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System to Obtain Meridian Arc Length
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Jiunn-Liang Guo a,1, Yi-Jia Sun c,d,2

a Department of Merchant Marine, National Taiwan Ocean University, Keelung 20224, Taiwan
b Department of Marine Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan
c Department of Navigation, The Affiliated Keelung Maritime Senior High School of National Taiwan Ocean University, Keelung 20243,
Taiwan
d Department of Shipping and Transportation Management, Ocean University, Keelung, Taiwan

Abstract

In this study, the idea employed in the article of [1] to treat the problem of the arc-length of meridian is applied to the
arc-length determined by the third flattening (n) instead of the eccentricity (e) of an Earth-reference ellipsoid. With WGS
84 ellipsoid datum used in modern navigation, the meridian arc-length is a crucial factor for map projections and
geodetic and distance calculations such as Mercator charts, the universal transverse Mercator, great circle (ellipse),
rhumb line, and geodesic. Because navigation software lacks officially standardized calculation methods, these “black
box solutions” used in navigational systems are unknown. Therefore members of the general public must be provided
with logical and simpler formulas. Because the previous general formulas of meridian arc-length are unnecessarily
complicated and difficult to understand, this paper deduces a new general formula of meridian arc-length by using the
binomial theorem and general terms of sinusoidal even power. The general formula presented herein is suitable for
computer algorithm programming and other common navigational uses.

Keywords: Meridian, Rhumb line, Great circle (ellipse), Geodesic, Rectifying latitude

1. Introduction

I MO [2] ANNEX 24, RESOLUTION MSC.232 (82)
“ADOPTION OF THE REVISED PERFORMANCE

STANDARDS FOR ELECTRONIC CHART DISPLAY
AND INFORMATION SYSTEMS (ECDIS)” article 12.3
stipulates that the system should be capable of
performing and presenting the results of at least the
following calculations:

1. True distance and azimuth between two
geographical positions;

2. Geographic position from a known position and
distance/azimuth; and

3. Geodetic calculations such as spheroidal dis-
tance, rhumb line, and great circle.

The geodetic calculations of the inverse problem
and the direct problem of the meridian arc-length
are crucial considerations for voyage plans, such as
Mercator charts, great circle (ellipse), rhumb line,
normal section, and geodesic. Because geodetic cal-
culations encounter problems of advanced mathe-
matics, in general, navigational education curricula
always omit this topic and replace it with that related
to a simplified perfect spherical Earth model. With
improvement of computing power and user-friendly
environments, basic geodetic calculation should not
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be ignored. This paper mainly introduces the inverse
generalized series of a meridian arc-length by third
flattening (n), and then uses a computer algebra
system (CAS) to calculate two series of the direct
problem and inverse problems. It is hoped that this
paper provides straightforward method for such
calculations and that it can gives readers an insight
into mathematics to help them understand geodetic
and navigational algorithms.
The meridian (green) is the special curve of the

intersection (section, orange) of a plane (Fig. 1) and
an Earth-reference ellipsoid. The plane passes
through the two poles of the Earth (Fig. 2) and is
perpendicular to the equator. Both meridian and
section are ellipses on an ellipsoid [3]. Longitude
can be determined according to the angle from the
Greenwich meridian and the local meridian.
Analyzing the intersection of a plane and ellipsoid is
common in interdisciplinary research. These in-
tersections are crucial equations for navigation,
geodesy, satellite orbits in space, a wide range of
elliptical motions (e.g., planetary motions), and the
curvature of surfaces, and those concerning eye-
related radiotherapy (e.g., such as the anterior sur-
face of the cornea, which is usually represented in
the mathematical form of an ellipsoid) [4].
We developed an algorithm for the general for-

mula of meridian arc-length and used a CAS to
obtain the inverse solution of the meridian arc-
length using the algorithm of symbolic computation
for reversion formula.
In other aspects [5], research focuses on improving

the Sumner method's issues in ex-meridian and
meridian sights using adaptive boundaries tech-
nique. On the other hand [6], research presents an
algorithm for extracting meteorological information
for ship routing, which could help enhance safety

and efficiency in maritime transportation. These
achievements provide significant contributions to the
safety of ships sailing on the sea.

2. Geodetic calculation of meridian

In this section, the meridian arc-length formulas
provided by others are briefly summarized. When
the radius of curvature in the prime vertical section
is known, the Cartesian coordinates of an ellipsoid
with regard to geographic (geodetic) latitude can be
determined as follows cited from [7]:

Pðf;lÞ¼NðfÞ�cos f cos l; cos f sin l;
�
1� e2

�
sin f

�
ð1Þ

where the radius of curvature in the prime vertical is
NðfÞ ¼ a=ð1� e2 sin2 fÞ1=2.
From Fig. 3, Cayley's parametric equations, the

Cartesian coordinates of an ellipsoid can be easily
deciphered with regard to reduced (or parametric)
latitude, using the following formula:

Pðb;lÞ¼ ½a cos b cos l;a cos b sin l;b sin b� ð2Þ
where f is geodetic latitude, b is reduced latitude, a
is major radius, b is minor radius, and e is eccen-
tricity (Fig. 3).
Assuming that the Earth is an ellipsoid, the well-

known formula of meridian arc-length is derived
from the integral of meridian curvature from the
equator to reduced latitude and expressed using the
following formula (Tseng et al., 2014, Rapp 1993):

sðbÞ¼¼
Zx
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jvPðbÞ=vbj

p
db¼

Zx
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 sin2bþb2 cos2b

q
db

ð3ÞFig. 1. The meridian (green) is the special intersection (section, orange)
of a plane.

Fig. 2. Longitude determined by the angle from the Greenwich meridian
to the local meridian (Snapshot from Google Earth).

186 JOURNAL OF MARINE SCIENCE AND TECHNOLOGY 2023;31:185e192



The integral in Eq. (3) is an incomplete elliptic
integral of the second kind and it cannot be
expressed in a closed form in terms of basic calcu-
lus. This formula is also the most straightforward
possible form for the meridian arc-length and the
section of an ellipsoid and a plane.
Because geodetic latitude is the most commonly

used latitude in practical applications, considering
the relationship between geodetic latitude (f) and
reduced (b) latitude [Eq. (4)] [8] provides the arc-
length integral with respect to geodetic latitude (f)
from the equator as shown in Eq. (5) [9].

b¼ tan�1
��

1� e2
�1=2tan 4

�
; ð4Þ

Sð4Þ¼
Z4
0

að1� e2Þ�
1� e2 sin2 4

�3=2 d4: ð5Þ

As Eq. (5) originates from an elliptic integral, it also
cannot be evaluated in a closed form. The calcula-
tion can be performed by using the binomial
expansion of the denominator, which yields Eq. (6),

Sð4Þ¼a�1�e2�Z
4

0

	
1þ3

2
e2sin24�15

8
e4sin44þ35

16
e6sin64:::



d4:

ð6Þ
Then [10], integrates Eq. (6) by rearrangement

with trigonometric identities to provide the infinite
series of the meridian arc-length in Eq. (7), which is
the distance from the equator to an arbitrary
geodetic latitude (f). Because the powers of e are
small, Eq. (7) is a rapidly converging series
depending on the accuracy required. Truncating the

first few terms can maintain appropriate accuracy
for practical use [11].

SðfÞ¼a
�
1� e2

�

2
6666666664

	
1þ 3

4
e2 þ 45

64
e4 þ 175

256
e6


fþ

	
� 3
8
e2 � 15

32
e4 � 525

1024
e6


sinð2fÞþ

	
15
256

e4 þ 105
1024

e6


sinð4fÞ þO

�
e8
�

3
7777777775
ð7Þ

Eq. (7) is presented in numerous textbooks and
published papers [8,12e15].

2.1. BESSLEL's formula

[16] provided a meridian arc-length formula by
introducing a new quantity n as the third flattening
of the Earth-reference ellipsoid. Thus Eq. (5) can be
rewritten as Eq. (8) [17]:

Sð4Þ¼
Z4
0

að1� nÞ2ð1þ nÞ
ð1þ 2n cos 2 4þ n2Þ3=2

d4 ð8Þ

Where n ¼ 1�ð1�e2Þ1=2
1þð1�e2Þ1=2y

e2
4 and e2 ¼ 4n

ð1þnÞ2.

Further integrating Eq. (9) provides the following
formula:

SðfÞ¼að1�nÞ2ð1þnÞ

2
666666666666664

	
1þ9

4
n2þ255

64
n4þ/



f

�3
2

	
nþ15

8
n3þ175

64
n5



sinð2fÞ

þ15
16

	
n2þ7

4
n4



sinð4fÞ

�35
48

	
n3þ27

16
n5



sinð6fÞþO

�
e8
�

3
777777777777775

ð9Þ
Because the value of n is approximately one

quarter of the square of e, Eq. (9) has better
convergent quality than Eq. (7) and reduces the
number of terms with almost equal accuracy.

2.2. HELMERTS's formula

[18] derived ameridian arc-length formula by using
the equivalent value of ð1� nÞ2ð1þnÞ ¼ ð1�nÞð1�n2Þ
Bessel's formula, which can be summarized as

P

H

b

a

P

OD a

DP b
a be
a

Fig. 3. Reduced (b) and geodetic (f) latitudes of point P.
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Sð4Þ¼ a
1þn

,2
66664

	
1þ1

4
n2þ 1

64
n4



4�3

2

	
n�1

8
n3



sin24

þ15
16

	
n2�1

4
n4



sin44�35

48
n3sin64þ315

512
n4sin84:::

3
77775

ð10Þ
This formula derived by Helmert is straight-

forward and concise and it can be considered an
alternative to Eq. (7).

3. General formulas by KAZUSHIGE
KAWASE

The aforementioned works present formulas of
meridian arc-length with nongeneral forms, these
formulas cause the formula patterns to not be truly
represented and can be deemed too complicated for
those who unfamiliar. Users other than those
specialized in a given field have a high likelihood of
making mistakes when inputting the terms in
computer algorithms, and when such terms are
input incorrectly, it can result in substantial errors in
navigational systems. The aforementioned reasons
indicates that the general formula for meridian arc-
length must be derived.
[13] presented the general formulas to calculate

the meridian arc-length from the equator to an
arbitrary geodetic latitude. The formulas are derived
by the generalized Helmert's formula [18] and are
shown as Eqs. (11) and (12):

Sð4Þ¼ a
1þn

X∞
j¼1

(Yj
k¼1

	
3n
2k

�n

)2

"
4þ
X2j
l¼1

	
1
l
�4l



sin2l4

Yl
m¼1

�
3n

2jþ2ð�1ÞmPm=2R
�n
�ð�1Þm#

ð11Þ
or

Sð4Þ¼að1� nÞ2ð1þnÞ
X∞
j¼1

(Yj
k¼1

��n
2k

� n
�)2

"
4þ

X2j
l¼1

sin 2 l4
l

Yl
m¼1

� �n
2jþ 2ð�1ÞmPm=2R

� n
�ð�1Þm#

ð12Þ
where [x] is the floor function.
Understanding the valuable study of Kawase re-

quires insightful familiarity with differential ge-
ometry. This paper sets forth an alternative

algorithm instead of Kawase's derivations and for-
mulas. The method provided herein is easier to
understand than that in previous work such as that
of Kawase.
The formulas provided by [13] are sophisticated,

because they involve floor functions, P functions,
and n definitions from Bessel's formula. Those un-
familiar with such formulas may require more effort
to comprehend such formulas and apply them for
practical purposes.
In the following sections, this paper derives a new

general formula that is straightforward, direct, and
highly suited for computer programming. The novel
general formula has greater accuracy and precision
than those of Kawase and Delambre, and can be
used directly in navigational and geodetic
calculations.

4. New generalized reverse solution

Eq. (5) can be rewritten as follows [13,16]:

dS¼að1� nÞ2ð1þnÞ�1þ 2n cosð2fÞ þ n2
��3=2df: ð13Þ

Substituting Euler's identities into Eq. (13) gives

dS¼að1� nÞ2ð1þnÞ�1þ n,e2f,i
��3

2
�
1þ n,e�2f,i

��3
2 df;

ð14Þ
where,

2 cosð2fÞ¼ e2fi þ e�2fi; ð15Þ
and

�
1þ n,e±2f,i

��3
2 ¼

X∞
j¼0

C�3=2
j nje±2jfi; ð16Þ

The product of the above two series in Eq. (16) will
be the series in terms of e2jf,i þ e�2j,f,i ¼
2 cosð2j ,fÞ. Using the product of Eq. (14), simplifi-
cation and integration provide the generalized se-
ries

SðfÞ¼að1�nÞ2ð1þnÞ

2
66664
X∞
k¼0

�
C�3=2
k nk

�2
fþ

X∞
j¼1

X∞
k¼0

j�1C�3=2
k C�3=2

kþj n2kþjsinð2jfÞ

3
77775:

ð17Þ

Finally, using the coefficients of geodetic lati-
tude and its even multiple sine functions gives the
new general formula of the meridian arc-length
from the equator to arbitrary geodetic latitude:
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SðfÞ¼að1� nÞ2ð1þnÞ
"
M0 ,fþ

X∞
j¼1

Mj sinð2jfÞ
#
;

ð18Þ

where M0 ¼
P∞

k¼0ðC�3=2
k nkÞ2 and Mj ¼P∞

k¼0j
�1C�3=2

k C�3=2
kþj n2kþj.

*in the above equations (M0 and Mj), the binomial
series for half-integer multiples is defined

by:

 
�3
2
k

!
¼

�3
2 ,

�5
2 /ð�3

2 �kþ1Þ
k,ðk�1Þ,/,1 , where k is the truncated

term.
To represent the calculation results in matrices,

the expansion of eq. (18) yields

SðfÞ¼a
�
1� e2

�ð1þnÞðM0fþM1 sinð2fÞþ/þM5

sinð10fÞÞþO
�
n12
�¼ ðS1 ,M,NÞþO

�
n12
�
;

ð19Þ
where S1 ¼ ½f sinð2fÞ sinð4fÞ sinð6fÞ
sinð8fÞsinð10fÞ� and N ¼ � 1 n2 n4 n6 n8 n10

�
.

The coefficients of Eq. (19) truncated at order n10

and M5 can be computed using symbolic computa-
tion system (such as Maple). The results of this
derivation are listed in Eq. (20). The results up to
terms of M5 are more accurate than those given by
others; this confirms the new general formula to be
more accurate and reliable. If higher accuracy is
required, such as for precise geodetic, mapping and
navigational calculations, the amount of coefficients
required is truncated. The more truncated terms are
used in Eq. (19), the more accurate the meridian arc-
length is

M¼

2
6666666666666666666664

1
9
4

225
64

1225
256

99225
16384

480249
65536

0 �3
2

�45
16

�525
128

�11025
2048

�218295
32768

0
15
16

105
64

4725
2048

24255
8192

945945
262144

0 0 �35
48

�315
256

�3456
2048

�35035
16384

0 0
315
512

2079
2048

45045
32768

255255
131072

0 0 0 � 693
1280

� 9009
10240

�19305
16384

3
7777777777777777777775

:

ð20Þ

5. Geodetic latitude from inverse series of the
new general formula

Substituting the latitude p/2 into Eq. (18) gives the
quadrant distance from the equator to the Pole as

Sðp=2Þ¼að1� nÞ2ð1þnÞM0,p
.
2: ð21Þ

The spherical radius of the equivalent circum-
ference is

R¼Sðp=2Þ
p=2

¼að1� nÞ2ð1þnÞM0: ð22Þ

The rectifying latitude [9,15], which provides a
sphere with a correct distance along the meridian,
can be given by:

m¼SðfÞ=R ð23Þ
An expression of the rectifying latitude m in

terms of geodetic latitude can be obtained from
dividing Eq. (18) by Eq. (21) as:

m¼fþ
X∞
i¼1

Mi

M0
sinð2ifÞ: ð24Þ

Transforming Eq. (23) gives the following form:

f¼m� f ðmÞ: ð25Þ

Lagrange reversion theorem provided series or
formal power series expansions of certain implicitly
defined functions [9]. The Lagrange reversion the-

Table 1. Algorithm of symbolic computation for the reversion formula of
geodetic latitude in terms of meridian arc-length.

Initial setting f1 ¼ Series(f(m),n,U),
Lat ¼ mþf1,ff ¼ f1,i ¼ 1

Do while i � U; truncated N terms for Eq. (26)
ff ¼ ff*f1,
ff ¼ Series(ff,n, U)
df ¼ diff(ff,m,i)
Lat ¼ Lat þ df/(iþ1)!

Loop
Lat ¼ Combine(Lat,trig)

Note: For general CASs, the functions listed in this table have the
following definitions (cited and modified from Maple Help):
* The series(f,u ¼ a, U) function computes a truncated series
expansion of f, with respect to the variable u, around the point a,
up to order U. If N is infinity then an asymptotic expansion is
given.
* The diff(f,m,i) function computes the i-order derivative of f with
respect to m.
* The combine(f,trig) function applies a repeated application of
the transformations which f's products and powers of trigono-
metric terms involving sine and cosine are combined into a sum
of the trigonometric term.
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orem can be used to expand any function in Eq. (24)
into the following form:

f¼mþ
X∞
k¼0

1
ðkþ 1Þ!

	
v

vm


k

f ðmÞkþ1
; ð26Þ

where

f ðmÞ¼ �
X∞
i¼1

Mi

M0
sinð2imÞ; ð27Þ

Using special arrangements with algebra com-
puter systems expands the symbolic expression of
Eq. (25) which can avoid high-order terms and the
requirement for substantial memory in computa-
tional procedures. The pseudocode is shown in
Table 1:
Implementing the algorithm in Table 1 and ar-

ranging the result can provide the formula of
geodetic latitude from the equator to arbitrary arc-
length (rectifying latitude) in the following form:

f¼mþ
X∞
k¼1

Uk sinð2kmÞ: ð28Þ

Expanding Eq. (28) yields Eq. (29):

f¼mþU1 sinð2mÞþ/þU10 sinð20mÞþO
�
n12
�

¼ L,U,NþO
�
n12
� ð29Þ

where
L ¼ ½ sinð2mÞ sinð4mÞ … sinð18mÞ sinð20mÞ � and
N ¼ �

n n2 ::: n9 n10
�
.

With the CAS, the coefficients for Eq. (28) trun-
cated at order n10 and U10 (U ¼ 10) can be computed

as Eq. (30) in matrix form. The results show that the
expansions of up to U8 terms are more accurate than
those given by others, and higher terms can also be
obtained according to user's requirements. The
formula given in this paper is more accurate and
reliable than others.

Table 2. Errors between latitude and reverted latitude, and errors between arc-tween arc-length and reverted arc-length.

Lat Length Recovered Lat Recovered Len. Error (mm) Error:Deg

0 0 0.00000000000000 0 0.00 0.00Eþ00
5 552885.4511 4.99999999998665 552885.4511 1.48 1.34E-11
10 1105854.833 9.99999999998695 1105854.833 1.44 1.31E-11
15 1658989.589 15.00000000000380 1658989.589 �0.42 �3.80E-12
20 2212366.254 20.00000000002650 2212366.254 �2.93 �2.65E-11
25 2766054.169 25.00000000003780 2766054.169 �4.18 �3.78E-11
30 3320113.398 30.00000000002650 3320113.398 �2.94 �2.65E-11
35 3874592.902 34.99999999999620 3874592.902 0.42 3.77E-12
40 4429529.03 39.99999999996410 4429529.03 3.99 3.59E-11
45 4984944.378 44.99999999994970 4984944.378 5.59 5.03E-11
50 5540847.042 49.99999999996210 5540847.042 4.21 3.79E-11
55 6097230.313 54.99999999999370 6097230.313 0.70 6.25E-12
60 6654072.819 60.00000000002500 6654072.819 �2.79 �2.50E-11
65 7211339.117 65.00000000003790 7211339.117 �4.23 �3.79E-11
70 7768980.728 70.00000000002750 7768980.728 �3.07 �2.75E-11
75 8326937.587 75.00000000000470 8326937.587 �0.52 �4.69E-12
80 8885139.872 79.99999999998710 8885139.872 1.44 1.29E-11
85 9443510.141 84.99999999998640 9443510.141 1.51 1.36E-11
90 10001965.73 90.00000000000000 10001965.73 0.00 0.00Eþ00

Er
ro

r(
m

)

Latitude (Degree)

Fig. 4. Distance error deviations with regard to Latitude.

Er
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r 
(D

eg
re

e)

Latitude (Degree)

Fig. 5. Latitude error deviations with regard to rectifying latitude.
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6. Error analysis

In this section, validations of Eq. (18) and Eq. (27)
are conducted. By calculating the distances of 5�

intervals from the equator with up to n7, sin (14f) of
Eq. (18), and then by recovering the latitude with Eq.
(27) up to n7, sin (14m) (shown in Table 2), the lost
accuracies can be revealed (shown in the second last
column). The length discrepancies are calculated by
considering in the differences of the original arc-
length obtained by using Eq. (18) and the lengths
from the recovered latitudes (the latitude errors are
also shown in the last column). Because the errors
are negligible, the new general formula and reverse
formula are of practical value.
The maximum distance error occurs at an

approximately latitude of 45� with a value of
5.59 mm, whereas the maximum degree error occurs
approximately at 45� latitude with a value of 5.03E-
11�. Be-cause the characteristics of the trigonometric
series are varied periodically with the geodetic and
rectifying latitudes, the non-truncated terms also
affect these alterations. As shown in Fig. 4 and Fig. 5,
the errors varied periodically.

7. Conclusion

In this paper, a novel general formula for meridian
arc-length and an algorithm for calculating latitude

formulas for a given arc-length were presented.
Comparedwith previous general formulas, the novel
formulas presented herein ismuch simpler andmore
direct. Such formulas are applicable for creating
computer programs for navigation systems and other
fields. The more straightforward expressions and
new general formulas provided herein can reduce
input errors in practical applications and provide a
series with high accuracy. However, the new general
formulas proposed in this paper are only applicable
to specific ellipsoid models, such as WGS84, GRS80,
etc. If different ellipsoid models are used, corre-
sponding formulas need to be used for the calcula-
tion. Nevertheless, the algorithms presented in this
paper still represent an important advancement. The
formulas can also provide alternative methods for
determining whether the calculations in a naviga-
tional black box are in conformance with the stan-
dards of accuracy required for its use.
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