
Volume 31 Issue 3 Article 6 

Wearable Sensor-Based Walkability Assessment at Ferry Terminal using Wearable Sensor-Based Walkability Assessment at Ferry Terminal using 
Machine Learning: A Case Study of Mokpo, Korea Machine Learning: A Case Study of Mokpo, Korea 

Jungyeon Choi 
Division of Navigation Science, Mokpo National Maritime University, Mokpo, Korea, jyc@mmu.ac.kr 

Hwayoung Kim 
Division of Maritime Transportation, Mokpo National Maritime University, Mokpo, Korea, hwayoung@mmu.ac.kr 

Follow this and additional works at: https://jmstt.ntou.edu.tw/journal 

 Part of the Fresh Water Studies Commons, Marine Biology Commons, Ocean Engineering Commons, 
Oceanography Commons, and the Other Oceanography and Atmospheric Sciences and Meteorology Commons 

Recommended Citation Recommended Citation 
Choi, Jungyeon and Kim, Hwayoung (2023) "Wearable Sensor-Based Walkability Assessment at Ferry Terminal using 
Machine Learning: A Case Study of Mokpo, Korea," Journal of Marine Science and Technology: Vol. 31: Iss. 3, Article 
6. 
DOI: 10.51400/2709-6998.2700 
Available at: https://jmstt.ntou.edu.tw/journal/vol31/iss3/6 

This Research Article is brought to you for free and open access by Journal of Marine Science and Technology. It has been 
accepted for inclusion in Journal of Marine Science and Technology by an authorized editor of Journal of Marine Science and 
Technology. 

https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/vol31
https://jmstt.ntou.edu.tw/journal/vol31/iss3
https://jmstt.ntou.edu.tw/journal/vol31/iss3/6
https://jmstt.ntou.edu.tw/journal?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol31%2Fiss3%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/189?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol31%2Fiss3%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1126?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol31%2Fiss3%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/302?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol31%2Fiss3%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/191?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol31%2Fiss3%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/192?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol31%2Fiss3%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://jmstt.ntou.edu.tw/journal/vol31/iss3/6?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol31%2Fiss3%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages


RESEARCH ARTICLE

Wearable Sensor-based Walkability Assessment at
Ferry Terminal Using Machine Learning: A Case
Study of Mokpo, Korea

Jungyeon Choi a, Hwayoung Kim b,*

a Division of Navigation Science, Mokpo National Maritime University, Mokpo, South Korea
b Division of Maritime Transportation, Mokpo National Maritime University, Mokpo, South Korea

Abstract

Walkability assessments are becoming more popular, as walking offers numerous health, environmental, and eco-
nomic benefits to communities. However, previous studies on ferry terminal walkability assessment have been inade-
quate. This study aimed to develop a wearable sensor system to automatically assess walkability at ferry terminals
without conducting surveys. We applied seven machine learning (ML) classifiers to detect different walking environ-
ments, including flat ground (FG), downhill slope (DS), uphill slope (US), and uneven surface (UE). The ML models
were evaluated across different combinations of classes: 2-class (FG vs. UE), 3-class (U) (FG vs. US vs. UE), 3-class (D) (FG
vs. DS vs. UE), and 4-class (FG vs. DS vs. US vs. UE). Among these, support vector machine (SVM) classifiers had the best
area under the receiver operating characteristic curves (AUCs) for the 2-class, 3-class (U), and 4-class datasets with 0.970,
0.920, and 0.922, respectively. AdaBoost (AB) performed the best in 3-class (D) with an AUC of 0.953. The least absolute
shrinkage and selection operator exhibited better performance in classifying walking environments than maximum
relevance and minimum redundancy. This study assessed passenger walkability and improved the built environments at
ferry terminals by identifying uncomfortable walking conditions. Furthermore, the results contribute to the develop-
ment of a passenger walkability evaluation system utilizing intelligent sensors and to the economic revitalization of
communities near ferry terminals.

Keywords: Machine learning, Walkability assessment, Gait pattern, Wearable sensor

1. Introduction

W alking is the most common physical activity
for preventing adult diseases, maintaining

mental and physical health, and enjoying leisure
time [1e5]. As walking provides numerous health,
environmental, and economic benefits to commu-
nities [6e9], a convenient walking environment is
required, making planning and designing pedes-
trian-friendly neighborhoods increasingly impera-
tive. Thus, walkability assessments have become
increasingly popular. The walkability of a built
environment is measured by its friendliness toward

pedestrians and how individuals perceive its quality
[6,9].
Numerous studies have evaluated the built envi-

ronments of transit facilities from the perspective of
pedestrians. Shin et al. assessed pedestrian charac-
teristics by measuring the hourly density, walking
speed, time, and behavioral patterns of pedestrians
at a metro station in Seoul [10]. Kim and Jung
demonstrated the feasibility of designing urban
parks by considering pedestrian behavioral patterns
[11]. Clifton et al. developed the pedestrian envi-
ronment data scan (PEDS) method to measure
pedestrian walking environments [12]. Using PEDS,
practitioners could assess pedestrian environments

Received 17 May 2023; revised 20 August 2023; accepted 22 August 2023.
Available online 6 October 2023

* Corresponding author.
E-mail addresses: jyc@mmu.ac.kr (J. Choi), hwayoung@mmu.ac.kr (H. Kim).

https://doi.org/10.51400/2709-6998.2700
2709-6998/© 2023 National Taiwan Ocean University.

mailto:jyc@mmu.ac.kr
mailto:hwayoung@mmu.ac.kr
https://doi.org/10.51400/2709-6998.2700


for transportation and physical activity, and identify
investment priorities. However, there is a lack of
research on improving the walking conditions and
built environments at ferry terminals. Notably, as
Korea is surrounded by sea and has numerous large
and small islands, the number of individuals trav-
eling annually to these islands is increasing [13].
Thus, a walkability assessment at ferry terminals is
essential.
As mentioned above, only a few previous studies

have examined the built environments of ferry ter-
minals and pedestrian convenience. To the best of
our knowledge, only one study surveyed passengers
about the built environment and pedestrian conve-
nience at a ferry terminal [14]. Although interviews
and surveys are commonly used for assessing
walkability based on pedestrian perceptions [15],
the responses can be biased and lack expert in-
sights. To address this limitation, trained pro-
fessionals conduct onsite inspections; however,
these methods are inefficient [16e18]. Conse-
quently, alternative methods have been proposed to
utilize infrastructure-based data such as street view
images, videos, or GIS technologies for automated
evaluation [10e12], and to use advanced walking
pattern recording methods such as capacitive sensor
floors or videos with depth sensors [19,20]. Vehicles
have been used to identify anomalies in the built
environment [21,22]. However, these approaches do
not consider pedestrian participation in the evalu-
ation. Owing to recent advances in design and
technology, pedestrians can deploy wearable sen-
sors to measure and analyze human physiological
responses to their surroundings [22e25]. Further-
more, with the advancements in machine learning
(ML), several studies have employed ML tech-
niques. Therefore, it is possible to develop a real-
time ML-based walkability monitoring system that
integrates individual characteristics by attaching
portable and inexpensive wearable sensors to
pedestrians.
Therefore, the purpose of this study was to assess

the walkability of passengers at ferry terminals. A
previous study revealed that passengers felt un-
comfortable while walking on a slope and ramp of
a ferry during embarkation or disembarkation [14].
Therefore, we conducted an experiment that
focused on these walking environments. The pri-
mary objective of this study was to develop a sys-
tem that can automatically evaluate walkability
without conducting surveys or direct field assess-
ments. First, we proposed using wearable sensors
that use ML classifiers to detect walking environ-
ments at ferry terminals. The first objective was to
examine the potential use of a wearable sensor to

classify walking environments in ferry terminals.
We assumed that different walking environments
at ferry terminals would change the passengers’
gait patterns. In other words, if the walking envi-
ronment is uncomfortable, it would result in
walking characteristics different from those on flat
ground. Therefore, if we could classify different
walking characteristics on flat ground from those in
different walking environments (such as downhill
and uphill slopes, and uneven surfaces), we could
detect uncomfortable walking areas using wearable
sensors. Seven ML algorithms were applied to
classify four different walking conditions: flat
ground (FG), downhill slope (DS), uphill slope
(US), and an uneven surface (UE), such as ferry
ramps. The second objective was to identify the
best features for assessing walkability. We also
hypothesized that variability-related and lateral-
directional features are more important for
detecting the walking environment at ferry termi-
nals. We applied two feature selection methods:
maximum relevance and minimum redundancy
(MRMR) and least absolute shrinkage and selection
operator (LASSO). We investigated the features
selected by each method and found that they per-
formed better in classifying walking environments.
The contributions of this study are summarized as
follows:

� To the best of our knowledge, the passenger
walkability at ferry terminals using wearable
sensors is evaluated for the first time.

� The best set of features is made available for
future researchers to develop ML models for
walking environment classification.

� The evaluation of passenger walkability and
improvement of the built environments at ferry
terminals by using this basic tool.

� The potential to develop ferry terminals to in-
crease passenger safety and comfort by detecting
uncomfortable walking surfaces is enabled.

� The economic revitalization of islands and port
areas can be facilitated by improving walkability
at ferry terminals, leading to an increase in ferry
users.

The remainder of this paper is organized as fol-
lows. In section 2, we describe the experimental
design and methodology used in this study,
including the study area, data collection, data pre-
processing, feature selection, ML techniques, and
overall implementation. The results are presented in
section 3. Section 4 discusses the findings of this
study. Finally, in section 5, we present our conclu-
sions and future research directions.
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2. Materials and methods

2.1. Experimental site selection

Mokpo city has the largest number of ferry routes
between the mainland and the islands. As of 2019,
the city accounted for 38.3% of all domestic pas-
sengers, recording the largest number of passengers
in Korea [13]. Mokpo has 22 ferry companies, 25
ferry routes, and 68 ferry ships carrying passengers,
cars, and cargo [14,26]. Therefore, in this study, we
selected two sites (north and south ferry terminals)
located in Mokpo, Korea, for the experiment, as
shown in Fig. 1.

2.2. Participants

Twelve healthy individuals (8 males and 4 fe-
males) were included in this study. Participants’
information is presented in Table 1. Before the
experiment, all the participants read and signed a
consent form approved by the Institutional Review
Board of Mokpo National Maritime University
(protocol code 2022-01-001). The general inclusion
criterion was that the participants should be in good
health with no difficulty in walking and aged be-
tween 19 and 70 years. There were no other exclu-
sion criteria for this study.

2.3. Experimental protocol

A triaxial accelerometer (MetaMotionR,MbientLab,
San Francisco, CA, USA) was placed on the waist to
collect three-dimensional acceleration data, as shown
in Fig. 2. This device was affixed onto the back of each
subject's waist using a clipped cover. The sensor
location was selected based on previous studies that
showed that a waist sensor could reliably predict gait-
related test scores and evaluation metrics [27e29].
Moreover, the waist location has the advantage of
investigating gait balance abilities [30]. The sampling
frequency of the accelerometer was set to 100 Hz. We
also used an action video camera (GoPro Hero 8,
GoPro Inc., San Mateo, CA, USA) to record the sub-
jects' movements, serving as the gold standard for
developinga classificationmodel for differentwalking
segments. They were used to define the environment
in which the subjects walked. We captured their
walking patterns and environments by observing
their movements from behind.
The participants were asked to walk at a

comfortable pace at both the north and south ferry
terminals. The walking trial in the ferry terminal
was divided into three segments: FG, slope, and UE
(i.e., the ramp of a ferry ship), as illustrated in Fig. 3.
The walking experiment took an average of 2 min

Fig. 1. Experimental sites: the location of north and south ferry terminals in Mokpo, Korea. Note: The map images and pictures were captured from the
Google and Naver maps, respectively.
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per person at each terminal, and all participants
wore comfortable shoes, such as sneakers.

2.4. Data preprocessing

After collecting the acceleration data from the
accelerometer on the waist, we performed several
preprocessing steps. First, irrelevant data were
removed, and the walking environment was labeled
based on the captured videos. To achieve this, we
wrote code using MATLAB to eliminate irrelevant
data by detecting the starting point within the ac-
celeration data. We manually calculated the walking
duration of each class using the recorded video and
then automatically labeled the walking environment
using the acceleration data. To synchronize the time

with the camera system, we manually synchronized
the time between the acceleration data and the
video by checking the starting point of the experi-
ment. Four classes were labeled as follows: 1)
walking on flat ground was labeled as “FG”; 2)
walking on a slope was divided into two classes,
downhill and uphill, labeled as “DS” and “US”,
respectively; 3) walking on an uneven surface (a
ramp of the ferry) was labeled as “UE”. Fig. 4 shows
the cleaned and labeled acceleration data.
Subsequently, the detection of step events is

necessary to extract gait features. Our previous work
described the detection of step events and the
extracted features [27,31]. A peak detection method
was used to determine the highest peak of vertical
acceleration, facilitating step detection. Table 2 lists

Fig. 2. Sensor location and orientation. An accelerometer was placed on the waist with the X-, Y-, and Z-axis of the sensor representing vertical,
lateral, and anterior accelerations, respectively.

Table 1. Participants’ information.

Participant Gender Age (years) Height (cm) Weight (kg) Body Mass Index
(BMI) (kg/m2)

1 Male 69 168 65 23.0
2 Female 68 160 65 25.4
3 Female 68 163 63 23.7
4 Female 66 164 60 22.3
5 Male 54 168 75 26.6
6 Male 36 170 68 23.5
7 Male 31 185 72 21.0
8 Male 28 160 60 23.4
9 Female 28 163 55 20.7
10 Male 24 175 67 21.9
11 Male 46 174 72 23.8
12 Male 60 165 60 22.0
Mean

(Standard Deviation)
48.2 (18.0) 167.9

(7.3)
65.2
(6.0)

23.1
(1.7)
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the twenty gait features. Moreover, each feature was
calculated as an average (a), symmetry (s), and
variability (v). A total of 60 features were used in this
study. The detailed step-detection and feature-
extraction methods are described in [27,31],
respectively. All features were normalized using
zero mean and scaling to unit variance. The
normalization equation is as follows:

xnorm¼x�mean
sd

; ð1Þ

where xnorm is a normalized feature, x represents
each feature, and mean, and sd denote the mean and
standard deviation values of each feature for all
subjects, respectively.
Additionally, data were randomly divided into

training (70%) and testing (30%) datasets. The training

Fig. 3. Segmentation of walking trials: flat ground (① and ⑥), downhill slope (②), uphill slope (⑤), and uneven surface (③ and ④). Each subject
walked in the order of the numbers.

Fig. 4. Example of acceleration data from the waist: each segment was accordingly labeled.
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dataset was used for feature selection, ML model
fitting, and hyperparameter tuning, while the test
dataset was used to evaluate the classificationmodels.

2.5. Feature selection methods

The selection of features for the predictive models
is crucial [32]. Irrelevant and redundant features are
eliminated to simplify the model. Overfitting can
occur when a model includes all possible features.
Feature selection aims to prevent overfitting by
excluding features that are insensitive to variance
sources. Among the various feature selection
methods available, we chose MRMR and LASSO,
the most common feature selection techniques that
have shown effective performance in several exist-
ing studies. Furthermore, we conducted several
preliminary tests with the initial sample data and
found that MRMR and LASSO outperformed other
methods. Thus, we examined MRMR and LASSO to
determine the most effective feature selection
method.

2.5.1. MRMR
Based on the MRMR algorithm proposed by Peng

et al. [33], an optimal set of features that are mutu-
ally and maximally dissimilar can effectively repre-
sent a response variable. This algorithm reduces
redundancy and maximizes the relevance of a
feature set to the response variable. The algorithm
also quantifies the redundancy and relevance of the
variables using the pairwise mutual information of
features and the mutual information between a

feature and its response. The MRMR algorithm
calculated the predictor importance scores for each
feature, and subsequently, we chose the best fea-
tures based on a cut-off threshold. Specifically,
features were selected if their importance scores
exceeded 0.1.

2.5.2. Least absolute shrinkage and selection operator
(LASSO)
LASSO was also used to select features relevant to

our study. The residual sum of the squares of a
vector of regression coefficients was minimized
using LASSO [34]. This method reduced the co-
efficients of less significant variables to zero,
resulting in a sparse model. The equation of the loss
function in LASSO (Losslasso) is

LosslassoðbÞ¼
Xn
i¼1

 
yi �

X
j

xijbj

!2

þ l
Xp
j¼1

���bj

���; ð2Þ

where yi and xij represent the outcome and vari-
ables, respectively, of the i-th subject, n is the
number of observations, p is the number of pre-
dictors, l is a non-negative hyperparameter; and bj
is a vector of regression coefficients. When the mean
squared error (MSE) is minimum, the best l is
selected using 10-fold cross-validation (CV).

2.6. ML classifiers

In this study, we evaluated seven ML classifiers
for categorizing different walking environments in
ferry terminals for walkability assessment: decision

Table 2. List of extracted features [27].

Feature Description Mathematical expression

M Whole step vector magnitude
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ V2 þ AP2

p
for whole step vectors

M10 Initial 10% step vector magnitude
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ V2 þ AP2

p
for initial 10% of step vectors

LM Lateral vector magnitude during a whole step
ffiffiffiffiffi
L2

p
for whole step vectors

VM Vertical vector magnitude during a whole step
ffiffiffiffiffiffi
V2

p
for whole step vectors

AM AP vector magnitude during a whole step
ffiffiffiffiffiffiffiffiffi
AP2

p
for whole step vectors

MD Vector magnitude during double stance
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ V2 þ AP2

p
for ±10% vectors from heel-strike

LMD Lateral vector magnitude during double stance
ffiffiffiffiffi
L2

p
for ±10% vectors from heel-strike

VMD Vertical vector magnitude during double stance
ffiffiffiffiffiffi
V2

p
for ±10% vectors from heel-strike

AMD AP vector magnitude during double stance
ffiffiffiffiffiffiffiffiffi
AP2

p
for ±10% vectors from heel-strike

M30 Vector magnitude during mid-stance
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ V2 þ AP2

p
for vectors from 30% of gait cycle

LM30 Lateral vector magnitude during mid-stance
ffiffiffiffiffi
L2

p
for vectors from 30% of gait cycle

VM30 Vertical vector magnitude during mid-stance
ffiffiffiffiffiffi
V2

p
for vectors from 30% of gait cycle

AM30 AP vector magnitude during mid-stance
ffiffiffiffiffiffiffiffiffi
AP2

p
for vectors from 30% of gait cycle

LHM Lateral heel-strike magnitude max(L) at heel-strike
LHS Std. of lateral acceleration during initial 10% step std(L) for initial 10% of step vectors
VHM Vertical heel-strike magnitude max(V) at heel-strike
VHS Std. of vertical acceleration during initial 10% step std(V) for initial 10% of step vectors
AHM AP heel-strike magnitude max (AP) at heel-strike
AHS Std. of AP acceleration during initial 10% step std (AP) for initial 10% of step vectors
ST Step Time Time between opposite heel strikes

Std.: Standard Deviation, L: lateral acceleration, V: vertical acceleration, AP: anterior-posterior acceleration.
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tree (DT), linear discriminant analysis (LDA), naïve
bayes (NB), support vector machine (SVM), k-
nearest neighbors (KNN), AdaBoost (AB), and neu-
ral network (NN). These models were implemented
and tested using a classification learner application
in MATLAB R2022a (MathWorks, Natick, Massa-
chusetts, USA). The best hyperparameters for each
ML classifier were automatically selected using 50
iterations with the default optimization function of
the classification learner app in MATLAB.

2.6.1. Decision tree (DT)
DT uses recursive binary splitting for classifica-

tion. Each node in a tree is split until the minimum
size of the class subgroup or the stop condition is
met. The Gini index or entropy is used to assess the
quality of each split in a tree [35]. The hyper-
parameter MaxNumSplits was set to 9.

2.6.2. Linear discriminant analysis (LDA)
LDA assumes that the features in each class

originate from a multivariate Gaussian distribution
with class-specific means and a common covariance
matrix. Using these estimates, the discriminant
function for each class is calculated. The observa-
tions are assigned to the class with the most sig-
nificant discriminant function values [36]. Notably,
this method does not involve any hyperparameters.

2.6.3. Naïve Bayes (NB)
An NB classifier is a simple probabilistic classifier

that applies Bayes' theorem while assuming strong
independence between features [37]. NB is
commonly used owing to its simplicity, tractability,
and efficiency [38]. It is suitable for both binary-class
and multi-class classification. The hyperparameter
DistributionName was set to Gaussian.

2.6.4. Support vector machine (SVM)
SVM maps features onto a high-dimensional

space using kernels and constructs a hyperplane to
effectively separate observations [39e41]. The hy-
perplane assigns classes based on new observations
collected in a high-dimensional space [36]. The
hyperparameters BoxConstraint, KernelScale, and
KernelFunction were set to 91.0161, 30.6181, and
Gaussian, respectively.

2.6.5. K-nearest neighbor (KNN)
The KNN decision boundary was constructed by

identifying the k samples that are closest to the
observation [42]. In KNN, observations are classified
based on a simple majority vote of the k-nearest
neighbors [35]. In this study, we used the Min-
kowski distance metric to calculate distance. The

hyperparameter k, which represents the number of
neighbors, was set to 14.

2.6.6. AdaBoost (AB)
AB is a statistical classification meta-algorithm

that was developed by Freund and Schapire in 1995
[43]. This algorithm can be combined with other
learning algorithms to improve performance. The
combination of the outputs of different learning al-
gorithms yields a boosted classifier outcome. A
weak learner is tweaked to favor instances mis-
classified by previous classifiers with AB. In some
cases, they are less prone to overfitting. AB is
commonly used for binary classification but can also
be generalized to multiple classes [43,44]. The
hyperparameters for AB were set as follows:
NumLearners ¼ 145, MaxNumSplits ¼ 7, and
NumPredictors ¼ 5.

2.6.7. Neural network (NN)
NN learns by connecting interconnected neurons

in a layered structure similar to a human brain. This
approach can be used for supervised and unsuper-
vised learning. They are commonly used in speech,
vision, and control systems to recognize patterns
and classify objects or signals. The NN parameters
are determined by weighing it based on its training
data and optimized to minimize the prediction error
[45]. The hyperparameters for the NN were as fol-
lows: NumLayers ¼ 1 (i.e., there are two fully con-
nected layers, including the final layer for
classification in the NN), Activation ¼ sigmoid (the
activation function for the final fully connected layer
is softmax), Lambda ¼ 0.0000002, and FirstLayerSize
(the neuron size of the first layer) ¼ 116.

2.7. Evaluation metrics

We conducted model training and hyper-
parameter tuning in the model training phase to
minimize the MSE using a 10-fold CV with the
training set. MSE was calculated as follows:

MSE¼ 1
n

Xn
i¼1

h
ypðiÞ � yaðiÞ

i2
; ð3Þ

where ypðiÞ and yaðiÞ are the predicted and actual
values, respectively, of the i-th subject for validation,
and n is the number of observations.
In the model evaluation phase, the test dataset was

used to evaluate the predictive performance of theML
classification models. We evaluated each ML classifi-
cationmodel using different class combinations, such
as 2-class (FG vs. UE), 3-class(U) (FG vs. US vs. UE), 3-
class(D) (FG vs. DS vs. UE), and 4-class (FG vs. DS vs.
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US vs. UE) combinations. Several evaluation metrics
were used for performance comparison.
Accuracy is the proportion of true positives and

true negatives in all cases. The accuracy is defined
as:

Accuracy¼ TPþ TN
TPþ TN þ FPþ FN

; ð4Þ

where true positive (TP) refers to when a positive
class is correctly predicted as positive, true negative
(TN) refers to when a negative class is correctly

predicted as negative, false positive (FP) refers to
when a negative class is incorrectly predicted as
positive, and false negative (FN) refers to when a
positive class is incorrectly predicted as negative.
In addition to accuracy, we also used the area

under the receiver operating characteristic (ROC)
curve (AUC) as a model evaluation metric. The ROC
curves capture the trade-off between the TP and FP
rates [46,47]. This study mainly used AUC for
comparing and evaluating different ML classifiers.
AUC is a useful measure of classifier performance

Fig. 5. Parameter l tuning results for LASSO: (a) 2-class; (b) 3-class(U); (c) 3-class(D); (d) 4-class. The best l for each model was chosen when the
MSE was minimum (l ¼ 0.013, 0.075, 0.062, and 0.171 for 2-class, 3-class(U), 3-class(D), and 4-class, respectively).
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as it condenses the ROC curve into a value ranging
from 0.5 to 1, with 1 representing the best perfor-
mance [47].

Furthermore, we calculated a confusion matrix to
provide detailed classification results. The predicted
results are represented using a specific table layout,

Table 3. Best features selected by MRMR and LASSO for each classification case.

Rank 2-class 3-class(U) 3-class(D) 4-class

MRMR LASSO MRMR LASSO MRMR LASSO MRMR LASSO

1 vLHM vLHM vLHM vLHM vLHM vLHM vLHM vLHM
2 vVHM vVHM vVHS vVHM vST vAHS vVHS vVHM
3 sAHS aST vM aST aLHS vLMD vAM30 vLMD
4 e sAHM vMD sAHM aM30 aST aST vAHS
5 e vAHS aVM30 sLHM aST sLHM sAHM sVHM
6 e sLHM sLHM vAHS e sAHM sST aVHM
7 e sST aLMD sAMD e sLMD aLMD aST

Fig. 6. Selected features by MRMR method for: (a) 2-class; (b) 3-class(U); (c) 3-class(D); (d) 4-class. Red dotted line represents a cut-off threshold
(Features were selected when predictor importance score �0.1).
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facilitating visualization of the ML model perfor-
mance for binary- or multi-class classification
problems.

3. Results

3.1. Results of feature selection

In this study, we employed the MRMR and
LASSO methods for feature selection. For the
LASSO method, we selected the best tuning
parameter l by finding the smallest MSE through a
10-fold CV. Fig. 5 shows the best parameter l of the
LASSO method for each classification case. The best
l values for different cases were 0.013, 0.075, 0.062,
and 0.171, corresponding to minimal MSE values of
0.171, 0.473, 0.585, and 1.052, respectively. Table 3
represents the features selected by LASSO using
these l values. The MRMR algorithm yielded the
predictor importance scores for each feature. We
chose features with predictor importance scores
exceeding 0.1. Fig. 6 and Table 3 present the features
selected using MRMR for each classification case.
Notably, the feature ‘vLHM’ was the most impor-
tant for all cases in both MRMR and LASSO. As
expected, variability-related and lateral directional
features were selected, as shown in Table 3.

3.2. Classification results

Using the seven ML classification models, we
identified the walking environments at ferry termi-
nals using a test dataset. The performance results of
the classification for each case are listed in Tables
4e7 with two metrics (i.e., accuracy and AUC).
Additionally, we used a confusion matrix to quan-
titatively analyze the classification accuracy. Fig. 7
displays the confusion matrix of the best classifica-
tion models based on the AUCs for each case. In the
case of 2-class classification, NB, SVM, and NN had
the highest accuracy (83.3%), with the SVM per-
forming the best in terms of AUC (0.970). In the case

of 3-class(U) classification, both NB and SVM per-
formed the best in terms of accuracy (88.9%) and
AUC (0.920). Notably, AB achieved the best perfor-
mance in terms of both accuracy (83.3%) and AUC
(0.953) for the 3-class(D) classification. In the case of
4-class, LDA and NB performed better in accuracy
(83.3%), while SVM performed the best in terms of
AUC (0.922). Overall, the proposed ML classifiers
accurately predicted different walking environ-
ments at the ferry terminals in all four classification
cases.

4. Discussion

Several studies have investigated walking envi-
ronments on sidewalks, roads, city parks, and resi-
dential areas [10e12,15,23e25]. However, few
studies have examined passenger walking environ-
ments at ferry terminals. Only one study focused on
the built environment of the ferry terminals [14], but
it was survey-based research that could be biased.
Thus, this study aimed to assess the walkability of
passengers at ferry terminals using a wearable
sensor. To the best of our knowledge, this study is
the first attempt to assess walking environments at
ferry terminals using an accelerometer. We devel-
oped ML classification models to detect the different
walking environments at ferry terminals in Mokpo,

Table 4. Classification results for 2-class.

Classifier Accuracy (%) AUC

MRMR LASSO MRMR LASSO

DT 75.0 75.0 0.79 0.79
LDA 75.0 72.0 0.89 0.86
NB 83.3 83.3 0.92 0.78
SVM 75.0 83.3 0.92 0.97
KNN 75.0 75.0 0.78 0.88
AB 75.0 66.7 0.79 0.85
NN 66.7 83.3 0.78 0.83

The values in bold type are the best performance results in ac-
curacies and AUCs for each feature selection method (i.e., MRMR
and LASSO) among seven classifiers.

Table 5. Classification results for 3-class(U).

Classifier Accuracy (%) AUC

MRMR LASSO MRMR LASSO

DT 72.2 77.8 0.796 0.846
LDA 55.6 77.8 0.760 0.883
NB 66.7 88.9 0.816 0.913
SVM 77.8 83.3 0.910 0.920
KNN 72.2 66.7 0.843 0.883
AB 72.2 77.8 0.890 0.870
NN 66.7 77.8 0.813 0.890

The values in bold type are the best performance results in ac-
curacies and AUCs for each feature selection method (i.e., MRMR
and LASSO) among seven classifiers.

Table 6. Classification results for 3-class(D).

Classifier Accuracy (%) AUC

MRMR LASSO MRMR LASSO

DT 72.2 61.1 0.803 0.760
LDA 55.6 77.8 0.683 0.803
NB 72.2 77.8 0.766 0.776
SVM 50.0 72.2 0.743 0.783
KNN 33.3 61.1 0.593 0.710
AB 77.8 83.3 0.950 0.953
NN 61.1 61.1 0.756 0.750

The values in bold type are the best performance results in ac-
curacies and AUCs for each feature selection method (i.e., MRMR
and LASSO) among seven classifiers.
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South Korea. To implement high-performance
classification models, we applied two feature selec-
tion methods and tuned the hyperparameters of
each ML classifier.
Based on the prediction results in Tables 4e7, we

found that the accuracies were lower than the AUCs
in all cases. The accuracy of a model is measured at

specific points and indicates its ability to classify
data into appropriate categories based on specific
thresholds. However, AUC depends on the ability of
the model to demonstrate consistent differences
among data with different labels, irrespective of
precise data assignment. Accuracy, particularly in
this study, is not suitable for performance metrics as
even a small change can cause huge differences
owing to the small sample size. Thus, we utilized
AUC as the main criterion to compare the perfor-
mance of the models in this study.
The AUC-based results showed that the proposed

ML classifiers successfully predicted different
walking environments in all cases with high AUCs
ranging between 0.920 and 0.970. We found that
SVM performed best in 2-class (AUC ¼ 0.970), 3-
class(U) (AUC ¼ 0.920), and 4-class (AUC ¼ 0.922),
while AB performed best in 3-class(D)
(AUC ¼ 0.953). Overall, we recommend using SVM
as the most appropriate analysis tool for satisfactory

Fig. 7. Confusion matrix of the best classification models for: (a) 2-class; (b) 3-class(U); (c) 3-class(D); (d) 4-class.

Table 7. Classification results for 4-class.

Classifier Accuracy (%) AUC

MRMR LASSO MRMR LASSO

DT 41.7 62.5 0.645 0.787
LDA 54.2 83.3 0.815 0.885
NB 58.3 83.3 0.805 0.892
SVM 62.5 79.2 0.817 0.922
KNN 54.2 70.8 0.872 0.827
AB 66.7 70.8 0.885 0.902
NN 54.2 54.2 0.775 0.762

The values in bold type are the best performance results in ac-
curacies and AUCs for each feature selection method (i.e., MRMR
and LASSO) among seven classifiers.
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passenger walkability perception in ferry terminals.
These outcomes support our first hypothesis that
different walking environments at ferry terminals
affect passenger gait patterns. We detected uncom-
fortable walking areas using wearable sensors by
classifying different walking environments (FG, DS,
US, and UE). Thus, it was proven that wearable-
sensor-based walkability assessments could be
applied at ferry terminals. Based on previous
research findings that passengers are uncomfortable
walking on slopes and bumpy surfaces such as ferry
ramps [14], our proposed models could be used to
assess passengers' walkability or improve the built
environment at ferry terminals. For example,
building a system that automatically monitors un-
comfortable sections at a ferry terminal by detecting
them using a wearable device can be possible,
which can be effectively used to evaluate the walk-
ability at ferry terminals.
Furthermore, this study examined the best set of

features for classifying different walking environ-
ments. Although the selected features differed
slightly depending on the classification case, the
‘vLHM’ feature was selected as the most important
feature in all cases, as shown in Table 3. This result
supported our second hypothesis that variability-
related and lateral directional features are more
important in detecting the walking environment at
ferry terminals. This is because, unlike on flat
ground, when walking on slopes and uneven sur-
faces, human bodies can react more from side to
side to maintain balance, leading to larger variations
in gait patterns. Furthermore, a comparison be-
tween MRMR and LASSO showed that the classifi-
cation models with features selected by LASSO
performed better than those using MRMR in all
cases (see Table 3). Therefore, we believe that
LASSO can be used as a feature selection method
for subsequent studies, with the best set of features
as primary data to expand the model complexity in
future investigations.
Nevertheless, this study had some limitations.

First, a limited number of participants were
included. Generally, ML classifiers perform better
when trained using large amounts of data. Thus, it is
difficult to generalize the results obtained from the
ML models learned from small samples. However,
constraints imposed by COVID in recent years have
restricted experiments involving human subjects,
resulting in a substantial recruitment effort. There-
fore, we need to conduct experiments with more
participants in future studies to build a more robust
model. Second, the experiment was conducted only
at Mokpo. However, this study is the first to evaluate
the walkability at a ferry terminal with wearables in

the area with the largest number of passengers and
ferry routes in Korea. Subsequent studies aim to
expand the research target area to include terminals
from other regions. Finally, there will be individual
differences in walking patterns or characteristics,
such as age and sex. However, these individual
differences were not considered in this study.
Future studies should consider these human factors
in the experimental design to understand their po-
tential impact.

5. Conclusions

This study demonstrated that a wearable sensor
can be used to detect different walking environ-
ments at ferry terminals. The proposed ML classi-
fication models were reliable in classifying binary-
class (FG vs. UE) and multi-class (3 or 4 classes),
including US and DS. We identified uncomfortable
walking sections by classifying walking patterns
across different walking environments, suggesting
that slopes and uneven surfaces should be
improved for passengers at ferry terminals. The
results showed that SVM performed better for
walking environment classification among all ML
classifiers. We also examined the best features and a
feature selection method for predicting walking
environments. The features selected by LASSO
performed better in the walking environment clas-
sification than those selected by MRMR. We also
found that variability and lateral features were
associated with walking characteristics on sloped
and uneven surfaces.
Our findings can be applied to assess walkability

or improve the built environment at ferry terminals
by automatically detecting uncomfortable walking
environments using a wearable sensor and
providing basic data for future studies. The results
of this study can also be used to monitor passengers'
physical activities by detecting walking patterns at
ferry terminals. In particular, building a ferry ter-
minal that prioritizes passenger safety and comfort
by identifying uncomfortable walking areas is
beneficial for ferry companies and local govern-
ments. In addition, enhancing walkability at ferry
terminals is expected to increase the number of
ferry users, contributing to the economic revitali-
zation of islands and port areas. Nevertheless,
further studies with larger sample sizes are required
to explore the validity of our findings by applying
the proposed methods to different ferry terminals.
Furthermore, efforts should be directed toward
improving the walkability infrastructure and facil-
ities by using other well-built ferry terminals as
benchmarks.
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