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RESEARCH ARTICLE

Numerical Analysis of Impact Vibration Based on a
Bifurcation Diagram With Two Varying
Control Parameters

June-Yule Lee

Department of Marine Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan

Abstract

This study investigates impact vibration by using a bifurcation diagram with one or two varying control parameters.
Sticking, periodic, and chaotic motions are explored using the Poincar�e mapping and impact mapping techniques. A full
range of bifurcation diagrams with varying driving frequencies is obtained, and the statistical index of the standard
deviation (Std ) is used to calculate the impact series in the bifurcation diagrams. The results indicate strong agreement
between impact conditions and their corresponding statistical index values for the Std. Subsequently, the Std values for
two control parameters of (w, m), (w, c), (w, k), (w, f ), and (w, r) are obtained. The generated three-dimensional plots
display a mountain-like area indicating unstable regions and a flat area indicating stable regions. The corresponding
contour plots display the boundary of the stable and unstable regions in two-parameter domains. These findings expand
our understanding of impact vibration and how it benefits condition monitoring.

Keywords: Impact vibration, Impact map, Poincar�e map, Bifurcation diagram

1. Introduction

I mpact vibration generally occurs in systems with
clearances. In marine engineering, the presence

of clearances or motion constraints enable the
expansion or contraction of various mechanical
components. In the long term, impact vibration
adversely affects system performance by increasing
noise level, intensifying fatigue, and causing wear
and break. Goyder and The [1] studied the impact
vibration of heat exchanger tubes at their supported
points, Jian and Zhang [2] modelled a bearing vi-
bration system used to monitor health conditions,
Kadmiri et al. [3] analysed the rattling noise caused
by an automotive gearbox, Moosavian et al. [4]
detected piston scuffing fault by conducting impact
vibration analysis, and Cheng et al. [5] analysed the
nonlinear dynamics involved in the application of a
rotor-bearing-coupling system.

Impact dynamics is highly relevant to ship docking
and offshore structures. Thompson [6] studied the
motion of a ship against a seawall and analysed the
complex dynamics underlying this motion. Grace
et al. [7,8] analysed the impact dynamics of ships
with one-sided barriers; that study developed a
model for simulating the rolling motion of a ship
interacting with ice, and experimental validation was
performed in a towing tank with a flap-type wave
generator. Chen et al. [9,10] have investigated the
installation of a float-over desk based on a heave-
roll-pitch impact model and how the end-stop
mechanism affects a point absorber in regular waves.
Finally, Guo and Ringwood [11] modelled a wave
energy converter based on linear buoy interaction
and a nonlinear impact mechanism.
In the past, impact system models have been

regarded as soft or hard impact models. In a soft
impact model, the impact base is modelled using a
spring-damper support; in such a case, the time of
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impact is nonzero, and the colliding body can
penetrate the impact base. In a hard impact model,
the impact base and colliding body are stiff; an
impact is treated as instantaneous, and its restitu-
tion coefficient is used to represent energy dissipa-
tion. Hunt and Crossley [12] asserted that contact
force models are a key factor in the modelling and
analysis of impact systems. The kinematic coeffi-
cient of restitution is determined by obtaining the
ratio of the impacting velocity just after an impact to
that just before an impact. For a complete elastic
impact, this parameter is equal to one, whereas for a
complete inelastic impact, the restitution coefficient
is zero. Silva et al. [13] provided a detailed review of
the literature regarding contact force models.
In recent years, several studies of fundamental

impacting motions based on the impact rule of the
restitution coefficient have focused on theoretical
dynamics, particularly in the context of chaotic
phenomena. Shaw and Holmes [14] assessed a pe-
riodic forced piecewise linear oscillator and
demonstrated its ability to observe saddle node and
flip bifurcations. Nordmark [15,16], Foale and
Bishop [17], and Chillingworth [18] have studied
low-velocity collisions and the grazing effect and
have revealed the presence of bifurcation. Budd and
Dux [19,20] and Lee [21] have examined chattering
vibration with sticking motions. Samukham et al.
[22] modelled the non-smooth impact motion of a
continuous structure against a rigid distributed
obstacle. Finally, Skurativskyi et al. [23] and Wit-
kowski et al. [24] have employed an experimental
model to investigate a forced impacting oscillator. In
the aforementioned studies, chaotic impact series
have been studied statistically, and impacting fea-
tures have been identified in both numerical and
experimental results.
For some engineering applications, chaotic impact

vibrations are harmful and cause system damage.
Chaotic motion is caused by changes in multiple
parameters of an impact system. To address this
problem, Lee and Yan [25] demonstrated that un-
stable chaotic impact oscillators can be controlled
and maintained in a desired position through a
synchronization scheme. Chang et al. [26] proposed
a state feedback control technique for a chaotic
magnetic levitation system. Wei et al. [27] studied
the chaos control system of an impact oscillator by
applying a data-driven method, and they verified
the effectiveness and feasibility of the system
through simulation results.
The present study examines the motion behav-

iours of an impact oscillator with a two-parameter-
control scheme; this scheme is an extension of the
one-parameter-control scheme proposed by Lee

[21]. In addition, a complete range of relevant
bifurcation diagrams is plotted through Poincar�e
and impact mapping. Subsequently, the statistical
index of the standard deviation (Std ) in the

Fig. 1. Impact vibration with a one-side constraint.

Fig. 2. Bifurcation diagram of change in Poincar�e displacement with
varying driving frequency.

Fig. 3. Bifurcation diagram of change in impact velocity with varying
driving frequency.
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(a) (b) 

Fig. 4. Impact vibration when driving frequency w ¼ 0.10: (a) Poincar�e map; (b) impact map.

Fig. 5. Impact vibration when driving frequency w ¼ 0.25: (a) Poincar�e map; (b) impact map.

Fig. 6. Impact vibration when driving frequency w ¼ 0.75: (a) Poincar�e map; (b) impact map.
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Fig. 7. Impact vibration when driving frequency w ¼ 1.0: (a) Poincar�e map; (b) impact map.

(a) (b) 

Fig. 8. Impact vibration when driving frequency w ¼ 2.0: (a) Poincar�e map; (b) impact map.

Fig. 9. Impact vibration when driving frequency w ¼ 2.8: (a) Poincar�e map; (b) impact map.
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generated map is calculated and used as an indi-
cator for a two-parameter control domain. In
particular, the influences on impact vibration are
evaluated by controlling the driving frequency and
five other parameters, namely mass, damping,
stiffness, forcing amplitude, and the restitution
coefficient.
The remainder of the present paper is organized

as follows: Section 2 describes the mathematical
modelling of impact vibration and the analysis
techniques employed in this study. Section 3 pre-
sents one control parameter of a bifurcation dia-
gram. Specifically, the numerical solutions for
impact vibrationdincluding sticking motion, peri-
odic motion, chaotic motion, and impact reso-
nancedare characterised using Poincar�e mapping,
impact mapping, and several statistical techniques.
Section 4 presents the two-parameter control of the
statistical index on an impact map, and the contour
plots of the stable and unstable boundaries are
identified within a two-parameter space. Finally,
Section 5 provides conclusions to the present study.

2. Mathematical modelling and analysis
techniques

An illustration of an impact vibration model with
a one-side constraint is presented in Fig. 1. In this
model, the oscillator is excited by a sine wave, and
the motion is constrained by clearance. This impact
is treated as instantaneous, and the equation of
motion when no impact is present is expressed as
follows:

m€yþ c _yþ ky¼ f sinðwtÞ;y < g ð1Þ

where €y is the acceleration, _y is the velocity, y is the
displacement, m is the mass, c is the damping, k is
the stiffness, f is the forcing amplitude, w is the
driving frequency, and g is the clearance. The
impact occurs at yðtÞ ¼ g, and the corresponding
impact velocity is simulated as _yðtþÞ¼ � r _yðt�Þ,
where r is the restitution coefficient, ðt�Þ is the time
immediately before impact, and ðtþÞ is the time
immediately after impact.
In the investigation described in this paper, the

numerical integration of the fourth order Runge-
Kutta algorithm is applied to Eq. (1), and the time

Fig. 10. Bifurcation diagram (blue dots) and Std values (black lines) of
impact velocity in impact map with varying driving frequency. Fig. 11. Stable and unstable boundaries in (w, m) domain.
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step is set as 0.0005 s. In addition, Poincar�e mapping
and impact mapping are applied to verify the sta-
bility of the obtained solutions. The Poincar�e map is
a point set at a fixed section, namely (yðtÞ4, _yðtÞ4),
where 4 ¼ t modulo T and where T ¼ 2p/w. Thus, a
periodic motion displays a single point set in return
maps, and a sub-periodic motion of order n has a set
of n points set in the same return maps. Under
chaotic conditions, a fractal point set appears in the
Poincar�e map.
When an impact occurs at time timpact and when the

displacement yðtimpactÞ ¼ g, the impact map records a
point set at section ( _yðtimpactÞ, Jimpact), where _yðtimpactÞ
represents the impact velocity and where Jimpact ¼
timpact modulo T. Thus, a periodic impact motion is
represented by a single point set in the impact map.
A sub-periodic motion of order p has a set of p points
set in the impact map. Under chaotic conditions, a
fractal point set appears in the impact map.
With the gradual increase or decrease of the

control parameter, the bifurcation diagram reflects
how a point set varies in the Poincar�e map or impact
map. Thus, a complete bifurcation diagram can help
to predicate the stable or unstable regions for one or
two control parameters.

3. Control of one parameter

In the investigation described in this paper, the
parameters are set as follows: m ¼ 1, c ¼ 0.01, k ¼ 1,
f ¼ 1, r ¼ 0.8, and g ¼ 0. In addition, the resonance of
free oscillation is wn ¼ ffiffiffiffiffiffiffiffiffi

k=m
p ¼ 1. Simulation data

are obtained between 100 and 150 s, and the data
from the first 100 s are excluded to ensure a steady

system state. Using the point set in the Poincar�e or
impact map, a full range of bifurcation diagrams can
be obtained by varying the control parameter.
Fig. 2 depicts the bifurcation diagram created

using the displacement in the Poincar�e map.
Period-n motions are characterised by the Poincar�e
map as variable driving frequency w values
ranging from 0 to 5. The period-1 motion and
period-2 motion clearly appear at w ¼ 2 and w ¼ 4,
respectively. Fig. 3 depicts the bifurcation diagram
of the impact velocity in the impact map. The pe-
riodic impact-p motions are characterised by the
impact map, where p represents the number of
impacts. Fig. 3 reveals that the first and second
impact resonance impact-1 motions occur at w ¼ 2
and w ¼ 4, respectively. These results are consistent
with those obtained using the Poincar�e map, as
presented in Fig. 2. Thus, most of the periodic
impact motion can be described as period-n
impact-p motion. For example, the period-1 and
period-2 impact-1 motions appear at w ¼ 2 and
w ¼ 4, respectively.
The bifurcation diagrams in Figs. 2 and 3 reveal a

non-periodic (chaotic) region between two impact
resonance peaks. For driving frequency ranges that
do not correspond to any explicit analytical solution,
numerical solutions are provided for the full region
of the control parameter. Thus, the boundary of the
region for each impact vibration is predicted.
Knowledge regarding the position and structure of
the stable and unstable regions is essential for
implementing practical applications. In the
following subsection, the impact vibrations are
classified as period-n impact-p motions.

Fig. 12. Effects of mass: (a) m ¼ 0.1; (b) m ¼ 5.
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3.1. Sticking motion

Sticking motion is present in regions where
w < 0.25 and where the oscillator collides with the
limited stop at low velocities. This phenomenon
produces numerous low impact series, and the vi-
bration eventually becomes stuck at the end-stop.
Fig. 4a and b depict the points set on the Poincar�e
and impact maps when the driving frequency is
w ¼ 0.1. A motion is represented by a single point on
the Poincar�e map (period-1) and by a sequence of
points on the impact map (impact-∞). The impact
map indicates that the maximum impact velocity is
0.23 at phase 0.03 and that the sticking occurs at
phase 0.11. Fig. 5a and b reveal that when the
driving frequency increases to w ¼ 0.25, the
maximum impact velocity increases to 0.62 at phase
0.08, and the sticking occurs at phase 0.33. These
phenomena are referred to as periodic sticking
motions and classified as period-1 impact-∞
motions.

3.2. Chaotic motion I

When the driving frequency increases, the impact
vibration does not remain stuck at the limited stop
but rather departs after several impacts. The impact
motions are complex within the driving frequency
region of [0.25, 1] (Figs. 2 and 3); this result further
indicates a period-doubling route to chaotic
behaviour.
The points set on the Poincar�e and impact maps

for when the driving frequency w ¼ 0.75 are pre-
sented in Fig. 6a and b, respectively. The results
revealed a complex structure comprising period-
fractal and impact-fractal patterns on the maps. This
phenomenon is referred to as a chaotic motion and
confirms the instability of the impact motion. When
the driving frequency increases to w ¼ 0.86, the
impact motion converges toward a period-1 impact-
2 motion. Subsequently, the impact motions remain
stable within the region of [0.86, 0.99]. However,
when the driving frequency w ¼ 1.0, the impact
motion starts to bifurcate, again leading to a com-
plex motion (Fig. 7a and b).

3.3. Periodic motion

When the driving frequency w ¼ 1.4, the impact
motion converges toward a periodic impact motion.
When w ¼ 2, the maximum impact velocity is
reached; the corresponding results are presented
with a period-1 impact-1 motion in Fig. 8a and b.
This phenomenon is referred to as periodic impact
resonance.

3.4. Chaotic motion II

The impact motions in the driving frequency re-
gion of [2.5, 3.5] are complex (Figs. 2 and 3). The
Poincar�e and impact maps for when the driving
frequency w ¼ 2.8 are presented in Fig. 9a and b,
respectively. The results indicate a complex struc-
ture comprising period-fractal and impact-fractal
patterns on the maps. The period-fractaleimpact-
fractal attractor that occurs at w ¼ 0.75 is different
from that occurring at w ¼ 2.8. The impact series at
w ¼ 0.75 appears to comprise impact velocities of
moderate magnitude (range: 0e2.5), whereas the

Fig. 13. Stable and unstable boundaries in (w, c) domain.

508 JOURNAL OF MARINE SCIENCE AND TECHNOLOGY 2023;31:502e514



impact series at w ¼ 2.8 comprises impact velocities
of low magnitude (range: 0e0.7). Although both of
these phenomena are referred to as chaotic motion,
they exhibit different patterns on the maps. These
results confirm the instability of the impact motions.

3.5. Statistical index of the diagram

To quickly detect impact motions, the Std of the
impact series in the impact map is calculated as
follows:

Std¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

jIi �mj2
vuut ð2Þ

where m is the mean of Ii and where Ii is the impact
series (velocities) in the impact map. To ensure the
accuracy of the results, 5000 impact series are
considered, and the first 100 impacts are ignored.
Fig. 10 compares the bifurcation diagrams and Std
values (by a factor of 5) across multiple driving
frequencies and reveals that the bifurcation diagram
and statistical index (Std ) results are consistent and
in strong agreement. In the low-Std regions, the
motion is stable, such as the sticking motion in [0,
0.25], the period-1 impact-1 motion in [1.5, 2.5], and
the period-2 impact-1 motion in [3.5, 4.5]. In the
large-Std and moderate-Std regions, the motions are
unstable, such as the chaotic motion I in [0.25, 1.45]
and the chaotic motion II in [2.5, 3.5].

4. Control of two parameters

The bifurcation diagram presented in Section 3 is
considered by only one control parameter, and the

impact series in the maps with the varying driving
frequency w are plotted. The details of specific local
parameters are investigated through Poincar�e and
impact mapping. The stable and unstable regions of
the driving frequency w are identified. In this section,
two control parameters of the bifurcation diagram
are considered. The influence of the two-control-
parameter domains of (w, m), (w, c), (w, k), (w, f ), and
(w, r) are investigated for when the fixed clearance
g ¼ 0. The results are plotted using a mesh of 200
multiplied by 200 points in two-control-parameter
domains. For each point, the first 100 impacts are
ignored, and the subsequent 5000 impact series are
calculated for the statistical index (Std ).

4.1. Effects of driving frequency and mass

The Std values of the impact series in the maps for
two control parameters (w, m) for when g ¼ 0 are
presented in Fig. 11a. The high mountain-like
pattern indicates that the Std of the impact series is
high, indicating unstable motions. The flat area
represents small Std values, indicating periodic
motions. The contour plot of Fig. 11a is presented in
Fig. 11b, where the stable and unstable boundaries
of the impact motions are classified. In Fig. 11b, the
horizontal line represents the indication of Std when
the mass parameter m ¼ 1. This situation is depicted
in Fig. 3, where the resonance of free oscillation is
wn ¼ 1. Six regions are classified by impact motion
at the driving frequency w ¼ [1, 5]. The sticking
motion is within [0, 0.25]; the period-1 impact-1
motion is within [1.25, 2.5]; the period-2 impact-1
motion is within [3.5, 4.5]; and the unstable motions
are within [0.25, 1.25], [2.5, 3.5], and [4.5, 5].

Fig. 14. Effects of damping: (a) c ¼ 0.5; (b) c ¼ 1.
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When the mass is small (m < 1), the resonance of
free oscillation increases. In addition, the impact
motions correspond to high Std values and increases
in the amplitudes of sticking and chattering mo-
tions. For example, the bifurcation diagram pre-
sented in Fig. 12a represents the situation when
m ¼ 0.1. The resonance of free oscillation is wn ¼ 3.1,
and the first impact resonance is approximately 6.2.
Thus, the amplitude on the y-axis is increased to 8.
When the mass increases (m > 1), the resonance of
free oscillation decreases. Consequently, the period-
n impact resonances also decrease. For example, the
bifurcation diagram presented in Fig. 12b represents
the situation when m ¼ 5. The resonance of free
oscillation is wn ¼ 0.44, and the first impact reso-
nance is approximately 0.88. The period-n impact
resonances for n ¼ 1 to 5 are presented.
The two-control-parameter bifurcation diagram

with a statistical index provides an understanding of
various motions that are simultaneously present in
the (w, m) domain. This diagram is a useful tool for
designing an impact system where stable and un-
stable boundaries can be used for identification
within a two-parameter space.

4.2. Effects of driving frequency and damping

The Std values of the impact series in the maps for
the two control parameters (w, c) for when g ¼ 0 are
presented in Fig. 13a. The flat area indicates stable
motions, whereas the mountain-like area indicates
unstable motions. The contour plot of Fig. 13a is
presented in Fig. 13b, where the stable and unstable
regions of the impact motions are classified in the
(w, c) domain. In Fig. 13b, the horizontal line rep-
resents the indication of Std when the damping
parameter c ¼ 0.01; this situation is depicted in
Fig. 3. When the damping c increases, the impacting
rate and the amplitude of impact resonance are
reduced. The situations where c ¼ 0.5 and 1 are
plotted in Fig. 14a and b, respectively. Thus, when
the parameter pair of w and c varies, the stable and
unstable boundaries appear in the (w, c) domain.

4.3. Effects of driving frequency and stiffness

The Std values of the impact series in the maps for
the two control parameters (w, k) for when g ¼ 0 are
presented in Fig. 15a; in this figure, the flat area
indicates stable motions, whereas the mountain-like
area indicates unstable motions. The contour plot of
Fig. 15a is presented in Fig. 15b, where the stable
and unstable boundaries of the impact motions are

classified in the (w, k) domain. In Fig. 15b, the hor-
izontal line represents the indication of Std when the
stiffness parameter k ¼ 1. This situation is depicted
in Fig. 3, where the resonance of free oscillation is
wn ¼ 1. Six regions are classified by impact motion
at the driving frequency w ¼ [1, 5].
When the stiffness k decreases, so does the reso-

nance of the free oscillation. Thus, the location of the
impact resonances shifts forward, and the

Fig. 15. Stable and unstable boundaries in (w, k) domain.
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amplitude of the impact motions increases. For
example, Fig. 16a presents the bifurcation diagram
when k ¼ 0.1. The resonance of free oscillation is
wn ¼ 0.31, and the first impact resonance is
approximately 0.62. Seven impact resonances
appear, and the impact magnitude is amplified by a
factor of 3 relatives to the situation when k ¼ 1.
When the stiffness k increases, so do the resonance
of free oscillation and the impact motions. As a
result, the effect of the impact resonances decreases,
and the sticking and chattering motions increase.
Fig. 16b presents the bifurcation diagram for when
k ¼ 5. The resonance of free oscillation is wn ¼ 2.23,
and the first impact resonance is approximately 4.46.
Thus, the amplitude in the y-axis is reduced to 3.

4.4. Effects of driving frequency and forcing
amplitude

The Std values of the impact series in the maps for
the two control parameters (w, f ) for when g ¼ 0 are
presented in Fig. 17a. The flat area indicates stable
motions, whereas the mountain-like area indicates
unstable motions. The contour plot of Fig. 17a is
presented in Fig. 17b, where the stable and unstable
boundaries of the impact motions are classified in
the (w, f ) domain. In addition, in Fig. 17b, the hor-
izontal line represents the indication of Std when the
forcing amplitude parameter f ¼ 1; this situation is
depicted in Fig. 3. When the forcing amplitude f
changes, the boundaries of the impact motions in
the (w, f ) domain remain largely unchanged. The
various types of impact motions exhibit similar

patterns ( f ¼ 0.1, Fig. 18a; f ¼ 5, Fig. 18b), and the
magnitudes of the impact velocities are propor-
tioned to the forcing amplitude.

4.5. Effects of driving frequency and restitution
coefficient

The Std values of the impact series in the maps for
the two control parameters (w, r) for when g ¼ 0 are
presented in Fig. 19a. The flat area indicates stable
motions, whereas the mountain-like area indicates
unstable motions. The contour plot of Fig. 19a is
presented in Fig. 19b, where the stable and unstable
boundaries of the impact motions are classified in
the (w, r) domain. In Fig. 19b, the horizontal line
represents the indication of Std when the restitution
coefficient parameter r ¼ 0.8; this situation is pre-
sented in Fig. 3. When the control parameter of the
restitution coefficient r increases, the motions with a
high impacting rate occur within the full driving
frequency range. Fig. 20a depicts the situation when
the restitution coefficient r ¼ 1, indicating that two
impact resonances dominate the system. The
amplitude on the y-axis is increased to 35. In addi-
tion, the periodic motions are disrupted by high
strength impact responses. Conversely, when the
restitution coefficient r decreases, the impact
response is attenuated gradually. Fig. 20b depicts
the situation when the restitution coefficient r ¼ 0.1,
at which point the impact resonances are reduced.
When the first impact resonance shifts to w ¼ 1, the
chattering motions decay to sticking motions, and
the chaotic motions decay to periodic motions.

Fig. 16. Effects of stiffness: (a) k ¼ 0.1; (b) k ¼ 5.
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Fig. 17. Stable and unstable boundaries in (w, f ) domain.

Fig. 18. Effects of forcing amplitude: (a) f ¼ 0.1; (b) f ¼ 5.

Fig. 19. Stable and unstable boundaries in (w, r) domain.
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5. Conclusions

In the present study, the sticking, periodic, and
chaotic motions are characterised by employing the
nonlinear techniques of Poincar�e mapping, impact
mapping, and bifurcation diagram plotting. To
minimize the computing cost, the statistical index of
Std is calculated using impact series in maps. The
results for the bifurcation diagram and statistical
index Std are consistent and in strong agreement
within the driving frequency region. Therefore, the
Std values for the two control parameters of (w, m),
(w, c), (w, k), (w, f ), and (w, r) are calculated. In the
generated three-dimensional plots, the mountain-
like area indicates unstable regions, whereas the flat
area indicates stable regions. Finally, the corre-
sponding contour plots display the boundaries of
the stable and unstable motions in the two-control-
parameter domain. The present findings expand our
understanding of impact vibration and how it ben-
efits condition monitoring.
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