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RESEARCH ARTICLE

Context-dependent Data-envelopment-analysis-based
Efficiency Evaluation of Coastal Ports in China Based
on Social Network Analysis

Yu Yu, Dai-Peng Ma, Guo-Ya Gan*

School of Business, Nanjing Audit University, Nanjing, 211815, Nanjing, PR China

Abstract

An emerging trend in performance evaluation is combining social network analysis methods with data envelopment
analysis (DEA) models and using network centrality methods to distinguish DEA results. One study employed an input-
oriented variable-returns-to-scale DEA model to address referent decision-making units and the corresponding lambda
values to construct a network. This study referenced the literature and improved on the use of DEA weight sets to
construct a network. We employed a context-dependent DEA model to delineate multiple effective frontier planes,
aggregate the reference set relationships on each frontier plane to construct a network relationship matrix, and assess the
influences of the interaction layers between the networks transformed by multiple frontier planes. Finally, our method
was employed to evaluate the efficiency of coastal ports in China and rank ports by their efficiency. The results indicated
that Qingdao Port was the most efficient, followed by Shenzhen Port; this finding verified the feasibility and rationality
of the improved method. The present study contributes considerably to the theories on evaluation methods and
identifying highly efficient ports.

Keywords: Data envelopment analysis, Social network analysis, Port efficiency, Context dependence

1. Introduction

A port is a meeting point, a hub for land and
water transportation, and a platform for

transportation and external communication. From
the global perspective, the world's most important
shipping centers are increasingly becoming those in
the AsiaePacific region [1]. Asia has a population
of 4 billion, accounting for two-thirds of the global
population. The rapid economic growth of the
AsiaePacific region in the last 30 years has trans-
formed it into the most dynamic region in the world,
and the region's maritime transport landscape is
changing as a result. With the eastward shift of the
world's maritime commercial centers, China's ports
are presented with opportunities for development
and with challenges. Although China's ports have

developed rapidly in recent years, they still require
more investment to improve their general layout
and infrastructure. Furthermore, maritime access
network operations are changing, with the trend
for port development shifting toward integrated
development in which the focuses are areas such as
interactions between ports and between ports and
related logistics. Ports that undergo integrated
development are characterized by network charac-
teristics, supply chain characteristics, lean port
operations, and flexible port services, and they are
integrated with the cities in which they are located
[2]. Ports compete with each other to become a hub
for resource allocation and must have all the tech-
nical and service characteristics of a modern port. At
present, China's high-energy-consuming, high-
emission manufacturing industry is nearing
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overcapacity [3]. China's overcapacity in steel,
cement, and other industries can be addressed by
expanding its international market to other coun-
tries with a high demand for such products. The
higher the demand for transport is, the greater is
the likelihood that more high-level ports will be
constructed. In addition, China's Belt and Road
Initiative is creating investment opportunities for
the country [4]. Because China's economy is shifting
from a focus on quantity to a focus on quality, its
economic structure is constantly being optimized
and upgraded. Given that China is the world's most
prolific trading nation, the basis for promoting
economic and trade integration between Asia and
Europe is connectivity. The key to achieving con-
nectivity is infrastructure; thus, accelerating the
construction of high-level ports is the focus for
building the 21st Century Maritime Silk Road.
Five major port clusters have formed along China's

coast, namely the Bohai Bay, Yangtze River Delta,
Southeast Coast, Pearl River Delta, and Southwest
Coast clusters [5]. Since 2021, China has accelerated
the construction of an integrated transport system.
China's major ports continue to implement technol-
ogies such as big data, the Internet of Things, cloud
computing, and blockchain to enhance their intelli-
gent development, and China has introduced various
policies to promote the development of intelligent
ports. For example, under the framework for devel-
oping intelligent shipping, several key technological
barriers that limit the development of intelligent
shipping will be overcome by 2025, thereby helping
China to become a global innovation center for the
development of intelligent shipping [6]. In 2021,
China's port throughput and container throughput
reached 15,545 million and 283 million tons, respec-
tively; therefore, China's ports are among the world's
top ports because of their high throughput, intensive
and efficient shoreline utilization, and connection to a
worldwide network of shipping routes.
Under challenging international circumstances,

the timely adjustment of operational strategies and
the rational deployment of resources are the key
factors that improve port efficiency. China's ports
have always operated efficiently and demonstrated
high service resilience, and these factors are essen-
tial to efficient and stable flow within the interna-
tional logistics supply chain. The aim of the present
study was to assess the efficiency of China's coastal
ports in a new era characterized by complexity and
change and to select the optimal set of benchmarks
for identifying inefficient ports and helping them to
improve. In addition, the present study explored a
new method for differentiating high-level bench-
marks. The present study has key theoretical and

practical implications. It enriches the literature on
performance evaluation and enhances China's in-
fluence in port evaluation. Additionally, it contrib-
utes to a deeper understanding of the levels of port
development, provides a basis for the construction
of high-level ports, and further enhances the inter-
national competitive advantages of China's ports.
The subsequent sections of the present article are

organized as follows. Section 2 reviews the literature
on the recent application of data envelopment anal-
ysis (DEA) in China's ports and international ports
and the application of an improved DEA model,
namely the social network analysis (SNA)-DEA
model, for identifying high-level benchmarks.
Section 3 describes the relevant modelling methods
applied in the present study. Section 4 reports
application of the proposed SNA-context-dependent
DEA model to a set of coastal ports in China to
evaluate and rank their efficiency. Section 5 provides
the conclusions of the present study.

2. Literature review

2.1. Use of DEA in port efficiency evaluation

Port efficiency pertains not only to a port's ability
to use resources to generate output but also its
competitiveness and management competence.
Because port development involves multiple inputs
and multiple outputs, the operation process of a
port is complex, and no universally accepted
production function has been established. Thus,
DEA is typically used to evaluate port efficiency [7].
Various scholars have applied DEA to evaluate the

efficiency of ports. Van Dyck et al. [8] assessed the
efficiency of African ports for the period from 2004 to
2010 and recommended that African governments
upgrade their seaport management in terms of
their terminal procedures and practices, logistics,
and equipment.Wanke et al. [9] studied the efficiency
of Brazilian ports, and they discovered that
publiceprivate partnerships had a significant posi-
tive effect on a port's scale efficiency. Park et al. [10]
used a four-stage DEA model to investigate the effi-
ciency of ports in South Korea; their results indicated
that the Port of Busan was the most efficient of the
ports that they evaluated.Wanke et al. [11] conducted
fuzzy two-stage DEA to evaluate the efficiency of
Nigerian ports for the period from 2007 to 2013, and
they revealed that operator type and cargo type
influenced the ports' efficiency. Nguyen et al. [12]
used bootstrap DEA to study the efficiency of ports in
Vietnam and reported that standard DEA and SFA
led to higher efficiency scores than bootstrap DEA
did. Mustafa et al. [13] and Seth et al. [14] compared
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the technical efficiency improvements and manage-
ment optimization paths of South Asian, Middle
Eastern, East Asian, and US ports; they reported that
the high efficiency of East Asian ports was attribut-
able to their operational processing being based
on modern technology, resource availability, and
effective management. Nguyen et al. [15] used a
DEAeMalmquist model to investigate the efficiency
of container ports in Southern Vietnam, and they
indicated that most container terminals exhibited
productivity growth between 2017 and 2019; in
particular, Cai Mep, Tan Cang Cat Lai, and Tan
Cang-Cai Mep were the three most efficient inter-
national terminals among those that they evaluated.
Chang et al. [16] employed a relaxation-based DEA
model to determine the efficiency of China's major
container ports for the period from 2002 to 2012 and
reported that port efficiency had a significant and
positive effect on international trade. Ding et al. [17]
assessed the efficiency of small and medium-sized
coastal ports in China and found that Lianyungang
Port and Rizhao Port were the most efficient of the
ports that they evaluated. Sun et al. [18] studied the
efficiency of China's ports by applying a non-radial
DEA preference model; they reported that the ports'
efficiency was low and that factors such as the num-
ber of berths available and location significantly
influenced port performance. Lin et al. [19] conducted
inverse DEA tomeasure the resource consumption of
China's container ports and formulated policy
recommendations for solutions and optimization.
Huang et al. [20] studied the efficiency of key ports
along the 21st Century Maritime Silk Road and
reported that several ports, such as Qingdao Port and
Ningbo-Zhoushan Port, were efficient. Wang et al.
[21] used an improved DEA model to study the effi-
ciency of ports in Eastern China and highlighted the
high efficiency of Shanghai, Ningbo, and Nanjing
Ports. Li et al. [22] applied a four-stage DEAmodel to
study the logistical efficiency of China's coastal ports
for the period from 2014 to 2018, and they revealed
that these ports emphasized scale and required more
planning. Liu et al. [23] used a slack-based measure
DEA model and a DEA model with undesirable
output to assess the efficiency of the container
terminals of major cities along the Pearl River Delta
for the period between 2018 and 2019; they indicated
that Guangzhou Port was less efficient than Shenz-
hen Port and Hong Kong Port.
In summary, most port efficiency studies have

applied traditional DEA models or two-, three-, or
four-stage models to measure differences over time,
within specific regions, and between different port
clusters, after which they have provided recom-
mendations as to how a port's efficiency could

be improved. However, few studies have used
DEAeSNA to evaluate and rank the efficiency of
ports.

2.2. Combination of DEA and SNA

In a traditional DEA model, all effective decision-
making units (DMUs) are treated as being of equal
importance; however, the optimal benchmark must
be identified for specific ranking problems. There-
fore, numerous scholars have proposed methods for
differentiating DEA results. Angulo-Meza et al. [24]
divided DEA-based methods for ranking efficient
units into two categories, namely those that consider
additional information or add preferences to a model
and those that do not use additional information;
such methods include the cross-efficiency [25],
super-efficiency [26], inverted fronts [27], adjustable
range RAM [28], and fuzzy DEA [29] methods. Liu
et al. [30] explored the second category of ranking
methods by combining SNA and DEA to improve
the efficiency ranking bias of DMUs. In their model,
SNA was performed to obtain the reference set
lambda value in a DEA model, enabling the strength
of the efficient units referenced by invalid units to be
determined; these efficient units were then employed
in the reference set as network nodes, and the
reference relationship served as the link between two
nodes, thereby enabling the construction of a social
network and the identification of efficient DMUs
through centrality measures.
Scholars have since expanded and improved the

DEAeSNA model. For example, Liu and Lu [31]
enhanced this model by modifying the convergence
of its algorithm and constructing a matrix after
normalizing the results for multiple inputeoutput
combinations. Leem and Chun [32] applied a Pag-
eRank centrality method to SNA to generate infor-
mation for ranking efficient DMUs. Ghahraman and
Prior [33] proposed a network-based method for
identifying the optimal stepwise benchmarking path
toward efficiency. Kao et al. [34] identified the SNA
measures that are most closely related to supply
chain efficiency. Blas et al. [35] proposed a method
for ranking efficient and inefficient DMUs on
the basis of the dominance measure of the SNA
method. Aydõn et al. [36] constructed network-
aggregated, normalized lambda values [31] and
used eigenvector centrality as a multiplier for
calculating super-efficiency scores. Ang et al. [37]
advanced the DEAeSNA method by using the
method of de Blas, Martin [35] to calculate the
authority values of inefficient DMUs. An et al. [38]
identified the interests between two DMUs coop-
erating under a VRS model and constructed a
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weighted interest network. Ang et al. [39] con-
structed a two-way network to develop a scheme for
cross efficiency.
Liu et al. [30] noted that the key to ranking

network methods is leveraging the relationships in a
reference set to construct a network matrix. In their
study, the reference set lambda values from the
results of multiple inputeoutput combinations
were consolidated; however, the use of multiple
inputeoutput combinations may lead to fragmen-
tation of reference set relationships, resulting in
large differences in results. By contrast, Blas et al.
[35] and Ang et al. [37] applied multiple network
centrality measures to rank units. Ang et al. [39]
considered only CRS cross-efficiency scores, and An
et al. [38] considered the game gain relationship of
cooperation between DMUs to construct a weighted
network. However, none of these scholars fully used
a DEA model to obtain their results.
Few studies have combined SNA and DEA, and a

DEA-based SNA model can competently reflect the
clustering effect, clarify the potential relationship
between DMUs, and identify numerous prominent
benchmarking points. Therefore, the present study
considered the dependency between indicators and
fully used the results from a context-dependent DEA
model to construct multiple production frontier
surfaces. In the present study, the DMUs are strati-
fied, a corresponding network matrix is constructed
for drawing a network on the basis of the reference
sets on multiple production frontier surfaces, and
the relationship between the aforementioned refer-
ence sets is considered to further improve the
level of differentiation of a model for efficient DMUs.
Context-dependent DEAeSNA was applied to
evaluate and rank the efficiency of China's coastal
ports. The analysis results provide a unique and
novel perspective for improving port efficiency and
an objective basis for building world-class ports.
The present study makes three key contributions to

the literature. First, it converted a reference set of
DEA results into a linkage between SNA nodes,
thereby advancing the research on DEAeSNA
combinations. Second, it applied context-dependent
DEA to delineate multiple effective frontier surfaces,
thereby transforming them into a directed weighted
network; considered the influence of the interlayer
effects of multiple frontier surface networks; and
mined a large amount of information on the ranking
of distinguished, efficient DMUs. Third, the pro-
posed SNA centralityebased context-dependent
DEA model was applied to evaluate and rank the
efficiency of coastal ports above designated size in
China. We verified that the proposed method is
feasible for identifying and ranking efficient DMUs.

3. Methods

3.1. Basic DEA

A DEA model is a linear programming model for
evaluating the relative efficiency of homogeneous
DMUs. It is nonparametric, and it does not require a
priori assumptions to be made about the form of a
production function or the individual weights of
inputs and outputs to be subjectively determined. In
the DEA method, an optimal practice frontier is
defined as a reference for efficiency. If a ratio of 1 is
achieved for a given DMU, the DMU is classified as
being on the frontier and regarded as efficient,
whereas other inefficient DMUs can refer to the
frontier. Because a port is likely to use its input re-
sources and facilities to expand its output in prac-
tice, the present study used the input-oriented CCR
model [40] and the BCC model [41] as follows:

Max
Xs

r¼1

uryro

s:t:
Xn

j¼1

uryrj�
Xn

j¼1

vixijcr; i¼ 1;2;…; s;m

Xm
i¼1

vixio ¼ 1

ur;vi � 0ci; r ¼ 1;2;…;m; s

ð1Þ

where n represents the number of DMUs; m and s
are the number of inputs and number of outputs,
respectively; and xij and yrj are the ith input and rth

output of the jth DMU, respectively.
Model (1) solves for the technical efficiency of the

evaluated DMUs, thereby enabling the efficiency
values and weights of all evaluated DMUs to be
obtained. If the efficiency value of an evaluated DMU
is 1, the DMU is efficient; otherwise, it is inefficient.

Min qo

s:t:
Xn

j¼1

ljyrj�yro; r ¼ 1;2;…; s

Xn

j¼1

ljxij � qoxio; i¼ 1;2;…;m

Xn

j¼1

lj ¼ 1

qo;lj � 0;cj¼ 1;2;…;n

ð2Þ

Model (2) is used to obtain the pure technical
efficiency qo and weight lj of an evaluated DMU. It
is solved by adding a constraint to l that is equal to 1
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on the basis of the pairwise model of model (1). The
sum of the total identity strengths of the evaluated
DMU o is further constrained by

Pn
j¼1lj ¼ 1 to be 1.

For a given DMU, the weight lj indicates whether
DMU j plays the role of a referee for the evaluated
DMU o. If lj is equal to zero, j is not a reference for
the evaluated DMU; if it is greater than zero, the
value of lj represents the weight of referenced unit j
of evaluated DMU o.

3.2. Context-dependent DEA

Seiford andZhu [42] proposed a context-dependent
DEA model that divides the frontier surface and
employed this model to study DMU efficiency. Let
J1 ¼ fDMUj; j¼ 1; 2;…; ng (the set of all DMUs) be
defined and let Jlþ1 ¼ Jl � El (the hierarchical iterative
definition), where El ¼ fDMUoeJl

��q*ðl; oÞ¼ 1g and
q*ðl; oÞ is the optimal value of the evaluated DMU,
which is calculated using the inverse of the optimal
value model (2). The specific model is as follows:

q*ðl;oÞ¼Max qðl;oÞ
s:t:
Xn

jeFðJlÞ
ljyrj�qðl;oÞyro; r¼1;2;…; s

Xn

jeFðJlÞ
ljxij�xio; i¼1;2;…;m

X
j2FðJlÞ

lj¼1

qðl;kÞ;lj�0; j2F
�
Jl
�

ð3Þ

where j2FðJlÞ denotes DMUj2Jl and represents
the correspondence between the hierarchical
transfer sets. When l ¼ 1, model (3) becomes
the initial model (1) and E1 forms the efficient
frontier surface of the DMU, which is defined as
the first-level best-practice frontier. When l ¼ 2,
the efficient DMUs on the first-level frontier are
excluded, and model (3) is solved to obtain the
second-level best-practice frontier. This process is
repeated to identify multiple levels of best-practice
frontiers, with El denoting the lth level best-prac-
tice frontier.

3.3. SNA centrality context-dependent DEA

SNA was first proposed by Barnes [43] from the
University of Manchester primarily as a systematic
method for presenting relationship patterns, and it
has since been improved by several scholars. SNA is
generally used to analyze structural relationships,

such as the relative importance of nodes. The cen-
trality measures commonly used to study social
networks include degree centrality, indirect central-
ity, intimacy centrality, and eigenvector centrality.
The main concept of this network-based differen-

tiationmethod can be divided into three components.
First, DEA results are converted into a directed
weighted network, where each network node repre-
sents a DMU and the directed connections between
node pairs represent the reference relationships
between the DMUs. The second component is the
ability to tap into hidden information unused in DEA
and to obtain additional information for further
identification by performingmultilevel DEA frontier-
run calculations. Third, the contradictory results
obtained from additional information are resolved
through an eigenvector centrality metric that is
commonly used in social networks; first proposed by
Bonacich [44], this metric is used to indicate the
power of a single node in a social network. Eigen-
vector centrality is based on the concept of weights,
and it was selected for the present study because it
considers both the number of links and the link
weights of nodes to highlight themost popular nodes,
making it suitable for directionally weighted
networks. Specifically, it is superior to the other three
centrality metrics (i.e., degree centrality, indirect
centrality, and intimacy centrality).
Table 1 lists the DEA-based network construction

methods that have been proposed by scholars. Liu
et al. [30] constructed a network relationship matrix
by combining multiple input and output indicators,
calculating ð2m �1Þð2s �1Þ results using DEA, and
aggregating the reference set values of each result
by summing them. Given the correlation and de-
pendency between indicators, the multiple combi-
nations used in the present study could have caused

Table 1. DEA reference set-based network construction methods in the
existing literature.

SNA-DEA network construction Reference

A two-way network is constructed to use the
scheme under cross-efficiency

[39]

Identify the benefits of cooperation between
DMUs under BCC and construct a
weighted interest network

[38]

BCC-l values, two-part directed weighted graph. [37]
Aggregate results of all l values specifications

onto one directed weighted network.
[36]

BCC-l values, two-part directed weighted graph. [35]
BCC-l values, directed weighted graph. [32]
Standardized aggregation of multiple BCC-l

values, with directed weighted plots.
[31]

Combination of indicators, aggregation of
multiple BCC-l values, directionally-
weighted graphs.

[30]
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the fragmentation of reference set relationships,
resulting in large differences in results. Therefore,
multiple valid boundaries were delineated using
hierarchical DEA, and a matrix was constructed
using the reference sets under each boundary. The
present study emphasized the use of two key DEA
features, namely the use of DEA calculations to
yield multiple DMUs and use of lj to represent the
strength of the reference efficient DMU from the
inefficient unit being evaluated. The network matrix
is constructed using Equation (4) as follows:
A relationship matrix Ajo is constructed in a

weighted network of n nodes, where each value in
this matrix represents the link weight of node o to
node j. The main diagonal element of the matrix has
a value of zero. The ranking score of each node is
assumed to be represented by the column vector I.
Each element in this column vector represents the
ranking score of node j. The basic concept is that
the ranking score of each node is proportional to the
number and importance of all the nodes that refer to
it, and this score is weighted by the weights of the
links as follows:

Ajo¼
�
ljo

�
t t¼1;…l

Ajo¼
h
ltjo

i
t¼1;…l

ð4Þ

where A is an nth order matrix, ½ljo�t represents
the weight of the oth evaluated DMU referencing the
jth DMU at the tth most effective frontier surface level,
and ½ltjo� represents the aggregation of all reference
sets under l fronts in a relationship matrix while
accounting for the interlayer forces of the multiple
boundary fronts in the network relationships.

Ajo� I ¼ c� I ð5Þ
In the aforementioned equation, c is a scale

factor in the matrix and is the eigenvalue of matrix
A, whereas I is the eigenvector corresponding to the
eigenvalue c of matrix A, where each element is
the corresponding importance score of each node.
The eigenvector centrality judgement of the win-
ning node is established on the basis of the

combined result of the number of links (popularity)
and the link weights (strength of support).
The reference set between DMUs in the DEA re-

sults is taken as a link between the network nodes,
and the weights are used to mine differential
information from the network perspective. The link
between multiplier weights is not considered; by
contrast, for super-efficiency results, units are
further differentiated by the efficiency value scores
of DEA results. Instead, because the network
approach is incorporated, the DMUs that are inef-
ficient overall can be fully considered as a reference
relationship for the efficient DMUs; this approach
has the advantage of integration and enables
potential ranking information to be obtained.

4. Empirical analysis

4.1. Data

The data for the present study were collected from
the statistical records of the cities where the studied
ports are located (i.e., China Statistical Yearbook
[2021, http://www.stats.gov.cn/], China Port Yearbook
[2021], and Statistical Yearbook [2021]) and the official
websites of the studied ports. On the basis of data up
to 2020, the present study selected 26 coastal ports in
China thatmet specific scale thresholds and evaluated
them as DMUs; these ports included large ports (i.e.,
ports with a berth length of >30,000 m and >100
berths), such as Dalian, Tangshan, Tianjin, Shanghai,
Ningbo-Zhoushan, Shenzhen, Guangzhou, Yantai,
and Qingdao Ports, and medium-scale ports (i.e.,
ports with a berth length of 10,000e30,000 m and
50e100 berths), such as Yingkou, Qinhuangdao,
Weihai, Rizhao, Lianyungang, Quanzhou, Haikou,
and Qinzhou Ports.

4.2. Indicator selection and relevance

The specific input and output indicators that
studies have used to evaluate port efficiency are
listed in Table 2. At least four studies have used
berth length, number of berths, number of cranes,

Table 2. Existing research on port efficiency evaluation inputeoutput indicators.

Input Literature No. Output Literature No.

Berth length [8e12,14e19,21,22,24,25] Cargo throughput [9,11e13,16,19,20,24]
Number of berths [8e11,14e16,19,22,24] Container throughput [8e10,14,15,18,19,22,24]
Number of cranes [8,14,15,17,18,22,25] Operating profit [10,15,20]
Number of employees [11,18,20,21] Total throughput [17,21,22]
Yard area [9,11,12,17] Delayed cargo [11,25]
Berth depth [9,14,15,25] Passenger throughput [10]
Total investment [15,21] Customer satisfaction [10]
Operating costs [9,20,21]
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yard area, and number of employees as input
indicators. One study used total investment, cargo
stability, time spent waiting for a berth, time spent
waiting for loading and unloading, import and
export volume, and gross domestic product as input
indicators. At least eight studies have utilized
container throughput and cargo throughput as
output indicators. Some studies have employed
passenger throughput, total throughput, service
level, customer satisfaction, vessel efficiency, and
cargo delay handling as output indicators. The
present study used berth length (meters) and the
number of berths available as input indicators and
cargo throughput (million tons) and container
throughput (million 20-ft equivalent units [TEUs])
as output indicators. The indicators that have been
most frequently used in studies related to data that
can be easily obtained from official government and
port websites. However, several types of data, such
as yard area and number of cranes, are difficult to
obtain. Container throughput is measured in terms
of the number of container units (i.e., TEUs),
whereas cargo throughput relates to cargo only and
is measured in terms of tonnage or cargo volume.
These two indicators directly reflect the role played
by ports in the domestic materials trade and foreign
trade transport, and they also serve as the basis for
port planning and capital construction. Berth length
generally includes ship length and the required safe
separation distance between ships. The number of
berths represents the number of units available for
port handling work. Berth length and number of
berths are key indicators of the size of a port.
Table 3 lists the means, standard deviations, and

correlation coefficients of each input and output
indicator for the 26 ports. The results indicated that
the correlation coefficients r of the correlations
between the input and output indicators was mostly
>0.7; the coefficient of correlation between cargo
throughput and container throughput was 0.679
( p < 0.01). Thus, all the indicators were positively
and significantly correlated. These findings reveal
that the correlations between the selected indicators
were favorable and that these indicators were
suitable for evaluating the efficiency of ports.

4.3. DEA efficiency results

The collected data were solved using models (1)
and (2) to obtain the efficiency results for all ports
(Table 4).
As indicated in the CCR model presented in Table

4, Qingdao Port, Shenzhen Port, and Huanghua Port
exhibited high overall levels of technical efficiency,
whereas Taizhou Port exhibited the lowest level of
efficiency. When the BCC model was applied, the
number of efficient ports increased to include four
additional ports, namely Tangshan Port, Rizhao
Port, Shanghai Port, and Ningbo-Zhoushan Port;
Taizhou Port remained the least efficient port. The
BCC model has the characteristic of having a greater
number of efficient DMUs relative to other models,
which was a justification for applying the centrality
method to the ranking analysis performed in the
present study. Another reason for using the BCC

Table 3. Descriptive statistics and correlation of inputeoutput indicators.

Indicator Mean S.D. Berth length Number of berths Cargo
throughput

Container
throughput

Berth length 28495.08 19913.949 1
Number of berths 178.77 153.131 0.935** 1
Cargo throughput 32287.92 26026.800 0.840** 0.727** 1
Container throughput 859.31 1126.633 0.798** 0.742** 0.679** 1

Note: ***p < 0.001,**p < 0.01, and *p < 0.05.

Table 4. Port efficiency results.

Port TE PTE SE Efficiency status

Dalian 0.26 0.44 0.59 TE inefficient
Yingkou 0.50 0.52 0.96 TE inefficient
Qinhuangdao 0.32 0.45 0.71 TE inefficient
Tangshan 0.58 1 0.58 TE and SE inefficient
Weihai 0.14 0.19 0.74 TE inefficient
Huanghua 1 1 1 Efficient
Tianjin 0.65 0.77 0.84 TE inefficient
Yantai 0.30 0.53 0.57 TE inefficient
Qingdao 1 1 1 Efficient
Rizhao 0.75 1 0.75 TE and SE inefficient
Lianyungang 0.52 0.55 0.95 TE inefficient
Shanghai 0.72 1 0.72 TE and SE inefficient
Ningbo-Zhoushan 0.49 1 0.49 TE and SE inefficient
Wenzhou 0.14 0.17 0.82 TE inefficient
Taizhou 0.10 0.12 0.83 TE inefficient
Quanzhou 0.35 0.43 0.81 TE inefficient
Fuzhou 0.32 0.42 0.76 TE inefficient
Xiamen 0.48 0.48 1 SE efficient
Shenzhen 1 1 1 Efficient
Guangzhou 0.67 0.88 0.76 TE inefficient
Dongguan 0.34 0.39 0.87 TE inefficient
Zhuhai 0.21 0.26 0.81 TE inefficient
Zhanjiang 0.29 0.44 0.66 TE inefficient
Qinzhou 0.47 0.65 0.72 TE inefficient

Note: TE (technical efficiency), PTE (pure technical efficiency),
and SE (scale efficiency).
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model was that it could be solved to obtain the
reference weights of the evaluated DMUs; by
contrast, the CRR model had to obtain the weights
of the inputeoutput indicators. Thus, the results of
the BCC model could be combined with the
network method to improve the differentiation of
efficient DMUs.
Column 4 of Table 4 presents the scale efficiency

results based on the efficiency correlations obtained
through DEA, which were valid for Qingdao Port,
Huanghua Port, Xiamen Port, and Shenzhen Port.
The results shown in Table 4 revealed that large
ports such as Dalian Port, Lianyungang Port, and
Guangzhou Port were inefficient, indicating that
they were affected by resource redundancy, ineffi-
cient resource use, and insufficient output. Qingdao
Port, Shenzhen Port, and Huanghua Port exhibited
favorable results in terms of overall efficiency, pure
technical efficiency, and scale efficiency; these ports
exhibited more stable and prominent development
than other ports did, and they should continue to
innovate to strengthen their advantages.

4.4. Construction of directed weighted networks
with reference sets

4.4.1. Stratified frontier surfaces
The relativity of DEA is demonstrated by context-

dependent DEA; whether cell X is valid relative to
cell Y is dependent on the presence or absence of a
third alternative such as cell Z or a set of cells.
For example, cell X is invalid relative to cell Y on
frontier face 1, but if one or more cells are reduced
to construct a new frontier face, cell X is valid on the
new frontier face. Therefore, in the present study,
multiple valid frontiers were divided, and matrices
were constructed using the reference set relation-
ships on each frontier. Table 5 lists the valid frontier
surfaces obtained using model (3).

4.4.2. Directed weighted network mapping
The reference set l values under the two hori-

zontal frontier surfaces were used to construct a
matrix, and social relationship network diagrams

were drawn using the Gephi software (Figs. 1 and 2).
In the diagrams, the thickness of a line indicates the
weight of the link, and the size of a circle represents
the size of a node entry. All the nodes in the two-
level network rotate around the central nodes of the
ports that correspond to their respective effective
frontier surfaces, indicating that the network has a
coreeperiphery structure and that there is a
considerable network hierarchy effect and a highly
three-dimensional distribution. A centrality score
facilitates differentiation during the ranking of
efficient DMUs. In the present study, a link was
established between two DMUs; therefore, if a node
referred to another node, the link pointed toward the
efficient unit. The link weights were obtained from
the l values calculated through hierarchical DEA. To
calculate an evaluated unit, an inefficient unit
established several outward links to its reference
unit, and n sets of such outward links were estab-
lished when an efficiency bound was completed.
When these links were aggregated into a network,
the network was based on an efficiency boundary.
Through a combination of such structures, efficient
cells could have numerous inward links, and ineffi-
cient cells could have several outward links;
however, no cells could have both inward and
outward links.
In Fig. 1, ports such as Qingdao Port, Huanghua

Port, Tangshan Port, Ningbo-Zhoushan Port,
Shanghai Port, and Shenzhen Port are situated at
the center of the network. These ports are located
along the Bohai Bay, Yangtze River Delta, and Pearl
River Delta, and they are in close proximity to
China's first-tier cities (i.e., Beijing, Shanghai,
Guangzhou, and Shenzhen), which have advanta-
geous geographical positions. Xiamen Port, which
belongs to the southeast coastal port group, was
scale-effective but had marginal network results
because of its technical inefficiencies. Xiamen Port
lies at the heart of the 21st Century Maritime Silk
Road and plays a role in further expanding coop-
eration with the countries located along this route.
Therefore, Xiamen Port holds great potential for
development. Zhanjiang Port and Qinzhou Port are
classified under the southwest coastal port group,
and because of their special geographical locations,
their levels of development were lower than those of
the ports in the other four major port groups of
China. With the support of the Western Develop-
ment Policy and the Belt and Road Initiative, the
southwest coastal port group has ample room for
development, and the efficiency levels of Zhanjiang
Port and Qinzhou Port could be greatly enhanced.
The reference set information from the two fron-

tier surfaces were aggregated into a single network

Table 5. Effective frontier surfaces for context-dependent DEA.

E1- Efficient ports E2- Efficient ports

Tangshan Tianjin
Huanghua Lianyungang
Qingdao Guangzhou
Rizhao
Shanghai
Ningbo - Zhoushan
Shenzhen
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(Fig. 3). In Fig. 3, the blue nodes represent the effi-
cient ports on the first horizontal frontier plane, the
red nodes represent the efficient ports on the second
horizontal frontier plane, the green nodes represent
the inefficient ports, and the purple lines represent
the links between the E2 efficient ports and the
reference efficient ports under E1. Under network
theory, the relationships between the efficient ports
(Figs. 1 and 2) could be regarded as an interlayer
force in a multilayer network, that is, the efficient
ports influenced each other when they were aggre-
gated. Correspondingly, both the nodes inside the
network and those between the layers outside the
network were influenced. In addition, the inefficient
ports (green nodes) shared reference relationships
with the efficient ports at the E1 and E2 levels. When
the aforementioned ports were aggregated into a
single network, all the links that could refer to and
influence the efficient ports were accounted for;
consequently, more information could be obtained
from the network in Fig. 3 than from the networks in
Figs. 1 and 2, and the ranking of the efficient ports
was more realistic and reliable.

4.5. Ranking results

The eigenvector centrality values of the valid
nodes in Figs. 1e3 were calculated, and the relevant
results were used as a basis for ranking (Tables 6

and 7). In the port efficiency results presented in
Figs. 1 and 2, Huanghua Port (0.684) is ranked first
on frontier plane 1, followed by Tangshan Port
(0.255), and Qingdao Port (0.248); by contrast, Rizhao
Port has a score of 0.001 on frontier plane 1.
As shown in Fig. 1, Rizhao Port was not in a

citation relationship with any other port, leading to
its low importance and bottom-most ranking. On
frontier plane 2, Lianyungang Port (0.763) was
ranked first, followed by Tianjin Port (0.050)
and Guangzhou Port (0.046). As shown in Fig. 2,
Lianyungang Port was referenced much more
frequently than was Tianjin Port or Guangzhou Port
and had more links, which granted it considerable
authority.
The final ranking results are presented in Table 7.

The second and third columns show the rankings of
the efficient ports as determined using our method;
Qingdao Port (0.6862) was ranked first, followed by
Shenzhen Port (0.6861) and Ningbo-Zhoushan Port
(0.2417). Unlike in the rankings listed in Table 6,
which were obtained using a separate frontier
surface, Huanghua Port (1.1279E-05) was ranked
fifth in the final rankings. Rizhao Port was still the
lowest-ranked port because it remained in an iso-
lated state with few reference relations even after
the two-layer network had been aggregated.
Columns 4 and 5 report the ranking scores as

calculated under super-efficiency; Huanghua Port

Fig. 1. Social network relationships under effective frontier surface at level 1.
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(2.2104) was ranked first, followed by Qingdao Port
(1.4917) and Ningbo-Zhoushan Port (1.2727). A
comparison of the ranking results obtained in the
present study revealed a considerable difference for
the first-place rank; specifically, the ranking result
for Huanghua Port under super-efficiency was
identical to that obtained using the single-layer
network E1 (Table 6). This finding can be attributed
to the division of the multiple frontier surfaces
and aggregation of multiple layers of reference set
relationships, which allowed for potential ranking
information to be obtained. The super-efficiency
results corresponded to the results obtained using
the E1 frontier surface.
Columns 6 and 7 present the ranking results as

obtained using the method proposed by Liu et al.,
which involved combining inputeoutput indicators.
Compared with the method applied and the super-
efficiency results obtained in the present study, the
method proposed by Liu et al. resulted in Tangshan
Port (0.5403) being ranked first, followed by Qingdao
Port (0.4630) and Shenzhen Port (0.4629). The smaller
score differences between ports for this method were
attributable to the stable ranking of Qingdao
Port; Qingdao Port was ranked first in our results,
which were more objective and reasonable in terms
of stability. Regarding Shenzhen Port, Ningbo-
Zhoushan Port, and Shanghai Port, the differences in

rankings were minor. These findings indicate that
the SNA context-dependent DEA ranking method is
a feasible method and produces reliable results.
Our efficiency ranking results are highly similar to

those reported by Sun et al. [18] and Lee et al. [32];
the only difference is that they identified Lia-
nyungang Port as the most efficient port, followed by
Shenzhen Port and Shanghai Port. Our results also
align closely with those of Huang et al. [20], who
identified Qingdao Port, Ningbo-Zhoushan Port,
Shanghai Port, and Shenzhen Port as the most
efficient ports. However, our findings differ consid-
erably from those of Ang et al. [39], who identified
Qinhuangdao Port, Weihai Port, and Wenzhou Port
as efficient ports but reported that Shanghai Port
and Ningbo-Zhoushan Port were inefficient. This
difference could be due to their decision to combine
cross-efficiency and SNA (i.e., each DMU in a cross-
efficiency model receives the same number of rat-
ings, including ratings from others and self-ratings).
If the contribution of ratings from others is high, an
evaluated unit tends to receive a higher score, which
is detrimental to the ranking of large ports. This
phenomenon explains the considerable discrepancy
between the results of Ang et al. and those of the
present study. In the present study, Rizhao Port was
identified as a small but efficient port, indicating that
our method produced reasonable results for both

Fig. 2. Social network relationships under effective frontier surface at level 2.
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large and small ports and that our results corre-
spond to those of most other studies. This finding
supports the favorable objectivity and feasibility of
our proposed method, which combines SNA with
context-dependent DEA.

4.6. Theoretical and practical implications

Theoretically, our improved method produces a
greater clustering effect that is obtained with other
methods such as the indicator combination method

proposed by Liu et al. and the super-efficiency
method. DMUs with higher efficiency levels receive
higher scores. Furthermore, the results of the pre-
sent study exhibit similarities to the results of other
port efficiency studies. Therefore, our method was
feasible and produced objective results, and it can
be applied to other types of performance evaluation.
Practically, the proportion of ports in China that are
efficient is low. For the studied ports, low pure
technical efficiency was the main cause of low port
efficiency. Efficient ports such as Qingdao Port,

Fig. 3. Map of the integrated social network relationship, showing interlayer forces.

Table 6. Frontier surface separation ranking results.

E1 Eigenvector centrality Rank (Fig. 1) E2 Eigenvector centrality Rank (Fig. 2)

Huanghua Port 0.684 1 Lianyungang Port 0.763 1
Tangshan Port 0.255 2 Tianjin Port 0.050 2
Qingdao Port 0.248 3 Guangzhou Port 0.046 3
Shenzhen Port 0.058 4
Ningbo-Zhoushan Port 0.016 5
Shanghai Port 0.006 6
Rizhao Port 0.001 7
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Shenzhen Port, and Ningbo-Zhoushan Port must
retain their development advantages and apply
emerging technologies to modernize further. Ports
with low efficiency must further expand the scope
of their productivity gains and adjust their port
development plans in a timely manner. Efforts
should be made to improve the management stan-
dards of enterprises, increase investment in science
and technology, and learn from the management
experiences of high-level ports in China and abroad,
thereby substantially improving the ability of
China's ports to appropriately allocate resources
and reduce a waste of capacity.

5. Conclusions

The present study constructed an SNA context-
dependent DEA model by improving the network
rankingmethod proposed by Liu et al. and applying it
to evaluate and rank the efficiency of 26 coastal ports
in China. Efficient ports were ranked by dividing
multiple effective frontier surfaces. When multiple
layers of frontier surface reference set relationships
were aggregated and the influences of interlayer
forces in the network were considered, Qingdao Port
was ranked first, followed by Shenzhen Port and
Ningbo-Zhoushan Port. Compared with the method
proposed by Liu et al. and the super-efficiency
method, the proposed method produced more
objective and stable results for the top-ranked ports,
especially the first-ranked Qingdao Port. That is, the
proposed network-based rankingmethodwas able to
obtain additional information that was not used in
DEA, and the reference set of layer fronts yielded
more ranking information when the set was aggre-
gated into the same network than when it was
aggregated into only a single layer. By contrast, when
the method proposed by Liu et al. and the super-ef-
ficiencymethodwere applied, a givenDMUwas cited
less often in the reference set, but a higher score was
obtained (e.g., Rizhao Port). Thus, if a DMU is cited
more often by other DMUs, it is more likely to be

regarded as being highly recognized by other DMUs;
this phenomenon validates the feasibility and
rationality of our proposed method for ranking the
efficiency of China's coastal ports.
Nevertheless, the present study has several limi-

tations. Numerous methods can be employed to
measure centrality in SNA, but only one was
considered in the present study. Therefore, the
findings of the present study can be expanded in two
directions. First, the combination of SNA and DEA
can explored at a greater depth, and uniquemethods
for constructing networks can be examined. Second,
the proposed method can be applied to evaluate
other types of performance. Furthermore, although
the proposed method demonstrated its usefulness
and robustness for assessing the efficiency of China's
ports, it could not identify the underlying factors that
contributed to port inefficiency. These key limita-
tions should be addressed in future studies.
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