneng.2021.110165
https://doi.org/10.1016/j.oceaneng.2019.06.005
https://doi.org/10.1016/j.oceaneng.2022.111278
https://doi.org/10.1016/j.oceaneng.2020.107885
https://doi.org/10.1016/j.oceaneng.2020.107885
https://doi.org/10.1016/j.apenergy.2019.113308
https://doi.org/10.1016/j.apenergy.2019.113308
https://doi.org/10.1109/ISSI.2018.8538200
https://doi.org/10.1109/ISSI.2018.8538200


[25] Khalid OW, Isa NAM, Sakim HAM. Emperor penguin
optimizer: A comprehensive review based on state-of-the-art
meta-heuristic algorithms. Alex Eng J 2022. https://doi.org/
10.1016/j.aej.2022.08.013.

[26] Khan AI, Alghamdi ASA, Abushark YB, Alsolami F,
Almalawi A, Ali AM. Recycling waste classification
using emperor penguin optimizer with deep learning model
for bioenergy production. Chemosphere 2022;307:136044.
Part 3.

[27] X. Lu, Y. Yang, P. Wang, Y. Fan, F. Yu, N. Zafetti, “A new
converged Emperor Penguin Optimizer for biding strategy
in a day-ahead deregulated market clearing price: A case
study in China,” Energy, vol. 227, Art. no. 120386, 2021, doi:
10.1016/j.energy.2021.120386.

[28] H. Kaur, A. Rai, S. S. Bhatia, G. Dhiman, “MOEPO: A novel
multi-objective emperor penguin optimizer for global opti-
mization: special application in ranking of cloud service
providers,” Engineering Applications of Artificial Intelli-
gence, vol. vol. 96, Art. no. 104008, 2020, doi: 10.1016/
j.engappai.2020.104008.

[29] Dhiman G, Oliva D, Kaur A, Singh KK, Vimal S, Sharma A,
Cengiz K, BEPO. A novel binary emperor penguin optimizer
for automatic feature selection. Knowl Base Syst 2021;211.
Art. no. 106560.

[30] Xing Z. An improved emperor penguin optimization based
multilevel thresholding for color image segmentation. Knowl
Base Syst 2020;194. https://doi.org/10.1016/j.knosys.2020.
105570. Art. no. 105570.

[31] Xue H. A quasi-reflection based SC-PSO for ship path plan-
ning with grounding avoidance. Ocean Eng 2022;247:110772.

[32] Xue H, Li S. Predefined-time Neural Sliding Mode Control
based Trajectory Tracking of Autonomous Surface Vehicle.
Journal of Marine Science and Technology-Taiwan 2023;
31(3):193e204.

[33] Li Y, Peng Y, Zheng J. Intelligent ship collision avoidance
model integrating human thinking experience. Ocean Eng
2023;286. Art. no. 115510.

[34] Fossen TI. Handbook of marine craft hydrodynamics and
motion control. 1st. Edition. Wiley; 2011.

[35] Chen H. “Model predictive control”. Beijing: Science Press;
2013.

[36] Xu Y. Research on collision avoidance control methods for
multiple dynamic positioning ships. Harbin Engineering
University; 2018.

[37] H. Xue, T. Chai, “Risk assessment based on KDE of ship
collision candidates for ship routing waterway,” doi: 10.5957/
JOSR.12210045.

[38] Xue H, Qian K. Ship collision avoidance based on brain
storm optimization near offshore wind farm. Ocean Eng
2023;268:2023. Art. no. 113433.

[39] Hu C, Ren Y, Xie Q. Input Saturation Control Based on
RMPC for Hypersonic Vehicles. Aerospace Control 2016;
34(2):20e26þ30.

[40] Wooa J, Parka J, Yu C, Kim N. Dynamic model identification
of unmanned surface vehicles using deep learning network.
Appl Ocean Res 2018;78:123e33.

JOURNAL OF MARINE SCIENCE AND TECHNOLOGY 2024;32:41e57 57

https://doi.org/10.1016/j.aej.2022.08.013
https://doi.org/10.1016/j.aej.2022.08.013
https://doi.org/10.1016/j.knosys.2020.105570
https://doi.org/10.1016/j.knosys.2020.105570

	Adaptive Prediction Horizon Energy-saving Collision-Free MPC of Ships Based on Ship-Shore Cooperation
	Recommended Citation

	Adaptive Prediction Horizon Energy-saving Collision-Free MPC of Ships Based on Ship-Shore Cooperation
	Acknowledgements

	Adaptive Prediction Horizon Energy-saving Collision-Free MPC of Ships Based on Ship-Shore Cooperation
	1. Introduction
	1.1. Research background
	1.2. Related work
	1.3. Contributions

	2. Preliminaries and problem statement
	2.1. Emperor penguin optimizer
	2.2. Sobol sequences
	2.3. Collision avoidance
	2.4. Mathematical model of under-actuated USV
	2.5. Error dynamics of under-actuated USV

	3. Main results
	3.1. Adaptive prediction horizon in MPC with energy-saving
	3.2. Ship-shore cooperation
	3.3. Collision avoidance based on improved EPO

	4. Simulations
	4.1. Results of three ships
	4.2. Berthing test
	4.3. Performance comparison
	4.4. Discussion

	5. Conclusion
	Conflict of interest
	Acknowledgement
	References


