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RESEARCH ARTICLE

Deep Learning—Based, OceanTDLx Sea Ice Detection
Model for SAR Image

Liu Lin, Li Wanwu*, Li Hang, Sun Yi
Shandong University of Science and Technology, Qingdao, China

Abstract

This study constructs four deep-learning OceanTDLx series models and uses a WinR-AdaGrad gradient descent al-
gorithm to train and optimize the constructed models. Through an analysis of the loss, accuracy, and time consumption
of the four models (i.e., OceanTDL2, OceanTDL3, OceanTDL5 and OceanTDLS8), we reveal that the models’ performance
does not improve when the number of layers is increased and that OceanTDL5 provides the optimal performance.
OceanTDL5 is compared with OceanTDA9 (a model that we previously constructed), and the curves for training
loss_batch and training accuracy_batch indicate that OceanTDL5 is more suitable than OceanTDA9 for detecting
distributed targets, particularly semi-melted sea ice, which is intertwined and easily confused with seawater. We process
the SAR (Synthetic Aperture Radar) data of the research area and obtain a data set with a 10-m resolution, which is then
used to verify the effectiveness of the constructed models for sea ice detection. The results reveal that OceanTDLS5 has a
detection capacity of approximately 55.6 km*/s and a detection accuracy rate of 97.5%. Compared with traditional ocean
target detection methods, OceanTDL5 has greater detection speed and accuracy.

Keywords: Polarimetric synthetic-aperture-radar data, Sea ice detection, Model construction, Deep learning, Neural
network

1. Introduction continuous and uninterrupted area of an ocean. The
sea ice detection is a crucial aspect of the detection
of distributed ocean targets, which is of great sig-
nificance to maritime shipping.

The rapid development of artificial intelligence
(AI) and machine learning (ML) have elevated target
detection to a new stage of development. In contrast
to traditional target detection methods that require
the characteristics to be manually set, new target
detection methods can extract characteristics auto-
matically. To date, three main types of neural net-
works have been developed for ocean target
detection.

O cean monitoring is the basis for developing,
utilizing, and managing the ocean, which are
activities that influence the long-term economic
development and sovereignty of a country [1]. A key
aspect of ocean monitoring is ocean target detection
[2,3], which is becoming increasingly crucial for
various civil and military applications. Ocean target
detection is widely performed in the fields of
disaster prevention and control, maritime search
and rescue, fishery monitoring, ocean archaeology,
customs anti-smuggling operations, environmental
pollution monitoring, ocean security, and military
operations [4,5]. Ocean targets can be divided into
distributed targets and hard targets. A distributed
target is a target that is distributed across a

(1) The first is target detection based on back
propagation (BP) neural networks. Zakhvatkina
et al. [6] classified the central-Arctic sea ice in
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synthetic-aperture-radar (SAR) images by
applying a BP neural network and a Bayesian
algorithm, and their experimental results indi-
cate that this method has a high classification
accuracy. Sornam [7] used a BP neural network
and an Otsu segmentation algorithm to detect
SAR oil spills and demonstrated that this
method provided greater accuracy relative to
traditional statistical methods. Wibawa et al. [8]
combined a BP neural network with a global
image threshold method to detect ships in digital
images, and they achieved an accuracy rate of
85%. Zakhvatkina et al. [9] combined a BP neural
network with a supervised classification algo-
rithm to detect sea ice, and their results reveal
that the algorithm achieved a more favorable
classification performance relative to other
methods. Liu et al. [10] applied a BP neural
network and contourlet transform theory to
detect small infrared aerial targets, and their
results indicate that their method was superior
to several conventional algorithms in suppress-
ing complex backgrounds. Jiang et al. [11] pro-
posed a target detection algorithm for BP neural
networks that is based on histogram statistics.
Compared with traditional target detection al-
gorithms, their algorithm is less complex while
also being more efficient and accurate. Zhang
et al. [12] used a classification method that is
based on a BP neural network to detect sea ice in
SAR images of Liaodong Bay, and their results
revealed the favorable detection performance of
their method.

(2) Target detection based on radial basis function

(RBF) neural networks. Zhang et al. [13] pro-
posed a new algorithm that is based on an RBF
neural network and developed for background
estimation and infrared small target detection.
Their results indicate that their algorithm had a
lower detection signal-to-noise ratio, greater
stability, and greater operability relative to gen-
eral infrared small target detection methods.
Chen and Luo [14] constructed an RBF neural
network predictor that is based on the theory of
sea clutter chaos and developed to detect targets.
Their experimental results reveal that their
method was effective in detecting targets in a
background with sea clutter. Li et al. [15] pro-
posed an improved particle swarm optimization
algorithm that is based on adaptive time-varying
weights and local search operators; they applied
it to the optimization learning of the parameters
of an RBF neural network kernel function and
verified it by using target ocean clutter data
collected from the Dartmouth area. Li et al. [16]

proposed an ocean clutter suppression method
for ocean target imaging that is based on a
chaotic neural network, and they extracted
model parameters through an RBF neural
network for target detection. Bojan and Davor
[17] developed an RBF network coherent detec-
tion method for detecting targets in an ocean
clutter with unknown statistical characteristics;
they used simulated clutter samples and real sea
clutter data to test the performance of the
detection method, and their experimental results
reveal that their method achieved a more
favorable detection performance relative to
other methods.

(3) Target detection based on convolutional neural

networks (CNNs). Scholars have applied CNNs
to perform ocean target detection. Chen et al.
[18,19] proposed a CNN-based deep learning
(DL) framework that is combined with a high
spectrum and spatial resolution for target
detection, and they demonstrated the high clas-
sification accuracy of the framework. Zhang et al.
[20] constructed a scene classification framework
for a gradient-boosted random convolution
network; this framework can effectively combine
multiple deep neural networks for target detec-
tion. Sharifzadeh et al. [21] proposed a neural
network that is based on a hybrid algorithm
comprising a CNN and a multilayer perceptron,
and their results indicate that their algorithm
provided a more favorable target classification
performance relative to existing algorithms.
Frederik et al. [22] used Faster R—CNN to detect
and classify ocean targets, and they verified the
effectiveness of their CNN for detecting ocean
targets. Hu et al. [23] proposed a classification
algorithm for a deep CNN and demonstrated the
high classification accuracy of their proposed
classification algorithm model for tidal flats. Du
et al. [24] proposed a CNN-based hyperspectral
target detection framework where a CNN is
used to extract advanced characteristics for
target detection; their experimental results
reveal that their method was more accurate and
robust that other conventional hyperspectral
target detection algorithms. Wang et al. [25]
proposed a hierarchical CNN—based method for
detecting ship targets in spaceborne SAR im-
ages; their results indicate that their method
achieved a more favorable performance relative
to traditional constant false alarm rate (CFAR)
technologies and CNN-based model. Cheng
et al. [26] proposed a target detection algorithm
that is based on an object-and-scene-context
constrained CNN, and their experimental results
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reveal the greater robustness and effectiveness
of their method relative to other methods.

Sea ice can be detected through the extraction and
classification of features from images. Jin et al. [27]
used an unsupervised learning neural network and
a self-organizing map (SOM; obtained from the
output of an Earth Simulator ocean general circu-
lation model) to extract the variability of the Kur-
oshio and Ryukyu currents in the East China Sea
near the Kerama Gap. Their findings provide new
insight into the exchange of water between the East
China Sea and the Northwest Pacific. Liu et al.
[28,29] used a SOM to analyze the sea surface height
variability in the eastern region of the Gulf of
Mexico; they then extracted spatial patterns of its
circulation and identified the variations in sea level
across various areas. Malmgren-Hansen et al. [30]
proposed a CNN architecture, used ice density as a
target probability for classification, and applied the
architecture to predict Arctic sea ice; in their inde-
pendent test set, they achieved a standard error of
0.89. Song et al. [31,32] proposed a sea ice classifi-
cation method for SAR images that is based on re-
sidual CNNs and a long short-term memory (LSTM)
network where spatial and temporal features are
learnt; the method achieved favorable sea ice clas-
sification results when it was applied to a con-
structed data set.

Scholars have constructed DL models for ocean
target detection on the basis of various neural net-
works. However, most studies have developed
target detection models for ship target detection.
Thus, the DL models for ship target detection are
mature, whereas the models for distributed target
detection (e.g., sea ice detection) require further
development; moreover, few studies have verified
the existing DL models for ocean target detection
through large-scale experiments. In addition,
because SAR data are unaffected by severe weather
phenomena such as cirrus clouds and cloudy skies
(they exhibit the all-weather characteristic), they
provide several advantages for ocean target detec-
tion. Therefore, a DL-based sea ice detection model
for SAR data is of practical value.

To solve the aforementioned problems, the pre-
sent study uses SAR data to construct a lightweight
DL model for sea ice target detection. The charac-
teristics of the proposed model are as follows. First,
the model can detect distributed targets such as sea
ice; second, it is suitable for the characteristics of
SAR data; third, it has been experimentally verified.
In the first author's doctoral dissertation [33], the
backscattering characteristics of ocean targets in
SAR images (e.g., sea ice, seawater, and drilling

platforms) were compared and analyzed; the results
reveal 1) the mixing of seawater and sea ice in an-
alyses of the ocean target backscattering histograms
of SAR images and 2) the difficulty of detecting sea
ice solely through threshold segmentation. To solve
the aforementioned problems, the present study
constructs several DL OceanTDLx series models for
sea ice target detection. We preprocess the SAR
image data obtained from the study area and use a
self-designed program to generate a data set for sea
ice detection that is suitable for DL. In a TensorFlow
environment, four lightweight DL OceanTDLx se-
ries models are constructed for sea ice detection,
and the training accuracy of the four models are
compared and analyzed.

The remainder of the paper is organized as fol-
lows. Section 2.1 describes the processing (e.g.,
cropping, radiation correction, filtering, ortho-
rectification, data format conversion) of the SAR
data of the study area, which is performed to
generate a data set for sea ice detection that is
suitable for a DL model. Section 2.2 describes the
construction of OceanTDLx series models that are
suitable for SAR data and compatible with DL.
Section 2.3 describes the proposed WinR-AdaGrad
gradient descent training algorithm for optimizing
the OceanTDLx series models; it also discusses the
training loss_batch and training accuracy_batch
curves of the models. Section 2.4 presents the results
of a comparison between OceanTDL5 (constructed
in the present study) and OceanTDA9 (constructed
in a previous study) models with respect to training
accuracy, loss, time consumption, and model size.
Section 3 describes how the constructed model is
used to verify the sea ice extraction in the study area
and discusses the detection performance of the
model. Section 4 summarizes the research results
and discusses several avenues for future research.

2. Data and model

This section comprises four subsections. Section
2.1 introduces the research area and research data
selected for the present study, the process through
which the research data were processed, and the
results obtained from the data. Section 2.2 describes
the construction of the models, including the prin-
ciple underlying the model's construction and the
structure of the models. Section 2.3 describes the
training process and the evaluation of model
accuracy. Section 2.4 discusses the results of a
comparison between the proposed distributed
target detection model and a previously constructed
detection model when applied to hard target
detection.
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Fig. 1. Preprocessing flow of polarimetric synthetic-aperture-radar data.

2.1. Data

For a DL-based ocean target detection experiment,
the Bohai Sea, which is located between
37°07'—40°56’ N and 117°33'—122°08' E, is selected as
the study area. The experimental data comprise the

(a) Image before filtering

b) Image after
polarimetric boxcar filtering

dual-polarimetric SAR data of Sentinel-1 (https://
sentinel.esa.int/web/sentinel/missions) in the inter-
ferometric wide (IW) swath mode. Sentinel-1 com-
prises two satellites that share the same orbital plane
and have a phase difference of 180°. These satellites
can continuously provide radar maps of Earth,
thereby ensuring the high revisit frequency,
coverage, timeliness, and reliability of its results for
applications where long-term series models are
applied. A Sentinel-1 satellite can draw a global map
every 12 days, the dual-satellite constellation pro-
vides an accurate repeating period of 6 days, and the
repeating period at the North Pole is less than 1 day.
The two Sentinel-1 satellites each carry a C-band
SAR device with a center frequency of 5.405 GHz and
support dual polarization (HH + HV, VV + VH)
operations. Sentinel-1 SAR imaging can be per-
formed in four modes, namely the stripmap (SM),
IW, extra wide swath, and wave (WV) modes. The IW
mode has a swath width of 250 km and a resolution
of 5 x 20 m? and it is used to monitor sea ice areas
and marine environments. Regardless of the weather
conditions, it can cover a study area within 1—3 days.
Because the accurate detection of parameters (e.g.,
sea ice contour) is necessary, the present study uses
20 IW-mode dual-polarimetric SAR scenes of the
Bohai Sea, which were obtained between January
and March 2016 when the area of sea ice in the Bohai
Sea was the largest in recent years and accounted for
almost 40% of the Bohai Sea area. The size of the data
used is approximately 150 GB, and image data with a
10-m resolution are obtained after preprocessing.
Preprocessing mainly involves image clipping,
radiometric correction, filtering, ortho-rectification,
and data format conversion. The preprocessing flow
is presented in Fig. 1.

The speckle in SAR images degrades image
quality and increases the difficulty of characteristic
interpretation; thus, speckle filtering is a key step.
The present study uses two polarization filters for

*(ﬂc) Image after
Lee polarimetric filtering

Fig. 2. Unfiltered image and color-coded images after polarimetric boxcar and improved Lee polarimetric filtering. Color coding for (a): R =
Intensity_VH, G = Intensity_VV,B = Intensity_VH/Intensity_VV. Color coding for (b) and (c): R = C11,G = Cx»,B = Cy1/Cx.
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filtering. The estimated covariance matrix of a
polarimetric boxcar filter is given by formula (1) as
follows [34]:

) 1 Ne2 N2

[Cl;;= <[C]i,j>1\lw N2 Z Z [Clispjtg ©)

¥ p=—Ny /2 9="Nu/2

where i and j are the row and column of the corre-
sponding pixel, respectively, and N,, is the size of
the sliding window (i.e., the sliding window con-
taining N, x Ny, pixels).

J. S. Lee polarimetric filter estimates an unspeck-
led covariance matrix by applying formula (2) as
follows [35]:

[C]=([C]) + k([C] —([C])) (2)

where k is the proportionality coefficient as calcu-
lated using the span statistical value, namely span =
C11 + Cx + Css. Fig. 2 presents an unfiltered image
and the color-coded versions of the image that are
processed by polarimetric boxcar and improved Lee
polarimetric filters for comparison; specifically,
Fig. 2(a) presents the unfiltered image, Fig. 2(b)
presents the image after polarimetric boxcar
filtering, and Fig. 2(c) presents the image after
improved Lee polarimetric filtering.

The improved Lee filter is used to filter and
normalize an SAR image to [0, 255], and the ob-
tained integer data image is resampled at a 10-m
resolution. The final image contains a small number
of drilling platforms and ships. The 65, 436, 560 pixel
images are labeled, the label for sea ice targets is set
to 1, and the label for seawater is set to 0; the data
are saved as a polarimetric SAR data set for ocean
target detection, which provide data sets for
training, testing, and verification in the context of
neural network learning (Fig. 3). In Fig. 3, the sec-
tions numbered 1-10 display seawater and
comprise a total of 35982464 pixels (including 45 896
subimages with 28 x 28 pixels), the sections
numbered 11-20 display sea ice and comprise a
total of 29454 096 pixels (including 37569 subimages
with 28 x 28 pixels).

The generated SAR data set, which has a 10-m
resolution, is divided into three subdata sets,
namely a training data set, test data set, and verifi-
cation data set. The training data set contains 55 000
data pieces, and the test data set and verification
data set contain 10000 data pieces each.

2.2. Model construction

2.2.1. Principle of model

An ML neural network performs a weighted
summation of the input data X and outputs the
resulting data through an activation function. Its
learning process involves identifying the most
appropriate weighted method for maximizing the
expectation of the output value Y, that is, mini-
mizing the loss function. The operation of the
network can be expressed as follows:

Y=Fy(X)=F(X,W)+Db) ©)

where W is the weight, b is the offset, (X, W) rep-
resents the inner product of the vectors X and W
(i.e., the weighted summation or regression), and F
is the activation function, which is generally a
nonlinear function that serves as an adjustment
made to achieve a given goal.

The DL neural network is presented in Fig. 4,
where 1, 2 ... n are hidden layers. When the output
value is set as Z,(X), the output value of the first
layer can be expressed as follows:

Zl (X) = F[ W11X W12X cen WliX] (4)
The output value of the nth layer is

Zu(X) =F[WinZu 1 WinZyr ... WipZus] (5)

After formula (4) is substituted into formula (5)
and the offset is added, the output value Y after
iteration can be obtained as follows:

WinXs + WipXo + ...+ WX, + by

W21X1 + W22X2 + ...+ szXm + bz

Y=F (6)

WirXs + WinXo + ... + Wi, X, + by

During the training process, the activation
function is adopted to perform nonlinear trans-
formation, which is similar to kernel function
decomposition. Neurons from multiple layers
gradually extract data characteristics from multiple
angles. The commonly used activation functions
include sigmoid, tanh, and ReLu functions. Notably,
an ReLu function is a nonsaturating activation
function. When a value is excessively large or small,
the derivative of sigmoid and tanh approaches zero
but not for ReLu; thus, the use of a ReLu function
can prevent a gradient from disappearing. In addi-
tion, an ReLu function can reduce overfitting and
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Fig. 5. Four OceanTDLx models for sea ice detection.

enable faster network training because its derivative ~ 2.2.2. OceanTDLx modeling

is easier to calculate relative to those of sigmoid and On the basis of the Mixed National Institute of
tanh functions. Therefore, an ReLu function is used Standards and Technology model [36], we expand
in the present study. the two-dimensional or three-dimensional images
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to be detected into lines arranged as rows and
construct several OceanTDLXx series models for sea
ice detection (i.e.,, L2, L3, L5, and L8 models). The
model structures are presented in Fig. 5.

The structure of OceanTDL5 model comprises one
layer, one Group and one fully connected Dense.
The organization form of the layer is as follows:
xW_pluse_b-relu-Dropout-reshape. The middle
Group comprises three layers, and its organization
form is as follows: (xW_pluse_b-relu-Dropout-
reshape) x 3. The organizational form of the fully
connected Dense is as follows: xW_pluse_b-relu.
The amount of characteristic information is gradu-
ally reduced through the 529 — 121—25 — 9 pro-
cess (from the 784 that is input at the beginning of
the operation). Finally, the fully connected Dense,
which contains nine neurons, is used to perform a
weighted summation and ReLu activation to
compress the number of characteristics to two, after
which the two characteristics are input into a soft-
max loss function for classification.

The detailed parameters of the OceanTDLx
models are listed in Table 1. In the table, (?, 784) in
x-input column is defined as the inputting of a
matrix with a size of a given row and 784 (28 x 28)
columns. Accordingly, (784,529) in the weight row is
a weight matrix with 784 rows and 529 columns.
2tensors in the output row is defined as the output
of two tensors.

The structure of the OceanTDL5 model is detailed
in Fig. 6. After several original images (28 x 28
pixels) containing sea ice and seawater are trained
by OceanTDL5, we obtain model parameters that
enable the model to distinguish between sea ice and
seawater and save them in a model file for sea ice
detection. The physical definitions of the parameters
in Fig. 6 are identical to those presented in Table 1.

2.3. Accuracy analysis

We propose a WinR-AdaGrad gradient descent
algorithm, where the loss function of parameter 0 is
set as J(#) and the gradient for the parameter is the
direction in which the function increases the fastest.
The iterative update formulas are as follows:

AG,
that_l _Qth (7)
(28t
i=ty
A, =240, 1+ (1—-2g O (8)

where t is the current moment, t,, is the mth his-
torical moment, and 1 is the hyperparameter (0 <

A<1) with a value that is generally 0.9. In formula
(7), a small value € is added to prevent the denom-
inator from becoming 0. g is the minibatch sto-

chastic gradient of the loss function/(#) and
expressed as:
P t4x—1 . . ) .
— Y100 = i\ —.
gi=55) 0= > (ho(x0.4, ) —wi) ) ©)

=

The proposed WinR-AdaGrad gradient descent
training algorithm uses a window to limit the
accumulation of gradient; that is, a subset is ob-
tained by the window from the accumulated his-
torical gradient for the learning rate to be adjusted.

This algorithm is used for model training. A
model is mainly evaluated on the basis of training
loss and accuracy; notably, training loss is based on
the cross-entropy between the target classification
and the model prediction classification. The formula
applied is

n

J(0)=— Z(y—i log (hy(x:))) (10)

i=1

where y_; is the value of the target classification
input by the ith sample; hy(x;) is the value of the
model prediction classification of the ith sample x
(i.e., yi), n is the number of samples used for
training, and J(0) is the training loss.

The formula for calculating training accuracy is

STme
accuracy =——— 11
Cy STrue + SFulse ( )

where St and Spys, respectively, refer to the
number of samples correctly and incorrectly classi-
fied by a model in a single training iteration.

For OceanTDLS8, the number of training iterations
is set to 82500; when the number of training itera-
tions reaches 82480 (i.e., within 300 iterations from
concluding training), the exit condition for training
is met, and the training is terminated. At this point,
the loss is 0.0972, and the time taken is 4402 s. The
average loss of the final 50 training iterations is
0.1416, and the standard deviation is 0.0158. Several
experiments have demonstrated that when the
OceanTDLx model is trained more than 40000
times, a training accuracy of more than 97% is
achieved, and the training loss reaches approxi-
mately 0.1. The loss_batch and accuracy_batch
curves for model training approach an inflection
point, and model performance exhibits no notable
improvement with further training. For comparison,
the OceanTDL5 model is set to have 82500 training
iterations, whereas the other two models are each
set to have 41250 training iterations. The effects of
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Fig. 6. Structure of OceanTDL5 (Group includes three convolutional layers, Dropout, and reshaping).

the models and parameters on training accuracy,
training loss, time taken, and generated model size
are summarized in Table 2. The loss fluctuation is
large initially and then gradually decreases with
training. The training loss_batch curves for the
models are presented in Fig. 7(a), and the training
accuracy_batch curves are presented in Fig. 7(b).
OceanTDL2 exhibits the lowest loss decline rate,
followed by OceanTDL8, OceanTDL3, and
OceanTDL5. Within the first 20000 training itera-
tions, OceanTDL2 exhibits the largest fluctuation for
loss decline, and OceanTDL5 exhibits the highest
loss decline rate and highest level of fluctuation
stability. Therefore, among the models, OceanTDL5
provides the highest training accuracy.

2.4. Comparative analysis

The OceanTDL5 model is compared with the
ocean target detection model OceanTDAY9, which
was previously constructed by the authors [37,38].
The training loss_batch curves of the two models are
presented in the left hand side of Fig. 8, which re-
veals that the loss of OceanTDL5 quickly decreases
to less than 0.2 before stabilizing. After 60000
training iterations, the results of OceanTDL5 and
OceanTDAY intersect, the loss of OceanTDL5 ap-
proaches 0.10, and almost 2476 s is taken (less than

Table 2. Effects of OceanTDLx models and parameters on training results.

the time required for the loss of OceanTDA9 to
approach 0.10). The training accuracy_batch curves
of OceanTDL5 and OceanTDA9 are presented in the
right hand side of Fig. 8. The accuracy of
OceanTDL5 model quickly reaches 0.950 and in-
creases slowly thereafter. After 60000 training iter-
ations, the accuracy of OceanTDL5 approaches 0.98,
which requires almost 2476 s; thereafter, the accu-
racy of OceanTDL5 mostly stabilizes.

The effects of the model parameters of
OceanTDL5 and OceanTDAY on training accuracy,
training loss, time taken, and the generated model
size are presented in Table 3.

In summary, in the context of practical ocean
target detection, the OceanTDL5 model is more
suitable than the other models for distributed tar-
gets such as semi-formed or semi-melted sea ice
that intermingle and are easily confused with
seawater.

3. Results

We wuse the constructed OceanTDL2 and
OceanTDL5 models to conduct sea ice detection
experiments and compare the results. For
OceanTDL2, the number of training iterations is set
to 8250. When the model is trained 8090 times, that
is, within 300 iterations of the conclusion of training,

Model Number of layers Training times Accuracy Loss Time [s] Model size
Set/Actual Test Average Test Average [MB]
OceanTDL2 2 41250/41230 0.9858 0.9707 0.0935 0.1311 1699 1.7
OceanTDL3 3 41250/41090 0.9791 0.9698 0.1023 0.1235 1684 1.7
OceanTDL5 5 82500/82470 0.9902 0.9811 0.0722 0.1008 3424 1.9
OceanTDL8 8 82500/82480 0.9845 0.9702 0.0972 0.1416 4402 3.9
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Fig. 7. Training loss_batch and accuracy_batch of OceanTDLx model.
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Fig. 8. Training loss_batch and accuracy_batch of OceanTDL5 and OceanTDA9.

the exit condition for training is met, and the
training is terminated. At this time, the loss is 0.1034,
the accuracy is 0.9847, and the time taken is 158 s.
The average model loss for the final 50 training it-
erations is 0.2650, and its standard deviation is 0.075.
The average model accuracy is 0.8925, and its stan-
dard deviation is 0.0449. The training loss and ac-
curacy curves for OceanTDL2 vary by batch
(indicated by the blue dashed lines in Fig. 9);
Fig. 9(a) presents the training loss_batch curve, and
Fig. 9(b) presents the training accuracy_batch curve.

The number of training iterations for OceanTDL5
is set to 8250. After the model is trained 8170 times,
that is, within 300 iterations of the conclusion of
training, the exit condition for training is met, and
training is terminated. At this time, the loss is 0.1801,
the accuracy is 0.9597, and the time taken is 166 s.
The average model loss for the final 50 training it-
erations is 0.2776, and its standard deviation is
0.0381. The average model accuracy is 0.8825, and its
standard deviation is 0.0130. The training loss and
accuracy curves for OceanTDL5 vary by batch

Table 3. Effects of model parameters of OceanTDL5 and OceanTDA9 on training results.

Model Number of layers Training times Accuracy Loss Time [s] Model size
Set/Actual Test Average Test Average [MB]

OceanTDL5 5 137500/137490 0.9845 0.9864 0.1020 0.0907 5675 1.9

OceanTDA9 9 500/275000 0.9973 0.9957 0.0079 0.0131 25635 15.9
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Fig. 9. Training loss_batch and accuracy_batch of OceanTDL2 and OceanTDLS5.
Table 4. Training results for sea ice detection models.
Model Number of layers Training times Accuracy Loss Time [s] Model size
Set/Actual Test Average Test Average [MB]
OceanTDL2 2 8250/8090 0.9847 0.8925 0.1034 0.2650 158 1.7
OceanTDL5 5 8250/8170 0.9597 0.8825 0.1801 0.2776 166 1.9

(indicated by the red solid lines in Fig. 9). The re-
sults of the two models at the termination of training
are presented in Table 4. Fig. 9 reveals that the
smoothing of the training loss_batch and accu-
racy_batch curves of OceanTDL5 is more favorable
than that of OceanTDL2 and that the overall training
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loss and training accuracy results of OceanTDL5 are
more favorable than those of OceanTDL2.

The sea ice detected by the trained OceanTDL2
model is indicated in Fig. 10(a), where the detected
sea ice are indicated by magenta boxes and the
black sections indicate seawater. Fig. 10(a) contains
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Fig. 10. Sea ice detected by OceanTDL2 and OceanTDL5; results indicate that OceanTDL5 is more accurate.
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Table 5. Results for detection of sea ice.
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Model name Sample Sea ice Detection Missed detection Detection Missed detection Time [s]
amounts amounts amounts amounts rate rate

OceanTDL2 2250 1849 1580 269 85.5% 14.5% 3.19

OceanTDL5 2250 1851 1804 47 97.5% 2.5% 3.17

1580 sea ice sections (28 x 28 pixels each) and 674
seawater sections. The missed detection rate for sea
ice is 14.5%, the detection time is 3.19 s, and the
detection capacity for SAR images with a 10-m
resolution is almost 55.3 km?/s.

The sea ice detected by the trained OceanTDL5
model is indicated in Fig. 10(b), which contains 1804
sea ice sections (28 x 28 pixels each) and 446
seawater sections. The detection rate for sea ice is
97.5%, the missed detection rate is 2.5%, the detec-
tion time is 3.17 s, and the detection capacity for SAR
images with a 10-m resolution is almost 55.6 km’/s.

The final sea ice detection results obtained
through OceanTDL2 and OceanTDL5 are presented
in Table 5. The sea ice detection rate for OceanTDL5
is 12% higher than that of OceanTDL2. For a given
sample size, the detection speed of OceanTDLS5 is
slightly higher than that of OceanTDL2. The unde-
tected sea ice is mainly concentrated in the sections
where seawater and sea ice mix, that is, sections
where semi-melted ice or water are found on ice.

4. Conclusion

Ocean target detection is a key technical aspect in
fields such as marine disaster prevention and con-
trol, marine environmental protection, marine
resource development, marine military monitoring,
and marine sovereignty maintenance. The present
study applies Al to sea ice detection and constructs
DL-based sea ice detection models. The main con-
tributions and conclusions of the present study are
as follows.

(1) The present study constructs four lightweight
OceanTDLx series models for sea ice detection,
namely OceanTDL2, OceanTDL3, OceanTDLS5,
and OceanTDLS.

(2) A WinR-AdaGrad gradient descent algorithm
for training the four models is proposed, and the
training loss and accuracy of each model are
analyzed. The results indicate that increasing the
number of layers in a model does not increase
the model's accuracy. OceanTDLS5 is revealed to
have the highest accuracy among the developed
models.

(3) OceanTDLx is analyzed and compared with a
CNN-based OceanTDAx model previously

constructed by the authors. The results indicate
that OceanTDLx is more suitable for detecting
distributed targets such as sea ice, whereas
OceanTDAXx is more suitable for detecting hard
targets such as drilling platforms.

(4) The polarimetric SAR data of the study area is
preprocessed to obtain a data set with a 10-m
resolution, and the data set is used with the
constructed DL model to conduct sea ice detec-
tion experiments. The results reveal a detection
capacity of almost 55.6 km?/s and a detection
accuracy rate of 97.5%. Compared with tradi-
tional ocean target detection methods, the con-
structed DL model provides greater detection
speed and accuracy.

Given the present findings, the next step is to
integrate an attention mechanism and a human vi-
sual nerve mechanism into the DL sea ice detection
model for SAR imaging to further improve the
models sea ice detection accuracy. The proposed
model can be deployed through a multicore distrib-
uted computing device and operated in parallel to
improve its operating efficiency and detection speed.
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