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RESEARCH ARTICLE

Path Planning of UAV Navigation Mark Inspection
Using a K-means Clustering ACA

Jiaqi Li, Weifeng Li*, Wenting Zhang

School of Navigation, Dalian Maritime University, Lingshui Road, Dalian, Liaoning 116031, China

Abstract

With increasing speeds and application of artificial intelligence in the shipping industry, unmanned aerial vehicle
(UAYV) technology has been applied to navigation mark inspections to improve the inspection efficiency and safety.
Aimed at the UAV path planning problem of navigation mark inspection, this paper proposes an improved K-means
clustering ant colony algorithm (KCACA) to design the shortest route for UAV navigation mark inspections. First, the K-
means algorithm and the UAV maximum flight distance were used to cluster the navigation marks, which were then split
into several secondary clusters. Each cluster was regarded as an independent traveling salesman problem to be evaluated
using the ant colony algorithm (ACA). Second, after optimizing the ACA pheromone update formula, the attenuation
factor was gradually reduced according to the number of iterations. Experiments showed that the improved KCACA not
only optimized the shortest path but also calculated the optimal path in a short time, improving the operation efficiency.

Keywords: Navigation mark inspection, Unmanned aerial vehicle, K-means clustering ant colony algorithm

1. Introduction

he shipping industry is closely related to our

daily lives and social and economic develop-
ment. As the most important means for global eco-
nomic trade, shipping considerably impacts world
economy. It is an important pillar of China's eco-
nomic and social development. To ensure the safety
of shipping, navigation mark inspection is of the
utmost importance [24]. In recent years, with the
rapid development of the shipping industry, the
number of ships has considerably increased,
resulting in higher requirements for navigation
mark inspection [25].

With the increasing speeds and application of
artificial intelligence in the shipping industry, the
period and rate of navigation mark inspection need to
be improved [26]. Therefore, navigation mark in-
spection optimization is required. The development
of unmanned aerial vehicle (UAV) technology is
evolving, and it is now widely applied in many fields,
including navigation mark inspection. UAVs have

the advantages of low costs and convenience, over-
coming the shortcomings of traditional navigation
mark inspection methods, which can be costly and
slow.

The traveling salesman problem (TSP), whereby a
salesman traverses each target point and returns to
the origin through the shortest route, is used for the
path planning of UAV navigation mark inspections.
Traditional methods used to solve the TSP include
the enumeration method, A* search algorithm, ant
colony algorithm (ACA), genetic algorithm, artificial
bee colony algorithm, and simulated annealing
method. The ACA is robust and uses parallelism and
a positive feedback function. The ACA is applied to
classic optimization problems such as the TSP [2].
The ACA can improve search efficiency and exhibits
strong adaptability [23]. However, the traditional
ACA is relatively simple; therefore, it easily falls into
the local optimal solution, and its implementation
process is inefficient. Some scholars have improved
the ACA. Wei [3] proposed an ACA based on hybrid
behavior. Zhang et al. [4] solved this problem using a
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generalized ACA. Gao [5] proposed a new, contin-
uous ACA. Dreo [6] proposed an ACA aimed at dy-
namic continuous optimization.

The traditional ACA [20] does not combine UAV
constraints when performing navigation mark in-
spection path planning. Therefore, this paper pro-
poses a K-means clustering ACA (KCACA), whereby,
combined with UAV characteristics, three-dimen-
sional space is simplified into a two-dimensional
space. Moreover, the entire inspection path area is
divided into several secondary clusters using K-
means clustering such that the path planning can be
simultaneously and independently undertaken for
each cluster.

2. UAV navigation mark inspection

2.1. UAV navigation mark inspection mode

With the development of UAV technology, a
relatively man—machine interaction research sys-
tem has been established. UAVs [18] are controlled
by a wireless remote control device or program.
They do not need to be equipped with any pilot-
related equipment, effectively saving space; there-
fore, they can carry more equipment to complete
tasks. UAVs have the advantages of simple opera-
tion, low price, safety, and high efficiency. Their
precise hovering function and high-altitude
perspective can observe navigation marks without a
dead angle. In the future, it is expected that UAVs
will use artificial intelligence and become multi-
faceted and cost less, which is considerably suitable
for their application in navigation mark inspection.

Currently, two modes of navigation mark inspec-
tion are used: “ship-UAV” mode refers to the rele-
vant managers carrying a UAV to the target
navigation mark using the inspection ship, and then
starting the UAV on the ship and “car-UAV” mode
refers to reaching the target navigation mark using a
car. UAV navigation mark inspection prefers to use
the “car-UAV” mode, but if the navigation mark is
relatively far from shore, due to the distance limi-
tation between the operating end and the UAV, the
“ship-UAV” mode will be selected.

2.2. Farthest UAV flight distance

Since the UAV needs to be operated by an oper-
ator, the farthest flight distance of a UAV (L) re-
fers to the farthest operating distance that the UAV
can receive a signal from the operation end. For
UAV navigation mark inspection in Region A, the
farthest flight distance of a UAV is determined by
Formula (1) as follows:

L =max||x; —x||,1#f 1)

where x; represents the takeoff point, which usually
prioritizes the most accessible beacons in Area A,
such as lighthouses and light beacon; x; represents
other navigation marks except the takeoff point in
Region A; and L4 represents the distance between
the takeoff point in Region A and the navigation
mark that is the farthest away from the takeoff point.

Since Lm,x is limited by the signal acceptance
range and radio interference, the actual farthest
flight distance of the UAV may be considerably
lower than the theoretical UAV farthest flight dis-
tance. Therefore, it is necessary to ensure that Ly is
< Lmax- If not, Region A must be reclustered.

2.3. Maximum UAV flight range

The maximum flight range (d.,) of a UAV for a
single flight is limited by the power of the UAV and
other factors affecting the UAV. To ensure that the
UAV can inspect the navigation mark within the
path in a single flight, the optimal path (d4) calcu-
lated by the ACA must be < d,,. If not, Region A
must be reclustered.

3. Ant colony algorithm

The ACA, a new simulated evolutionary algorithm,
was proposed by Dorigo [1]. It was obtained by
simulating the foraging behavior of ants in nature.
The ACA [19] uses a positive feedback mechanism to
quickly converge on a better solution. It has
demonstrated superiority in the field of combinato-
rial optimization and for planning strategies [21].

As a heuristic algorithm, the ACA [16] is primarily
used to solve TSPs. The process of solving the TSP
mainly iterates the following two steps until the
path does not change.

3.1. Urban transition probability formula

Considering [14] that there are n cities to visit,
dij(i,j= 1,2, ...,n) denotes the distance between city i
and city j and 7;(t) denotes the number of phero-
mones between city i and city j in the ¢ cycle. The
pheromones denote the actual number of secretions
of ants. Considering m ants are present, p;;\(t) denotes
the probability of the ant A moving from city i to city j
in the t cycle, expressed in Formula (2) as follows:

(750 [ny(0))”
JETA
S ) 0] 2

ré&Ty
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where T4(A = 1,2, ...,m), called the taboo list, re-
cords the point reached by ant A; 7;;(t) represents
the pheromone concentration of the distance be-
tween city i and city j in the t cycle; and #;(t)
represents the expected heuristic for each ant from
city i to city j in the ¢ cycle. For Formula (2), n;(t) =
1/d;;, where 7;,.(t) represents the pheromone con-
centration of the distance between city i and city r
in the t cycle and 7, (t) represents the expected
heuristic for each ant from city i to city r in the ¢
cycle. For Formula (2), ;(t) = 1/d;, where d;,
represents the distance between city i and city r
and « represents the pheromone importance fac-
tor. When « is large, subsequent ants are more
likely to choose the path passed by previous ants,
reducing the randomness of path selection of the
ants. When « is small, the randomness of the ant
selection path is high, enhancing the randomness
of the search. However, this slows the convergence
speed of the algorithm. 8 denotes the importance
factor of the heuristic information. When £ is large,
the randomness of the algorithm is weak,
rendering it easier to fall into the local optimal
solution. When g is small, the randomness of the
algorithm is strong but the difficulty of the opti-
mization is high.

3.2. Improved pheromone update formula

When the ants traverse all the cities to complete a
cycle, the path that each ant takes is a solution to the
TSP; however, it may not be the optimal solution for
the shortest path. Therefore, the ACA [17] needs to
update the number of path pheromones. This
research optimizes the pheromone update formula
so that the pheromone number increases less dur-
ing the initial iteration to ensure randomness, and it
increases the pheromone amount in the later period
to ensure computational efficiency, as shown in
Formula (3) as follows:

Tij (t) + ATij
pt

Ti(t+1)= (3)

where 7;;(t+1) represents the number of phero-
mones in the distance between city i and city j in the
t+1 cycle; 7(t) represents the number of phero-
mones in the distance between city i and city j in the
t cycle; p represents the attenuation factor, which
indicates the degree of the attenuation of the infor-
mation, where p€(0,1); and Ar7; represents the
amount of information increase, expressed by For-
mula (4) as follows:

k=1

where Arg;‘- represents the amount of information left
by the ant A in the city i and city j in this cycle. This
is expressed by Formula (5) as follows:
Q . .
= If ant A passing path i
A 73: L P gpathy 5)
0, Others

where Q represents a constant and L4 represents the
total length of the path that the ant A travels during
this cycle, where 7;;(0) = C.

4. K-means clustering

The ACA exhibits good applicability for solving
small-scale TSPs [7—11]. However, when solving
large-scale TSPs, it is slow and easily falls into the
local optimal solution, resulting in unstable results.
In addition, due to flight-time limitations, UAVs [12]
cannot inspect all navigation marks. Therefore, it is
necessary to divide regions according to the position
of the navigation marks. To solve large-scale TSPs,
the most effective method for dividing a region is K-
means clustering.

4.1. Principle of K-means clustering

K-means clustering [13] divides a sample set into K
clusters in advance based on the distance between the
samples. This clusters the sample points as closely as
possible, making the boundaries between the clusters
as obvious and clear as possible. K-means clustering
[15] is relatively scalable and efficient for large-scale
data sets; thus, it is reasonable to use K-means clus-
tering [17] to cluster large-scale TSPs.

4.2. Silhouette coefficient

As an unsupervised knowledge discovery algo-
rithm, K-means clustering [16] needs to determine
the number of clusters (K) in advance. Therefore,
prior to clustering, it is necessary to analyze the
validity of different K values [22]. The clustering
effect is usually judged by cohesion between the
points and the separation between the points. A
good clustering result should show small cohesion
and larger separation between the points. The
silhouette coefficient index, which combines cohe-
sion within a class and separation between the
points, is an effective criterion for determining K.

Assuming that sample x; gathers to cluster A, the
silhouette coefficient is determined by Formulas (6)
and (7) as follows:
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o b,’ —a;
_max(u,-, bl)

1 n
== ;si (7)

where S; represents the silhouette coefficient of

(6)

point i, and for K clusters, it is denoted as Cx(k =1, 2,

K); point i is clustered to C; by the clustering
calculation; a; represents the average distance be-
tween point i and the other point in Cy; D(x;, Ck)
represents the average distance between point i and
the other point in C, b; = mm D(x;, Cx); x; repre-
sents point i; n represents théumber of the point;
Sk represents the population mean of S;, Sk denotes
the silhouette coefficient of the clusters, where S, &
(—1,1). Thus, the K of maximum of Sy is selected as
the final number of clusters.

4.3. K-means clustering model

Considering that initial K(Cy,Cy,...,Ck) clusters
are randomly selected, the centroids of the initial
clusters are represented as mgo), méo), vy m,(f)). The
distance from each point to each centroid is calcu-
lated, and each point is divided into the nearest
cluster to minimize the sum of squares of the
Euclidean distances from each point to the centroid
of the cluster, expressed in Formula (8) as follows:

K
arggit = - > d(xm) )

2
where d(xi,m;(:)) = ||x; — m;f) H , indicating the sum of

the square of the Euclidean distance from point i to
the centroid of the cluster that point i belongs to; ¢
represents the number of iterations; S®) represents S
in the t cycle; argli" represents the function of

Fig. 1. Experimental region.

Silhouette Coefficient

0./75
0.72
0.69
0.66
0.63
0.6

value

Number of K

Fig. 2. Silhouette coefficient.

finding the parameter (set) of the function, and it
can calculate m§(> when S® is the minimum; m,i)
represents the centroid of the clusters in the f cycle;
and Ck) represents the clusters in the t cycle.

According to the new cluster after division, the
average distance between cluster nodes is recalcu-
lated as the new cluster particle, expressed in For-
mula (9) as follows:

(t+1) _ 1 )
_’C”) Z:(txl 9)
k |xec
where m,(:H) represents the new centroid of the

clusters and ’C;f)’ represents the number of the

point in C,(f)

The iteration shown in Formulas (4) and (5) is
repeated until the objective function error Z reaches
the minimum, as shown in Formula (10) as follows:

Z=3"3" Il - m? (10)

k=1 x;€Cy

where my represents the centroid of the clusters and
Ck represents the clusters.

When the error reaches the minimum, clustering
is completed, and the centroid of each cluster and

%108 K-means K: 3 SC:0.74093
-8.355 w: r
-8.3555 o
-8.356
-8.3565 o

-8.357

3.2116 3.2117 3.2118 3.2119 3.212 3.2121
% 107

cluster A cluster B cluster C

Fig. 3. K-means clustering effect.
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Fig. 4. Clusters determined by K-means clustering.

the cluster will not change. The whole region can
then be divided into K regions for path planning.

5. Experimental results and analysis

MATLAB R2022a was used as the simulation test
platform on a computer configured with a Windows
10 system, an Intel Core i7-10750H processor, a
2.60 GHz frequency, and a 16 G running memory.

In the simulation experiment, the UAV path
planning navigation mark inspection used a region
with 38 navigation marks positioned in a port, as
shown in Fig. 1.

This experiment used a consumer-grade, civil,
multi-rotor UAV (Inspire 2; DJI) with a pan-tilt camera
(ZENMUSE X5 S; DJI) that was relatively simple to
operate. It had a theoretical flight time in a windless
environment of 25 min, a farthest flight distance of
7 km, and a maximum flight range of 30 km.

The latitude and longitude of the navigation
marks were collected and converted into Cartesian
coordinates and subsequently processed using K-
means clustering. K was iteratively calculated for100
times from 2 to 10. The K with the maximum overall

average contour coefficient was selected as the
number of clusters. The silhouette coefficient is
shown in Fig. 2.

As shown in Fig. 2, the maximum silhouette co-
efficient (0.74093), indicating the best clustering ef-
fect, was obtained for K = 3. Therefore, K = 3 was
selected for the K-means clustering. The K-means
clustering effect is shown in Fig. 3.

Using K-means clustering, the navigation marks
in the region were divided into three clusters:
Cluster A, Cluster B, and Cluster C (Fig. 4).

Since the three areas were close to the shore, “car-
UAV” mode was selected for the UAV navigation
mark inspection. The point closest to shore, deter-
mined using satellite images (Fig. 5), was selected as
the UAV takeoff point.

Cluster A was selected as the UAV takeoff point
due to the presence of an onshore light pile
(21°35'17.20"N, 108°21'33.60"E) that could be
reached by car.

Since the navigation marks in Cluster B could not
be reached by car, it was necessary to select an
onshore landing point near the navigation marks as

(a) Cluster A (b) Cluster B

(¢) Cluster C

Fig. 5. Cluster satellite maps.
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the UAYV takeoff point. The light pile (21°35'39.20"N,
108°23’0.08"E) from Cluster C was chosen as the
takeoff point because it was the closest.

Because there was an onshore light pile that could
be reached by car in Cluster C, and the takeoff point
of Cluster B was also in Cluster C the same takeoff
point was chosen (21°35'39.20”N, 108°23'0.08"E).

The takeoff points are shown in Fig. 6.

The maximum theoretical signal acceptance dis-
tance of the Inspire2 UAV was 7 km; however,
because the actual operation was affected by radio
interference from electronic equipment at the ter-
minal, during the flight experiment, the signal
became poor at a distance greater than 2 km. The
UAV automatically returned to avoid the conse-
quences of poor operation, such as crashing. To
ensure that the UAV could safely complete the
navigation mark inspection task, the navigation
mark with the farthest clustering area was inspec-
ted, as shown by the red lines in Fig. 7.

The farthest flight distances were calculated using
the international unified mile conversion formula (1
mile = 1852 m), as shown in Table 1.

(b) Cluster B

(¢) Cluster C

Fig. 7. Farthest clustering points.

Table 1. UAV farthest flight distances.

Cluster Farthest flight Farthest flight
distance (mile) distance(m)

A 0.66 1222.32

B 1.05 1944.60

C 0.88 1629.76

luster A luster B
(a) Cluste (B) Cluste As shown in Table 1, the farthest flight distance

for each cluster was <2 km, ensuring good UAV
signal acceptance.

The path planning was then calculated using the
ACA. The algorithm parameter settings are shown
in Table 2, where NC_MAX denotes the maximum
number of iterations.

Table 2. Ant colony algorithm parameter.

Parameter Value
NC_MAX 2* navigation
mark
m 50
« 1
Y 5
(c) Cluster C ) o1
0 20

Fig. 6. Cluster takeoff points (shown in red).
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Fig. 8. Shortest paths and fitness evolution curves.

For the experiment, twice the number of navigation
marks in the clusters was selected; i.e., 32 times the
Cluster A iteration, 20 times the Cluster B iteration,
and 26 times the Cluster C iteration. « denotes the
pheromone importance factor, 8 denotes the heuristic
factor importance factor, p denotes the attenuation
factor, and Q denotes the constant coefficient.

The experiment was programmed according to the
parameters shown in Table 2, and the three clusters
were calculated following the K-means clustering.
The experimental results are shown in Fig. 8.

As shown in Fig. 8, the use of K enabled optimal
path planning for the UAV navigation mark in-
spection. The experiment used the standard ACA,

the standard KCACA, and the changed KCACA to
plan the UAV navigation mark inspection 100 times.
The average range and times for the UAV naviga-
tion mark inspection are shown in Table 3.

The optimized KCACA had a fast evolution speed
was fast and the number of iterations used was
small. Therefore, it has good effect and practicability
in path planning.

Table 3. Comparison of the three algorithm times and ranges.

Algorithm Time(s) Range(km)
ACA 5.635 16.495
KCACA 3.298 13.171
CKCACA 2.422 13.171
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6. Conclusion

Aimed at solving the path planning problem
encountered by UAV navigation mark inspections,
this paper proposes a changed KCACA. The algo-
rithm is based on the idea of K-means clustering,
whereby the path planning region containing the
navigation marks is clustered to avoid long total
planned-path distances. The ACA was optimized to
improve the pheromone update formula. The
amount of pheromone in the previous iteration was
reduced, and the amount of pheromone in later it-
erations was increased to avoid the algorithm falling
into local optimal solutions. The positive feedback
mechanism of the ACA was then used to carry out
the UAV navigation mark inspection path planning.
Experiments showed that this method quickly ob-
tained optimal paths, proving that it is feasible and
has a good effect. Therefore, this combination of
theory and practice can scientifically and reasonably
plan the paths of UAV navigation mark inspections.

However, this study has some limitations. The
batteries of consumer-grade, civil UAVs can only
maintain short flight times, and they consume
additional power when operating in high winds and
for low-temperature battery heating. They may also
have to hover when navigation marks are in doubt.
Therefore, actual flight distances need to be verified.
These limitations will be experimentally studied in
depth in the future.
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