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Regulation for Containerized Freight Index Prediction
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Abstract

In this study, we have crafted an innovative methodology that represents a groundbreaking synthesis of deep learning
techniques with cooperative game theory. In this study, we use the accuracy of data prediction by different LSTM
models as a measurement index and assign different LSTM models corresponding weights through the Shapley value
calculation method to construct a more accurate predictive analysis model. We use this improved Shapley regulation
model to calibrate a long short-term memory (LSTM) neural network by using historical freight data to predict the China
Container Freight Index (CCFI), the leading export container freight index commonly used in China. Afterward, it is
found that the neural networks calibrated in this way reduce their prediction bias in terms of mean absolute percentage
error (MAPE), mean absolute error (MAE), root mean square error (RMSE), and mean square error (MSE) to improve
prediction accuracy.

Keywords: Neural network, Deep learning, Long Short Term memory (LSTM), Shapley value, Containerized freight
index, Cooperative game

1. Introduction and the Shanghai Containerized Freight Index
(SCFI), and the converse is true when global de-
he China Containerized Freight Index (CCFI) mand wanes. ) )
was first compiled and released by the The COVID-19 pandemic has severely 1mpac§ed
Shanghai Shipping Exchange on April 23, 1998. It the global economy over the past three years. WI’Fh
employs 12 major international trading routes as the progressive rollout of vaccines and advances in
samples. The index is derived from the freight rates ~ Mmedical technology, pandemic-related lockdowns
provided by 22 renowned domestic and interna- aroum’:l‘the world have been steadily lifted. China's
tional ocean container carriers and is updated expeditious post-lockdown recovery has markedly
weekly. As China is the world's leading exporting enhanced its produc:tlon efﬁc1ency, attracting a
nation, the CCFI serves as an objective and timely resurg.ence of international o‘rder‘s tO.ltS factories. By
barometer of the shipping freight rates from Chi- analyzing the CCFl, a leading indicator of ocean
nese ports. It is evident that Chinese export vol-  freight rates, we can gain insights into China's eco-
umes are influenced by global economic activity =~ nomic dynamism and th.e. rev1va'l of global trade. In
and domestic production capacity. During periods thl.S study, we have utilized historical C.CFI data
of robust global trade demand, Chinese exports Prior to the COVID-19 outbreak to predict future
tend to increase, leading to a tighter container indices using a newly proposed Shapley-Like Neu-
supply and subsequently higher freight rates. I‘:’:ll Corr.ectlon Mf)del, an innovative approach in
This results in elevated indices such as the CCFI ~ time series analysis.
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The contributions of this work are as follows:

1. Methodology Development: Hirata and Mat-
suda [1] utilized both LSTM and SARIMA
methods to forecast the comprehensive and
route-specific SCFI, demonstrating that LSTM
deep learning models typically outperformed
SARIMA models across the majority of datasets.
These results highlight the potential advantages
of employing advanced LSTM models. To train
an effective deep learning model, it is essential
to have sufficient data for training, construction,
and substantial computation with a computer.
However, this conventional process may not be
directly applicable in analyzing the CCFI and
other freight indices due to limitations in data
size and resources. Building on these insights
and inspired by the principles of the Shapley
value, we have crafted an innovative methodol-
ogy that represents a groundbreaking synthesis
of deep learning techniques with cooperative
game theory. In this study, we use the accuracy
of data prediction by different LSTM models as a
measurement index and assign different LSTM
models corresponding weights through the
Shapley value calculation method to construct a
more accurate predictive analysis model. This
endeavor marks a successful first in the field,
bridging gaps not previously addressed in the
existing literature.

2. Impact and Implications: Our research focuses
on improving the predictive accuracy of the
China Container Freight Index (CCFI), a key
barometer of the volatility in the container
shipping market. While our study primarily ad-
dresses the application of sophisticated deep
learning techniques for the predictive analysis of
freight rates, the methodologies and insights
derived could indirectly support the enhance-
ment of shipping route optimization by
contributing to a more detailed understanding of
market dynamics.

The structure of this paper is organized as follows:
Section II reviews the existing forecasting methods,
providing background and a survey of the related
literature. Section III introduces our modified Long
Short-Term Memory (LSTM) model and highlights
the innovation presented in this study. Our pro-
posed deep learning model, the Shapley Regula-
tion-LSTM (SR-LSTM), represents a significant
innovation and contribution of this paper. We
compare the predictive accuracy of the SR-LSTM
against traditional LSTM models with benchmarks
such as Mean Absolute Percentage Error (MAPE),

Notation

N Cooperative game (TU-game) represents all par-
ticipants, and the number is n

S All sub-sets of N, named and defined as unions,

have a total of {2V \ ¢}, and a single S element is
denoted by |S|

i(f) Each independent member of N in the action de-
cides whether to participate or not {0,1}

v(u) Each alliance in this game (S) is mapped to a real
number

¢;(N :v) Each independent member i (or j) in this cooper-
ative game can also be simplified as {¢;};cy, the
Shapley value of each member

Mean Absolute Error (MAE), Root Mean Square
Error (RMSE), and Mean Square Error (MSE)
detailed in Section IV. Finally, Section V discusses
the conclusions and future research directions
derived from this study.

2. Advances in forecasting methods: A
literature review

Currently, three primary methodologies dominate
the field of data forecasting: (1) econometric models,
(2) artificial neural networks, and (3) deep learning
models. This section provides an overview of these
techniques, accompanied by a discussion of the
relevant literature.

2.1. Econometric models

Econometric models employ statistical tools for
predicting desired variables and assessing the
impact of explanatory economic factors. Among
these, the regression model stands out as particu-
larly prevalent, with the ARIMA (Autoregressive
Integrated Moving Average) model being chiefly
utilized for univariate time series forecasting [2].
Prior research has demonstrated that the LSTM
(Long Short-Term Memory) technique within
neural network modeling often surpasses the per-
formance of naive forecasts and traditional time
series methodologies, which include the Moving
Average (MA), Simple Exponential Smoothing
(SES), Holt—Winters (HW), and Seasonal Autore-
gressive Integrated Moving Average (SARIMA)
models [3].

2.2. Artificial intelligence (artificial neural
network)

Box and Jenkins pioneered the development
of time series forecasting methodologies,
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incorporating autoregressive (AR) and moving
average (MA) processes tailored for linear time se-
ries analysis. However, subsequent research has
identified that most time series data exhibit
nonlinear characteristics. Consequently, the linear
framework established by Box and Jenkins often
fails to effectively model the complex dynamics
inherent in these nonlinear time series [4]. The
recent advancements in artificial intelligence,
coupled with substantial improvements in compu-
tational power, have propelled the practical appli-
cation of Al in forecasting beyond mere theoretical
constructs. Researchers have increasingly turned to
Al techniques to address the challenges associated
with nonlinear time series [5]. Consequently,
various configurations of Artificial Neural Networks
(ANNs) have been developed, leveraging their
prowess in capturing nonlinearity and learning
sequence patterns. Significant advances have been
reported; for instance, ANNs with exogenous inputs
[6] and quasi-periodic ANN [7] have been utilized to
forecast industrial average returns. In addition,
adaptive artificial neural networks [8] and hybrid
adaptive neuro-fuzzy inference systems have
demonstrated superior performance [5]. Moreover,
empirical studies on container throughput fore-
casting have established ARIMA combined with
ANNs (ARIMA + ANN) as a robust and widely
recognized approach [9—12].

2.3. Deep learning

The recent advancements in deep learning have
been marked by the introduction of several effective
methodologies, with the Long Short-Term Memory
(LSTM) network being one of the most noteworthy.
As a specialized form of Recurrent Neural Networks
(RNNs), LSTMs offer a solution to the limitations of
traditional RNNSs, particularly their difficulty in
preserving long-term dependencies due to the
vanishing gradient problem, a phenomenon exten-
sively explored by Bengio et al. [13]. LSTMs,
designed with ingenuity to counteract this problem,
are further elucidated in seminal works [14,15].
Initially proposed by Sepp Hochreiter and Jiirgen
Schmidhuber between 1995 and 1997, the LSTM
architecture introduced the Constant Error Carousel
(CEC) unit, effectively addressing the vanishing
gradient issue [15,16]. This foundational architec-
ture, comprising cell states and input and output
gates [17], was subsequently refined in 1999 with the
introduction of the forget gate, or “keep gate,” by
Felix Gers, Schmidhuber, and Fred Cummins,
enabling the network to selectively reset its internal
state [18].

By 2000, Gers and colleagues had integrated
peephole connections into the design, which
allowed for more nuanced state management, and
even opted to remove the output activation function
for greater efficiency [17,19]. This evolving archi-
tecture propelled an LSTM-based model to victory
in the ICDAR Connected Handwriting Recognition
Competition in 2009, thanks to the precision and
speed of the models developed by a team whose
efforts were recognized in [20,21]. The prowess of
LSTM was further cemented in 2013 when it ach-
ieved a groundbreaking 17.7 % phoneme error rate
on the TIMIT natural speech dataset [22], and by
2014, the LSTM landscape was diversified with the
introduction of the Gated Recurrent Unit (GRU) by
Kyunghyun Cho [23]. LSTMs continued to demon-
strate commercial viability, with Google imple-
menting them in 2015 for speech recognition in
Google Voice, slashing transcription errors by
nearly half [23,24]. The technology's application
expanded in 2016 across various Google services,
including the Allo app and the Google Translate
Neural Machine Translation system, which saw a
significant reduction in translation errors [25—27].
The same year, Apple and Amazon also integrated
LSTMs for iPhone QuickType and Alexa's speech
generation, respectively [28,29], signaling a robust
and precise commercial utilization of LSTM.

The LSTM narrative took another turn in 2017
when a collaborative study from Michigan State
University, IBM Research, and Cornell University
introduced a neural network at the KDD conference
that outperformed established LSTM networks on
select datasets [30]. Microsoft, too, leveraged “dialog
session-based LSTM” to achieve an impressive
94.9 % accuracy on a large vocabulary speech
recognition task. The advancements did not stall, as
evidenced in 2019 when the University of Waterloo
researchers proposed an RNN architecture, under-
pinned by Legendre polynomials that surpassed
traditional LSTMs in some tests [31]. That year also
saw an LSTM-based model rank third in a large-
scale text compression challenge, further under-
scoring the model's accuracy and relevance [32].

This comprehensive overview of LSTM's devel-
opment, from its inception to its significant strides
in both academic and commercial realms, show-
cases its revolutionary impact on deep learning and
its vital role in advancing the field of artificial
intelligence.

2.4. Shapley value

Shapley values are often used to solve problems of
cost allocation, benefit sharing, distribution, and



JOURNAL OF MARINE SCIENCE AND TECHNOLOGY 2024;32:26—40 29

partnership dissolution based on participants' con-
tributions to the coalition (Moulin, 1992; Pérez-
Castrillo and Wettstein, 2001; Petrosjan and Zaccour,
2003; Macho- Stadler, 2007) [30—33]. It has been
widely used in various industries. Dubey (1982) saw
an example that airport runways are suitable for
aircraft of different sizes, and the Shapley value can
be used to plan the allocation of the number of
various types of airplanes to use various runways
[34], Tan and Lie (2002) used the Shapley value for
the cost allocation to various power system users
[35], Bartholdi and Ziya (2005) use the Shapley value
to distribute profits among all coalition participants
[36], Narayanam and Narahari (2011) used this
Shapley value technique for efficient communication
in social networks [37], and Yu et al. (2014) used this
method to discuss carbon emission reduction al-
lowances in industrial areas [38].

In the field of supply chain, Kemahldoglu-Ziya
and Bartholdi [39] and Zhang and Liu [40] demon-
strated that the allocation of Shapley values can
guarantee that participants are incentivized to
respond positively to coordinate supply, and
Raghunathan [41] used the concept of Shapley
values to analyze the expected shares of manufac-
turers and retailers in the surplus generated by data
sharing. Rosenthal developed a model to fairly
quantify transaction prices in vertically integrated
organizations, and the results show that Shapley
value can help allocate entire supply chain benefits
in the upstream and the downstream [42]. Leng and
Parlar analyzed the allocation and cost savings from
sharing demand data among supply chain partici-
pants [43,44]. Gordan (2017) proposed the change of
Sharpley value as a method to solve the uncertain
alliance game. In this game, the player's profit is
derived from the extension of the prerequisite var-
iables. In addition, Wang (2018) used Shapley value
to explore China's cruise supply chain (cruise port-
travel agency-shore service), and proposed incen-
tive policies for fare subsidies distribution [45], Li
(2019) included the influential factor of online
shopping in southwest China in terms of weight,
which contributes to the practical use of the Shapley
value [46], Liang (2019) used an uncertain coopera-
tive game to allocate public resources among
vulnerable groups, and proposed a linearly added
superimposed Shapley value, and named it a-value
best solution [47]. Li and Wang (2019) used the
Shapley value to consider the asymmetric contri-
bution of partners in the proposed profit distribu-
tion scheme of express companies in the logistics
service market, and then showed more rationality
for profit distribution [48]. Otero and Amaya (2020)
employed a simulation technique to allocate the

profits according to the investments by using the
Shapley value function and demonstrated expected
cost reduction in inventory management [49]. Jang
and Jeong (2021) [50] developed three LSTM-RNN-
based models to calculate their Shapley values to
explain the accuracy of each model and the effec-
tiveness of the model, and applied these models to
bankruptcy prediction. Shalit (2020) attempted to
quantify the relative risk of securities in an optimal
portfolio [51].

2.5. CCFI's related forecast research

Despite the growing aptitude of neural networks
for many time series predictions, their application in
forecasting container freight rates, particularly the
China Container Freight Index (CCFI), remains
comparatively unexplored. The field recognizes two
principal container freight indices: the CCFI, first
published in 1998, and the Shanghai Containerized
Freight Index (SCFI), introduced in 2005. A compre-
hensive review of the Web of Science database yiel-
ded six pertinent studies on container freight index
forecasting. Previous studies on the CCFI have uti-
lized SARIMA, Empirical Mode Decomposition
(EMD), and Grey Wave Forecasting models for pre-
dictions. Chen et al. [52] enhanced the scope of grey
system theory and the graphic forecasting method by
applying a decomposition—ensemble method based
on EMD to forecast the CCFI, finding superior per-
formance over the ARMA model and random walk
for multi-step-ahead predictions. Munim [53]
demonstrated that either the TBATS model alone or
combined with SARIMA outperforms SARIMA and
SNNAR, as well as their combinations, in both
training and test samples for CCFI forecasting.
Turning to the SCFI, Munim and Schramm [54] uti-
lized an autoregressive conditional heteroscedasticity
(ARIMARCH) model to predict container freight
rates along Asia—North Europe routes, showing that
the ARIMARCH model yielded better short-term
forecasts compared to existing models on weekly and
monthly data. In a similar vein, Munim and
Schramm [55] assessed the efficacy of ARIMA, VAR/
VEC, and ANN models using SCFI data for four
major trade routes and concluded that VAR/VEC
models excel in training-sample forecasts over
ARIMA and ANN. Lastly, Koyuncu and Tavacooglu
[56] found that the SARIMA model outperformed
other freight-rate forecasting models, including
Holt—Winters Methods, when applied to short-term
monthly forecasts of the SCFL

Hirata and Matsuda [1] utilized LSTM and SAR-
IMA methodologies to forecast the comprehensive
and route-specific SCF], finding that LSTM deep
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learning models typically outperform SARIMA
models in the majority of datasets. These findings
underscore the potential benefits of adopting
advanced LSTM models for enhanced neural fore-
casting. The recent years have witnessed a surge in
the application of deep learning techniques across
various domains, as evidenced by emerging studies
such as those referenced in [57]. This growing body
of work contributes to the expanding utilization of
sophisticated neural models like the SR-LSTM,
which are proving to be vital in the progression of
predictive analytics.

To summarize, there are primarily three tech-
niques utilized in data prediction. Econometric
models are adept at forecasting and estimating
quantities to gauge the impact of economic changes.
Neural networks harness their unique ability to
capture non-linearities and learn sequential
behavior for prediction purposes. Deep learning
builds upon the evolution of mathematical functions,
demonstrates the enhanced performance of com-
posite neural networks, and is adept at handling
long-term data dependencies. Compared to other
methods, LSTM exhibits clear superiority in
sequential forecasting and commercial applications.
By integrating a Shapley value-based weight selec-
tion technique into LSTM's time series forecasting,
we expect to further enhance training outcomes.
These advancements will be discussed in subse-
quent sections of this paper.

Active function

3. Methodology
3.1. LSTM network

In recent years, applications related to machine
learning have garnered significant attention, with
some becoming particularly popular. Firstly, there is
image recognition, which translates any problem
into a comparable form; secondly, there is a
sequence to sequence translation, encompassing
speech-to-text, translation between languages, or
prediction of time series data. Most of the former
applications are executed using Convolutional
Neural Networks (CNN), while the latter are pri-
marily handled using Recurrent Neural Networks
(RNN), especially Long Short-Term Memory (LSTM)
networks. The original LSTM model possesses two
notable capabilities: one is to discern “what to
remember from past data” and “what requires
additional learning from new information”; the sec-
ond is to utilize the aforementioned understanding
to make predictions with interpretations (see
[14,15,58,59]). For ease of explanation, Fig. 1 illus-
trates the basic architecture of the RNN model, and
Fig. 2 depicts the architecture of the LSTM model.

The following statements briefly introduce the
process and mechanisms of LSTM.

Step 1: The operation mode of the forget gate
vector is as formula (1):

fi=a(Wr-[Xi,Yia] + by). (1)

Input Layer |

! Store
.

i Hidden Layer

Output Layer

Fig. 1. RNN model architecture diagram (modified from [59]).
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Fig. 2. LSTM model architecture diagram (modified from [15]).

Where W} is the vector of the connection weights, by
is the bias, X; are the current inputs, and Y;_; are the
previously predicted outputs. The activation func-
tion o(x) is the famous sigmoid function as follows
(2). This layer is mainly used to deal with whether
the information needs to be remembered or
forgotten. If it is to be forgotten, the output value is
close to zero; otherwise, it is close to one.

B 1
S l4e

a(x) (2)

Step 2: The selection information can be
divided into two parts: (3) and (4). The sigmoid
function helps to select the information that must be
preserved from the time step.

Li=o(W;-[X;, Y 1]+ b;) (3)

Sy =tanh(W;-[X;, Yi_1] + bs). (4)

The next step is to process the old cell state S;_1
to the new unit state S;. The product (dot product
[*]) is used to accomplish this task. Here, the
forgetting layer output is combined with the selec-
tion layer output to update the cell state, as shown in
the following equation:

Si=f*x5:1 +It*§t (5)

Step 3: The final output is its relational formula,
such as Y; in (6). Wy, is the weight at this time.

Uy =a(W,-[Xs, Y] +by). 6)

Yt = Ut . tanh(St)

3.2. Shapley regulation model

1. Shapley Regulation method: First, the definition
of cooperative game with transferable utility
(referred to as TU game) is expressed as (N : v).
For the set of participants, the name N of each
subset in this game is coalition S (coalition). The
feature of the TU game is to give each coalition S
(coalition) a reward feature function v as long as
the coalition contains all members i. By unani-
mously agreeing (to form this alliance instead of
joining other alliances, as well as the distribution
plan of this reward), members can get the pre-
agreed reward.

The eigenvalue function is expressed in the
following (7):

vi(0,00)—R (7)

2. Shapley value of traditional single-choice coop-
erative game: the Shapley value refers to the N
cooperative game against one person (N :v).
Each member, i€N, should expect to be paid
#;(N : v) and must possess the following axioms:

(1) Efficiency: The rewards after cooperation
need to be fully distributed to the contes-
tants of the game, that is:

NY _ #:(N:o)=0() (8)

(2) Symmetry and Dummy player property:

i. Each member (player) ¢;(N:v) is
completely determined by their marginal
contribution to the coalition S (coalition). So,
if there are two stakeholders, i and j, their
marginal contribution to the coalition is
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always equal, then we get ¢;(N:v) =
¢;(N :v).

ii. On the other hand, if the marginal contri-
bution of ¢;(N :v) =0 from a person i to
the alliance S (coalition) is equal to zero, we
define such a member as a dummy player;
otherwise, they are called a carrier.

iii. Linear function on the vector space formed
by all N-player cooperative games in the
real number domain {¢;};c . Take any two
cooperative games, the (N : v) sum (N : u),
and the real numbers a and b for any i€ N:

¢;(N:av+bu)=ap;(N : v)+be¢;(N : u) 9)
3. Let the ¢;(N : v) be defined as follows:

¢;(N:v)=v(Nn[l,i] —v(Nn[1,i—1])) (10)

Taking the marginal contribution as a solution
satisfies all conditions except symmetry; that is,
giving the number of all participants an operation
(permutation), we may get another set of solutions.
If all operations are regarded as equivalent, rede-
fining the expected value can have symmetry on the
basis of ensuring that the original conditions are
satisfied.

4. Shapley not only proved the uniqueness of the
existence of the Shapley value but also gave the
calculation formula for calculating the Shapley
value. C(S) is defined as the set value of the
reward, the reward of the W(|S|) alliance, and
the weight factor formed by all the subset alli-
ances, as follows:

¢izzls‘ieNW(|S|) x [C(S\1)],i=1,2,...,n  (11)

w(s|) == \SI)!n>'< (S|-1)!

:{¢17¢27¢3, ..... ¢n}€Rn

,in @(v) (12)

3.3. Shapley regulation neural correction mode flow
chart

In our study, Fig. 3 illustrates the workflow of the
Shapley Regulation model, which is primarily
divided into two main components: the construction
of the Shapley value-weighted network is one of
these. Initially, data is inputted into several pre-
trained LSTM neural networks (three were selected
for this study) to generate forecast data. Subse-
quently, the Shapley Region algorithm is employed to
calculate the Shapley weights among the different

Build a network
based on
Sharpley weight

Calculate the Shapley weight
of each set of data

Calculate the RMSE of the /

Data overlay
through Sharple
new forcast data u\ogveightsrp i

N

( End

Fig. 3. Shapley regulation neural correction mode flow chart.

Record the corresponding
Shapley weight and RMSE

LSTM models. We take the forecast data generated by
each LSTM model and perform an arithmetic mean of
the predictions from different models. If the average
forecast data exhibits a lower RMSE value than the
original data, it is considered that the group of LSTM
models forms an effective coalition. Based on this, we
iterate and update the forecast data, adjusting and
consolidating iteratively. After several iterations, we
select the forecast with the lowest RMSE value as the
optimal result and record the Shapley weights for
each data set in every iteration. This process ulti-
mately constructs the required network architecture
for Shapley calibration. In the end, we use this
network structure and Shapley weights to predict
time-series data, serving not only as a mechanism to
adjust the predictive trends generated by multiple
LSTM networks but also as a validation of its effec-
tiveness in practical applications.

3.4. Data collection

When discussing the CCFI freight index, the
following three steps are used to calculate the index.

3.4.1. Selection of CCFI sample routes

According to the three basic principles of typi-
cality, regional distribution and correlation, 14
routes were screened out, and the freight index was
calculated based on the freight rates and container
volumes of these routes, namely Hong Kong, South
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Korea, Japan, Southeast Asia, Australia and New
Zealand, the Mediterranean, Europe, East and West
Africa, West America, East America, South Africa,
South America, and Bohong and Taiwan. Its do-
mestic departure ports include Dalian, Tianjin,
Qingdao, Shanghai, Nanjing, Ningbo, Xiamen,
Fuzhou, Shenzhen, Guangzhou and other ten ports.
Because the service relationship on the container
liner route is relatively small, and the prices of each
route are relatively independent, the result of the
calculation can more representatively reflect the
price fluctuations of the sub-routes.

3.4.2. Selection of CCFI sample shipping companies
The basic principles adopted are as follows.

(1). Select 3 to 5 Chinese and foreign shipping
companies for each route to improve the
representativeness.

(2). Characteristics of the selected shipping com-
panies: these shipping companies have inde-
pendent legal personalities in China, good
business reputation, wide route distribution and
large market shares.

(3). The selected shipping companies all voluntarily
participate in the freight index compilation
committee and can immediately disclose accu-
rate information about freight rates in accor-
dance with the requirements of the Shanghai
Shipping Exchange.

(4). Currently selected companies: there are 22
Chinese and foreign shipping companies with
outstanding reputations and large market share
in the route, which provide the freight rate in-
formation required for CCFI compilation ac-
cording to the voluntary principle. They are
CMA CGM (China) Co. Ltd. (CMA-CGM),
COSCO Container Lines Co., Ltd. (COSCO),
China Shipping Container Lines Co., Ltd.
(CSCL), Evergreen Shipping Co., Ltd. (EMC),
Hanjin Shipping (China) Co., Ltd. (HAN]JIN),
Shanghai Haihua Shipping Co., Ltd. (HASCO),
Hapag-Lloyd Shipping (China) Co., Ltd.
(HLAG), Hamburg Siid (China) Shipping Co.,
Ltd. (HSDG), Shanghai Jinjiang Shipping Co.,
Ltd. (JINJIANG), Korea Shipping (Shanghai)
Co., Ltd. (KMTC), Kawasaki Steamship (China)
Co., Ltd. (K-LINE), Maersk (China) Shipping
Co., Ltd. (MAERSK), Merchant Shipping Mitsui
(China) Co., Ltd. (MOL), Lisheng Mediterra-
nean Shipping (Shanghai) Co. Ltd. (MSC),
Nippon Yusen (China) Co., Ltd. (NYK), Orient
Overseas Container Lines (China) Co., Ltd.
(OOCL), Pacific Shipping Lines (China) Co.,

Ltd. (PIL), Honghai Container Lines Co., Ltd.
(RCL), Sinotrans Container Lines Co., Ltd.
(SINOTRANS), Xinhaifeng Container Lines Co.,
Ltd. (SITC), Wanhai Shipping Co., Ltd. (WAN-
HAI), and Yang Ming Shipping Co., Ltd. Com-
pany (Yangming).

3.4.3. Summation of CCFI calculation formula
(Shanghai Shipping Exchange):

I. The route calculation formula adopts the Lap-
lace index calculation method, and the calcula-
tion formula is as follows:

P;

Li:ITi X Lio (13)

(1) L; is the ith route index for the reporting
period of the route.

(2) Lio is the ith base period route index of the
route.

(3) Pio is the ith base period average freight
rate of the route.

(4) P; is the ith average freight rate of the route
in the reporting period, which is calculated
by a fixed weighted average. The calcula-
tion formula is as follows:

(Pl‘]' X Wl]) (14)
=1

P=

where 7 is the sample number of the ith route, Wj; is
the j th fixed weight of the sample company on thej-
th route, and P; is the j th freight income per
container of the sample company on the i-th route.
Further, freight composition includes ocean freight
(O/F), emergency fuel surcharge (EBS), container
shipping surcharges such as Imbalance Charge
(CIC), as well as the Terminal Handling Charge
(OTHC) at the Loading Port and the Terminal
Handling Charge (DTHC) at the Discharging Port.

II. The component index adopts the calculation
method of weighted average, and the calcula-
tion formula is as follows:

m Pi
ch = Z (PO X W,‘ X LCfO) (15)

i=1 !

where m is the number of routes for the constituent
index.

(1) W; is the weight of the i-th route.
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(2) Lio is the base period component index.

III. The composite index adopts the calculation
method of the weighted average of the
component indices, and the calculation for-
mula is as follows:

L, :ijcf X I/ijcf + Lckcf X chcf (16)

The variables are defined as follows:

(1) Ljky is the import component index.

(2) Wik is the import component index weight.

(3) Lo is the export component index.

(4) Wes is the weight of the export component
index.

As the base period of the price index, the choice
must not only reflect the normal distribution of
freight rates, but also consider the stability, avail-
ability, and comparability of price information. The
comparability includes the changes of the sample
routes, such as the increase or decrease of the
number of routes, the change of the weight of the
routes, etc., and the rules about the replacement of
routes and weight changes must be standardized.
The composition usually fluctuates greatly in the
long term, so the selection of the base period should
not be too far from the reporting period. The base
period of CCFl is set as January 1, 1998, and the base
period index is 1000. The CCFI is published weekly
and compiled and published every Friday.

IV. Determination of CCFI tariff type:

The formulation of container freight rates is not
only affected by the value of transported products,

the supply and demand relationship in the transport
market and the behavior of market players. Thus,
the freight rates on the same route for different
cargoes may vary due to the difference of delivery
methods, trade terms, and services provided by
shipping companies. Theoretically, the freight rate
index reflects the freight rate under the action of
internal factors such as the value of transportation
products, market supply and demand, and the
behavior of market players, excluding the influence
of external factors such as handover methods and
trade terms. However, it is difficult to calculate the
freight index accordingly during operation. Based
on theoretical induction and proof, it is feasible to
use the comprehensive freight rate affected by
various factors to compile the freight index, which
can reflect the fluctuation of the container freight
rate under the influence of intrinsic factors. The
freight rate adopted by CCFI is the comprehensive
freight rate under the influence of various factors,
that is, the overall weighted average of the freight
rates of major shipping companies in all ports. The
freight rate of the shipping company refers to the
freight rate using CY-CY terms.

V. Selection of CCFI Base Period and Frequency
of Release:

Comparability of price information: in the long
run, the distribution of liner routes and the
composition of freight rates will undergo major
changes. Therefore, the selection of the base period
should not be too far from the reporting period. The
base period of CCFl is set as January 1, 1998, and the
base period index is 1000. The CCFI is published
weekly and compiled and published every Friday.

CCFI Composite Index: 98470
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Fig. 4. CCFI composite index: 98470.
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Table 1. Forecasting error matrix for traditional LSTM and Shapley Regulation modified LSTM (SR-LSTM).

Bias MAPE MAE MAE% RMSE RMSE% MSE
LSTM_100 —7.21271 12.66451 0.015367 0.015945 16.03446 0.019455 257.1039
LSTM_300 —9.66284 13.88462 0.016847 0.017491 17.36751 0.021073 301.6304
LSTM_300_2 —5.76557 12.37378 0.015014 0.015691 16.11064 0.019548 259.5528
LSTM450 —8.83531 13.67791 0.016596 0.017384 17.52009 0.021258 306.9534
SR-LSTM 1 —6.81121 12.66528 0.015367 0.016036 16.28316 0.019757 265.1414
SR-LSTM 2 —6.89094 12.70034 0.01541 0.016082 16.32285 0.019805 266.4354
SR-LSTM 3 —5.94742 12.34343 0.014977 0.015621 15.96206 0.019368 254.7873
SR-LSTM 4 —6.35974 12.47882 0.015141 0.015791 16.07951 0.01951 258.5506
VL. Modification of CCFI Compilation Method bia 1 i (18)
and Maintenance of Base Period: s*n - e

Over time, the method of compiling the freight
index may change accordingly due to changes in the
actual situation. Therefore, it is important to ensure
the comparability of the index before and after
adjustment. The main factors affecting the compa-
rability of the index are the changes of the sample
routes, such as the increase or decrease of the
number of routes and the change of the weight of
the routes. CCFI has compiled rules on route
change, weight change, etc. The time-series data for
CCFI Composite Index: 98470 are shown in Fig. 4.

3.5. Commonly used forecast indicators the forecast
KPI

This paper utilizes Key Performance Indicators
(KPIs) for numerical prediction, referencing the al-
gorithm presented in [60]. Formulas (17) to (24) are
employed as indicators for model predictions. The
calculations are as follows:

1. Error is defined as the difference between the
real data (f;) and forecast data (d;)

é; :ft — dt (17)

where f; represents real data and d; denotes forecast
data.

2. Bias is calculated as the average error across all
observations:

where n is the number of historical periods where
you have both a forecast and a demand.

3. Mean Absolute Percentage Error (MAPE) is the
mean of the absolute percentage errors:

1 et
MAPE=-"S 14
nZdt

(19)
4. Mean Absolute Error (MAE) is the average of the
absolute errors:
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Fig. 5. The number of each iteration and the corresponding RMSE value.

Table 2. The relationship between the Shapley weight and RMSE across different LSTM models.

MAPE MAE MAE% RMSE Shapley weight
LSTM_100 12.66451 0.015367 0.015945 16.03446 0.417
LSTM_300 13.88462 0.016847 0.017491 17.36751 —0.083
LSTM_300_2 12.37378 0.015014 0.015691 16.11064 0.417
LSTM450 13.67791 0.016596 0.017384 17.52009 0.25
Correlation Coefficient —0.86656 —0.86659 —0.83780 —0.76855 1

with Shapley weight
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Table 3. Shapley weight of each Shapley Regression. 15~ "le
, MAPE%:i"lZL' t':ZI,J d (21)
Iteration 221 d; 21 d,
Model iterl iter2 iter3 iter4 .
LSTM. 100 017 0283 0283 0.267 5. Root Mean Squared Error (RMSE) is the square
LSTM. 300 —0.083 —0.050 _0.217 —0.150 root of the average of the squared errors:
LSTM_300_2 0.417 0.283 0.333 0.133 -
LSTM450 0.250 0.200 —0.017 0.050 1
SR-LSTM 1 0.000 0.283 0.333 0.283 RMSE=/~ Z e (22)
SR-LSTM 2 0.000 0.000 0.283 0.283
SR-LSTM 3 0.000 0.000 0.000 0.133 . . . .
where 71 is the number of historical periods where
you have both a forecast and a demand.
n .
M 1E—1 Z e (20) RMSEY% is the RMSE scaled to the demand:
- t
To express MAE as a percentage, divide it b \/%Z;let
p p g& Y RMSE% =~ —. (23)
the average demand: > oids
33.3% 33.3%
390% 983, 28.3%
25.0%
%n
‘s 15.0%
E
& 5.0%
g )
% -50% LSTM_100 LSTM 300 LSTM_300 2 LSTM450 Shapl Shap2
-15.0%
~23.0% 21.7%

Fig. 6. Shapley weights of the best predicted data for the third iteration.

The Actual and Predicted Data of CCFI by LSTM

g

CCFI COMPOSITE INDEX
=

v ‘ ——Data_98470 _tst
. ‘ Y —Predict LST™M_100

\ L/ Predict LST™ 300 2
W[~ —Predict LSTM_300 3

600

> R 0ok AAAAAAAND D DD S a OO0

RS Ao\..\\ ,,o\ \\\ D \\ \\\ o e\ n\ N 0\\\\ o\,,\\\.\\\.i\\\.\/e\.’\\\.\)\\..g\.}\\.\g\ 9\,&\ N \\,‘9\,\\\\ e\.\\\." .\\\,.\\ .\e\.\\ A

AN N ﬂ«% 55-5, \‘..\ﬁ\\h&'\\ahvs’a,,\\\\ \«%'\c.v>&A>
\Q\\«,\ \("b \‘ ‘V\b AN ,a,,\’ ,'\*,\“\C,\/,v\s ’\«\\\ \*-,) k\,\‘v\\\\\\.’r\b

Fig. 7. The actual and predicted data of CCFI by traditional LSTM
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The Actual and Predicted Data of CCFI By Shapley Regression
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Fig. 8. The actual and predicted data of CCFI by shapley regression- LSTM (SR-LSTM).

6. Mean Squared Error (MSE) is the average of the  where n is the number of historical periods where

squared errors: you have both a forecast and a demand.
MSEZE En:ez (24) 4. Data analysis results
nét

We generate prediction data using LSTM models
with 200, 250, and 150 neurons—denoted as LSTM1,
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Fig. 9. The actual and predicted data of CCFI by shapley regression (extrapolation method).
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LSTM2, and LSTMS3, respectively. This data is then
input into the Shapley regression algorithm for
iterative processing. The outcome of the first itera-
tion is designated as ‘Shapleyl’, with subsequent
iterations labeled sequentially up to ‘Shapley8/,
corresponding to the eighth iteration. As indicated
by Table 1, the Shapley regression algorithm
significantly enhances the accuracy of the data.
Furthermore, Fig. 5 reveals that the algorithm, akin
to deep learning algorithms, is susceptible to over-
fitting after numerous iterations. Nonetheless, the
algorithm's optimal prediction accuracy for the
CCFI Composite Index was attained during the
third iteration, within the timeframe of October 13,
2014, to May 24, 2020.

Table 3 and Fig. 6 underscore the efficacy of the
Shapley weight calculation algorithm in enhancing
predictive performance. Table 2 reveals a positive
trend: as the prediction accuracy of LSTM models
increases, so do their corresponding Shapley
weights. This direct relationship is further
confirmed by the negative correlation coefficients
between the Shapley weights and various perfor-
mance metrics—MAPE, MAE, MAE%, and RMSE-
—indicating that higher accuracy correlates with
higher weights. The Correlation Coefficient with
Shapley weight particularly highlights this rela-
tionship, offering a statistical measure of the
strength and direction of the link between model
accuracy and the allocation of Shapley weights. In
our study, we define an effective coalition to be
when the RMSE for the averaged predictions of two
distinct LSTM models is lower than the RMSE of
each individual model's prediction. This effective
coalition, as depicted in Table 2, demonstrates that
models yielding more accurate predictions receive
higher Shapley weights, thereby validating the as-
sociation between the precision of predictions and
the Shapley weight distribution.

Figure 7 illustrates the actual versus predicted
data for the China Containerized Freight Index
(CCF]I) as forecasted by the traditional LSTM model.
The enhancement of predictive performance
through the application of the Shapley regulation-
LSTM is depicted in Fig. 8, where the integration of
appropriate adjustments has improved the model's
predictive reliability. Additionally, this approach
allows for a more accurate estimation of the CCFI's
behavioral trends.

From Fig. 9, we can compare the predicted data,
generated by different iterative processes of this
method, with the actual data. It appears that the
predicted data progressively approaches the actual
data more accurately, capturing and forecasting data
trends effectively. In Fig. 9, ‘CCFI’ represents the

actual CCFI index data; ‘testPredict 300’ denotes
data produced by Traditional LSTM; ‘Shap2’ corre-
sponds to data from SR-LSTM 2; and “Shap 3’ rep-
resents data from SR-LSTM 3.

5. Conclusion and suggestions

The results of this study reveal that the SR-LSTM
neural network, developed under the Shapley
mathematical framework, boasts robust mathemat-
ical logic, comprehensive data integration, high fault
tolerance, automatic association adjustment, and
effective noise filtering capabilities. This network is
adept at constructing nonlinear models and sur-
mounting the limitations inherent to traditional
statistical methods, which often require extensive
assumptions during model development. Advance-
ments in computing power and efficiency greatly
benefit the application of these findings to trend
forecasting for indices with complete datasets,
such as the CCFI, thereby enhancing forecasting
precision.

Time series analysis typically encompasses five
elements: Trend, Cycle, Seasonality, Random, and
Irregular variations, with the latter often posing the
greatest challenge to accurate predictions due to its
erratic nature. To mitigate the effects of irregular
variations, one might consider the fractal predic-
tion approach pioneered by Benoit B. Mandelbrot,
which trains on the data's self-similarity though the
presence of Fat-tailed distributions, should not be
disregarded. Future research may involve bifur-
cating big data into pre- and post-emergency
states, such as pandemics, to refine noise filtration
and boost predictive accuracy, thereby fine-tuning
the parameter adjustment process. Going forward,
the model's efficacy can be further enhanced by
redefining the criteria for a winning coalition, thus
progressively improving the model's predictive
accuracy.
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