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RESEARCH ARTICLE

Artificial Intelligence in Prediction of the Remaining
Useful Life of Wind Turbine Shaft Bearings

Jinsiang Shaw “"*, Bingjie Wu *

@ Institute of Mechatronic Engineering, National Taipei University of Technology, Taipei, Taiwan
b Research Center of Energy Conservation for New Generation of Residential, Commercial, and Industrial Sectors, National Taipei
University of Technology, Taipei, Taiwan

Abstract

Long-term periodic rotation and unstable load changes in wind turbines can cause unexpected damage to high-speed
shaft bearings (HSSBs). In this study, after preprocessing of the HSSB vibration signal, four different models for pre-
dicting bearing degradation in terms of remaining useful life (RUL) in days were investigated: support vector regression
(SVR), convolutional neural networks (CNN), long short-term memory (LSTM), and CNN-LSTM. The experimental
results revealed that the CNN achieved the best mean absolute error (MAE), at 0.44 days, based on frequency response
plot using the fast Fourier transform (FFT), while that of the CNN-LSTM model predicted using the amplitude profile in
frequency response was 1.24 days. Meanwhile, the MAE of the SVR that extracted a total of 15 features for prediction
was 2.31 days, while that of the LSTM predicted with the original time-domain data was 14.93 days, which was the worst.
The experimental results demonstrated that, compared to the traditional time-domain vibration characteristics, the FFT-
based method can predict the degradation trend of HSSBs more accurately.

Keywords: RUL, Deep learning, Regression prediction

Vibration analysis is a monitoring technology
commonly used in rotating machinery in the in-

1. Introduction
W ind turbines are major components of the
current green energy market. Wind energy
development occurs onshore, offshore, and in deep-
sea areas [1]. Generally, the actual service life of a
wind turbine gearbox is shorter than its design life
of 20 years, and faults mainly lie in the positions of
the planetary bearings, intermediate shafts, and
high-speed shaft bearings (HSSBs). This is because
the rotor bearings support the main shaft and
blades, which apply loads in the dynamic axial and
radial directions and operate at low speeds of
20—30 rpm. As such, periodic loads are applied to
the bearings, which can bend the main shaft. In
turn, this can lead to bearing misalignment, which
may cause long-term damage, and the medium- and
high-speed bearings in the gearbox may also dete-
riorate [2—4].

dustry and is also an effective method for checking
bearing failures. Various bearing detection ap-
proaches have been proposed by Yang et al. [5],
Saidi and Fnaiech [6], and Ben Ali et al. [7].

Based on the method of spectral kurtosis (SK)
presented by Saidi et al. [8], the one-dimensional
feature vector related to the vibration signals served
as the input to the support vector regression (SVR)
for HSSB life prediction. The experimental results
show that SK contributes to early warning. Subse-
quently, one-dimensional convolutional neural net-
works (CNNs) and recurrent neural networks
(RNNSs) [9,10] that are combined for life prediction. A
CNN was used as an automatic feature extractor [11],
while an RNN is employed to extract the prior and
posterior features of the sequence. This combined
method obtained a considerably high prediction
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accuracy. In addition, by converting the one-dimen-
sional vibration signal to a two-dimensional fre-
quency response plot, the CNN was used to predict
fault diagnosis and shown to have a significant effect
on prediction accuracy [12]. A recent study by Mer-
ainani et al. [13] proposed a practical and effective
data-driven methodology that can be applied to the
RUL prediction of HSSBs. It first involves pre-
processing using the Teager energy operator, fol-
lowed by extraction of the relevant statistical features
from the spectral shape factor (SSF), and finally used
as an input to an Elman neural network for RUL
estimation. The experimental results show that the
proposed approach can provide effective RUL esti-
mation with good accuracy.

This study mainly aimed to process the vibration
signals of HSSBs in different domains and establish
four predictive models, SVR, CNN, LSTM, and
CNN-LSTM, to predict RUL. Finally, the MAE of
each model was compared to evaluate its perfor-
mance. It should be noted that this study is a sequel
to the authors’ previous work, in which a support
vector machine (SVM) and CNN were applied to
predict the RUL in classification rather than a
regression problem [14]. The remainder of this
paper is organized as follows: Section 2 introduces
basic information regarding the SVR, CNN, and
LSTM regression models used in this study. Section
3 describes different approaches for obtaining fea-
tures as inputs for the investigated models. More-
over, a thorough comparison of the MAE results of
the RUL obtained using each model is presented.
Finally, Section 4 concludes the paper.

2. Regression model

2.1. Support vector regression (SVR)

SVR operates in the same manner as SVM; both
project the original data into a high-dimensional
feature space to find an optimal hyperplane for the
accurate prediction of data labels.

Fig. 1 shows that, when extensive data exist on a
feature plane, SVR attempts to determine the
optimal margin whereby the data points can be
accurately classified. The regression hyperplane is
determined such that the farthest point from the
datacenter is at the largest distance from it. Two
dashed lines indicate that the black dot errors be-
tween them are zero. The distance between the
dashed line and data outside it is the error “£.” Pre-
dictive regression tries to minimize £ The dashed
lines H1 and H2 are called support hyperplanes,

e Hy=wix+b+e

Hy=wix+b-¢

—=£

Fig. 1. Support vector regression (SVR) example diagram.

while e indicates the maximum distance between the
SVR predicted and actual values [15].

2.2. Convolutional neural network (CNN)

A CNN is a feed-forward neural network. In 1998,
Yann LeCun proposed the original CNN architec-
ture, called LeNet-5 [16]. In 2012, AlexNet, another
CNN method, won the famous ImageNet large-
scale visual recognition challenge (ILSVRC). Sub-
sequently, various other types of CNN architectures
have been developed, such as NfNet, VggNet,
GoogleNet, and ResNet, which are widely used for
image recognition tasks [22].

Fig. 2 shows the LeNet-5 architecture. The input
image passes through the convolutional and sam-
pling layers sequentially (subsampling layer), fol-
lowed by two fully connected layers, and finally a
Gaussian connection output. Among them, the
convolution and subsampling layers extract the low-
level features of the image, which play the most
important role in CNNs and are different from those
in typical neural networks.

2.3. Long short-term memory (LSTM)

The LSTM network, first introduced by Hochreiter
and Schmidhuber [17], is a time-sequential network
improved from an RNN by modifying the hidden
layer. Three new gates are introduced: the input,
output, and forget gates. The same prior hidden states
H and C are captured, with the difference that Hand C
are short- and long-term memories, respectively. The
LSTM structure is illustrated in Fig. 3.
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Fig. 2. LeNet-5 architecture.

3. Experimental results

3.1. Experimental data

The vibration data used in our experiment were
collected on-site using a 2 MW commercial wind
turbine. The US Green Power Monitoring System
provided real-world WTG high-speed bearing data
[18]. The bearing model was an SKF 32222 ]2
tapered roller bearing.

3.2. Feature extraction

Each day, 585,936 vibration data samples from
normal (Day 1) to damaged (Day 50) were collected
over 6 s with a 97,656 Hz sampling frequency for a
total of 50 days, as shown in Fig. 4. To determine the
signs of HSSB degradation, statistical time-domain
features, such as root mean square, standard devi-
ation, skewness, and shape factor, can be used. In
addition, SK is included as another reference indi-
cator that can extract the impact signal covered by
strong noise from the rotating machinery. SK is
strongly capable of filtering out faulty mechanical

features at an early stage [19] and is defined as
follows:

e
O ey v

where <.> is the time-frequency averaging operator
[8]. Once the signal is extracted by SK, the skewness,
kurtosis, mean, and standard deviation are esti-
mated and included in the input feature vector for
RUL prediction.

To perform frequency analysis, the vibration data
for each day were converted to the frequency
domain using a fast Fourier transform (FFT) to
obtain a spectrogram. As shown in Fig. 5(a) and (b),
comparison between the 25th and 50th days reveals
that the main energy between 8000 and 12,000 Hz
has an increasing trend as the testing days progress,
which can serve as a basis for prediction.

3.3. Predicted regression model setup

In this study, we built four different models: SVR,
CNN, LSTM, and CNN-LSTM. To compare the

Forget Gate Input Gate Output Gate
Ct— T » ¢
Forget irrelevant information Pass updated information
> 1 2 3 >
H t—1 —_— — H ¢
Add/update new
information

Fig. 3. Long short-term memory (LSTM) architecture.
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Fig. 4. Run-to-failure vibration signal in the time-domain.

performances among these models, MAE was
adopted, defined as follows:

n

> leil
MAE== (2)
n

where ¢; is the error between the predicted and true
values, and n is the sample number. The neural
model layer configurations are presented in Table 1.

Day 25 FFT

Amplitude (dB)
o

20 +

o

¥ ».‘ Y

A/ \

{ \ iV 4

-25 h ) w "V"ﬁ‘hﬂu' i ‘\,_\\
\

.30 i R . . i
715.25 3099.43 5483.61 7867.79 10252 12636.1 15020.3 17404.5 19788.7
Frequency (Hz)

(a)

Specifically, the CNN-LSTM has been employed in
several previous studies, while CNN plus LSTM
demonstrated better prediction results regarding
time-sequential data [10,20]; thus, it is included here
for performance evaluation.

3.4. RUL predictions

The RUL is defined as RUL (days) = 50 — the days
the data were sampled. The input data for the SVR

Day 50 FFT

Amplitude (dB)
P .

.30 . R . . A
715.25 3099.43 5483.61 7867.79 10252 12636.1 15020.3 17404.5 19788.7
Frequency (Hz)

(b)

Fig. 5. Spectrograms for (a) Day 25 and (b) Day 50.
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Table 1. Layer configuration of each model.
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Layer name CNN LSTM CNN-LSTM

L1 Conv2D (3 x 3 x 32) LSTM(100) ConvlD (8 x 64)
L2 BatchNormalization () Dropout (0.2) MaxPooling1D (2)
L3 MaxPooling2D (2 x 2) Dense (1) ConvlD (1 x 3)
L4 Dropout (0.25) MaxPooling1D (2)
L5 Conv2D (3 x 3 x 64) ConvlD (1 x 3)
L6 BatchNormalization () MaxPooling1D (2)
L7 MaxPooling2D (2 x 2) ConvlD (1 x 3)
L8 Dropout (0.25) MaxPooling1D (2)
L9 Conv2D (3 x 3 x 128) ConvlD (1 x 3)
L10 BatchNormalization () MaxPooling1D (2)
L11 MaxPooling2D (2 x 2) ConvlD (1 x 3)
L12 Dropout (0.25) MaxPooling1D (2)
L13 Dense (256) LSTM(256)

L14 BatchNormalization () Dense (100)

L15 Dropout (0.5) Dense (1)

L16 Dense (128)

L17 BatchNormalization ()

L18 Dropout (0.5)

L19 Dense (1)

is a vector with 15 features. Eleven time-domain
features and four SK features were extracted from
the original time-domain data, which have been
proven to be effective in indicating complex bearing
faults and are independent of the shaft speeds and
loads [8,21]. Nine of the ten groups on each day
were used for multi-SVR training. Once the training
phase was completed, the remaining groups served
as the test data for each day. We used three different
kernel functions for SVR: linear, polynomial, and
Gaussian. The final MAEs obtained for the RUL
were 4.14, 2.70, and 2.31 days for the linear, poly-
nomial, and Gaussian kernels, respectively. Fig. 6
shows the best RUL predictions of SVR with the
Gaussian kernel function, where the red straight
line represents the ground truth RUL, and the blue
line indicates the RUL predicted by the model. Saidi
et al. [8] applied an SVR model to predict the RUL of
the same HSSB system. The data from the first 30
days (60 %) were used for training, while the last 20
days (40 %) were reserved for testing. The testing
errors in the RUL predictions are similar to those
shown in Fig. 6.

The CNN model uses spectrogram images as
input. The captured frequency range was
715—24414 Hz, with 30 frames collected daily. A total
of 1500 images were divided into training and
testing groups with 1450 and 50 images, respec-
tively. After 500 training epochs, the test MAE of
RUL was 0.44 days, and the corresponding predic-
tion results are given in Fig. 7.

For the LSTM model input, 1000 randomly extrac-
ted consecutive points from the original data were
used. Each day, 50 groups were extracted, and a total
of 2500 groups were used for training, with the input

matrix dimension being (2500, 1000, 1). After 100
training iterations, the obtained MAE of the RUL was
14.93 days. Fig. 8 shows the predicted results.

The training and testing groups used in the CNN
model were reused here for the CNN-LSTM model.
However, the training samples passed to the CNN-
LSTM model had a one-dimensional amplitude pro-
file in the spectrogram, which were collected with a
frequency range of 715—24414 Hz, taking 1989 points
in total. The input training matrix had a shape of (1450,
1989, 1), and after training, the CNN-LSTM predicted
the RUL with an MAE of 1.24 days. The corresponding
prediction results are presented in Fig. 9. Table 2 lists
the MAEs of predicted models.

3.5. Discussions

The best results for RUL prediction were obtained
by the CNN, with a spectrogram as its input. The
RUL prediction graph is mostly consistent with the
true RUL. Compared with CNN-LSTM, it requires
one step (FFT) to convert the data into a graph.
Conversely, CNN-LSTM only requires 1-dimen-
sional frequency domain data to obtain good results.
However, the prediction misalignment in the last
three days of the CNN-LSTM model must be
considered. The possible mechanism behind the
prediction misalignment as time approaches the
end of HSSBs' life is explained as follows: the one-
dimensional amplitude profile in the frequency
domain becomes larger in amplitude range with
more oscillations compared to its predecessors. This
is illustrated in Fig. 5. Therefore, it is more difficult
for the CNN-LSTM model to learn the features in
the last three days of HSSBs’ life.
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Fig. 6. SVR RUL prediction.
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Fig. 7. CNN RUL prediction.
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LSTM Regression Prediction
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Fig. 8. LSTM RUL prediction.

CNN-LSTM Regression Prediction

50 . T

45 f 1

30 =

25 1

RUL

10 1

0 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

50 Day

Fig. 9. CNN-LSTM RUL prediction.
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Table 2. MAE comparison of predicted models.

SVR Kernel linear SVR Kernel polynomial

SVR Kernel Gaussian

CNN LSTM CNN-LSTM

MAE 4.14 2.70

231 0.44 14.93 1.24

Although the predictive ability of SVR is inferior to
that of the CNN and CNN-LSTM models, its training
speed is faster than those of all neural network-based
approaches as it has the simplest model structure. In
contrast, LSTM had the lowest training speed and
demonstrated the worst performance.

4. Conclusion

In this study, the HSSB vibration signal of a wind
turbine was used to predict the RUL, and MAE was
adopted to evaluate prediction performance. Four
artificial intelligence models were trained for this
purpose: SVR, CNN, LSTM, and CNN-LSTM—LSTM.
The simulation results of the RUL prediction by the
models are summarized below.

The vibration data can be converted into the fre-
quency domain for better feature extraction. Both
frequency response plots using CNN and one-
dimensional frequency domain data employing
CNN-LSTM were shown to obtain a reasonably
lower MAE of RUL (0.44 days for CNN, 1.24 days for
CNN-LSTM), confirming that they are effective in
RUL prediction. However, the construction and
training of neural networks are time-consuming and
complicated. In the experiment, although SVR
demonstrated a slightly larger prediction MAE of
2.31 days, it was the fastest to build while obtaining
reasonable RUL predictions.
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