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RESEARCH ARTICLE

Numerical and Approximate Analytic Solutions of
Second-order Nonlinear Boundary Value Problems

Chein-Shan Liu a, Jian-Hung Shen b, Yung-Wei Chen b,*

a Center of Excellence for Ocean Engineering, Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20231,
Taiwan
b Department of Marine Engineering, National Taiwan Ocean University, Keelung, 202301, Taiwan

Abstract

The shooting method consists of guessing unknown initial values, transforming a second-order nonlinear boundary
value problem (BVP) to an initial value problem and integrating it to obtain the values at the right end to match the
specified boundary condition, which acts as a target equation. In the shooting method, the key issue is accurately solving
the target equation to obtain highly precise initial values. Due to the implicit and nonlinear property, we develop a
generalized derivative-free Newton method (GDFNM) to solve the target equation, which offers very accurate initial
values. Numerical examples are examined to show that the shooting method together with the GDFNM can generate a
very accurate solution. Additionally, the GDFNM can successfully solve the three-point nonlinear BVPs with high ac-
curacy. A new splitting-linearizing method is developed to express the approximate analytic solutions of nonlinear BVPs
in terms of elementary functions, which adopts the Lyapunov technique by inserting a dummy parameter into the
governing equation and the power series solution. Then, linearized differential equations are sequentially solved to
derive the analytic solution.

Keywords: Nonlinear boundary value problems, Bratu problem, Shooting method, Generalized derivative-free Newton
method, Splitting-linearizing method, Lyapunov technique

1. Introduction

F or numerical solution of a boundary value
problem (BVP), it is considered to be precise

when it satisfies the boundary conditions precisely.
Many computational methods have been developed
to solve BVPs [1e7]. The singularly perturbed
problem always exhibits a boundary layer, which is
a narrow region where the solution varies rapidly,
and the numerical methods to overcome this diffi-
culty can be found in [8e15]. The present paper
develops a powerful numerical solver with a
generalized derivative-free Newton method to solve
the target equation, even when a singularity appears
in the boundary layer.
For ordinary differential equations (ODEs), the

group-preserving scheme (GPS) was developed by

Liu [16] for the solutions of initial value problems
(IVPs). Recently, Liu [17] developed a more power-
ful GPS to solve IVPs. Liu [8,18,19] extended and
modified the GPS for ODEs to obtain a Lie-group
shooting method (LGSM) for solving the second-
order BVPs based on the proper orthochronous
Lorentz group. According to the LGSM, the two-
point solution of nonlinear dynamic systems can be
derived and applied to determine the initial value
and heat source in the nonlinear backwards-in-time
partial differential equations (PDEs) [20e22]. How-
ever, solving the one-dimensional nonlinear ODEs
is more challenging than solving the PDEs when
considering only two- or three-point boundary
conditions. If the boundary conditions (BCs) are
insufficient, the solver will have to deal with a multi-
solution situation.
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For the numerical solutions of BVPs, Liu [18]
introduced a one-step GPS by utilizing the closure
property of the Lie-group. It is called the Lie-group
shooting method (LGSM). Next, Liu [23] solved an
inverse Sturm-Liouville problem by using the
LGSM, and Liu [24,25] solved the Sturm-Liouville
problem and the generalized Sturm-Liouville
problem by using the LGSM to determine the ei-
genvalues and eigenfunctions. Then Liu [13] devel-
oped the LGSM for solving nonlinear singularly
perturbed boundary value problems. Recently,
Hajiketabi and Abbasbandy [26] developed a sim-
ple, efficient and accurate LGSM for solving
nonlinear boundary value problems. In addition,
Liu et al. [27] developed three novel fifth-order
iterative schemes for solving nonlinear equations.
Then, Lin et al. [28] used boundary shape function
methods (BSFM) to solve nonlinear third-order
three-point BVPs. Next, Liu and Chang [29] modi-
fied the LGSM and combined it with the BSFM to
solve nonlinear BVPs with Robin boundary
conditions.
Liu [30] developed an SL(2, R) shooting method to

solve the generalized Sturm-Liouville problem.
Moreover, Liu [31] developed an SL(3, R) shooting
method to solve the Falkner-Skan boundary layer
equation. Both the LGSM and SL(2, R) shooting
method possess a great advantage in that they
determine the missing initial values through the
determination of a weight factor in a small and
definite range of r2½0; 1�. However, the Lie-group
shooting method was only applicable to the
nonlinear BVP with simple Dirichlet or Neumann
boundary conditions but not to the BVP equipped
with the Robin boundary conditions. The SL(2, R)
shooting method needs to iteratively determine the
missing initial values at each r and seek the best r by
solving a target equation. As an extension, we
develop a more powerful and simpler shooting
method directly based on the ODEs themselves,
instead of the Lie-groups SL(n, R) and SOo(n, 1) [32]
for solving the nonlinear BVPs. Our shooting
method, which resorts to a generalized derivative-
free Newton iterative method, is simpler than the
previous works of Liu [13,24,25].
As stated in [33], Lyapunov developed a dummy

parameter technique to investigate the conditions of
stability of the Hill equation:

€yðtÞþpðtÞyðtÞ ¼ 0; yð0Þ ¼ 1; _yð0Þ ¼ 0; ð1Þ

where pðtþTÞ ¼ pðtÞ for some T > 0: Lyapunov
recast Eq. (1) as

€yðtÞ¼mpðtÞyðtÞ; ð2Þ

where m 2 R is a dummy parameter. When m ¼ �1,
Eq. (2) recovers to Eq. (1). The solution of Eq. (1) can
be determined as the sum of a convergent power
series of the parameter m:

yðtÞ¼
X∞
k¼0

mk4kðtÞ: ð3Þ

Substituting Eq. (3) into Eq. (1) and equating
equal powers of m yields

€40ðtÞ¼0; €4kðtÞ ¼ pðtÞ4k�1ðtÞ; k¼ 1;2; :::; ð4Þ

which is a recurrent formula to sequentially deter-
mine 4kðtÞ from the previous step solution 4k�1ðtÞ,
by starting from 40ðtÞ ¼ 1 and subject to 4kð0Þ ¼
_4kð0Þ ¼ 0. Lyapunov proved that

j4kðtÞj�
Mkt2k

2k!
; k¼1;2; :::; ð5Þ

whereM is an upper bound of pðtÞ, and obtained the
convergent solution of Eq. (1):

yðtÞ¼
X∞
k¼0

ð�1Þk4kðtÞ: ð6Þ

In the present paper, we will call the above
method the Lyapunov technique.
There exists no study using the shooting method

together with the generalized derivative-free
Newton iterative method, which will be developed
here, to solve nonlinear BVP. The remaining por-
tions of the paper are arranged as follows. In Section
2, we introduce a target equation for the second-
order nonlinear BVP. Motivated by the Newton
method, a generalized derivative-free Newton iter-
ative method (GDFNM) is developed in Section 3,
and we assess its convergence by using the
computed order of convergence (COC). Six nu-
merical examples are tested in Section 4. To seek an
approximate analytic solution of the second-order
nonlinear BVP, we develop a splitting-linearizing
method (SLM) in Section 5, where the Lyapunov
technique is adopted and two examples are given.
Section 6 presents the conclusions.

2. Target equation

We consider a second-order boundary value
problem (BVP):

u
00 ðxÞ¼Fðx;uðxÞ;u0ðxÞÞ; x2ð0;1Þ; ð7Þ

a1uð0Þþb1u0ð0Þ ¼ c1; ð8Þ

a2uð1Þþb2u0ð1Þ ¼ c2; ð9Þ
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where c1 and c2 are given constants, while a1 and b1
are not both zeros and a2 and b2 are not both zeros.
The Lie-group shooting method developed by Liu
[18] is not available for solving Eqs. (7)e(9).
The basic idea of the conventional shooting

method is to transform Eqs. (7)e(9) into an initial
value problem and solve the target equation Eq. (9).
If b1 s 0, we assume that

uð0Þ¼A; u0ð0Þ ¼ c1 � a1A
b1

; ð10Þ

where A is a constant to be determined. If b1 ¼ 0, u
(0) ¼ c1/a1 and u0 (0) ¼ B constitute the initial con-
ditions where B is to be determined.
Eq. (7) together with Eq. (10) is an initial value

problem endowed with an unknown value of A to
be determined. For each A, we can integrate Eq. (7)
to obtain

f ðAÞ¼a2uð1; AÞþb2u0ð1; AÞ� c2¼0; ð11Þ

which is a target equation to be solved for A. The
function of f (A) with respect to A is a target curve.
The integration of Eq. (7) will be carried out by the
fourth-order Runge‒Kutta method, whose accuracy
is (Dx)4 depending on the step size Dx ¼ 1/N, where
N is the number of integrating points.

3. A generalized derivative-free Newton
iterative method

Eq. (11) is indeed an implicit and highly nonlinear
equation of A. To reduce the computational burden,
a generalized derivative-free Newton method
(GDFNM) for solving a scalar equation f (x) ¼ 0 is
motivated by the Newton method:

xnþ1¼xn � f ðxnÞ
f 0ðxnÞ; n¼ 0; 1;…; ð12Þ

and we modify it below.
To eliminate the derivative term f 0 (xn) in Eq. (12),

we consider

f 0ðxnÞ¼ f 0ðx*Þþ f
00 ðx*Þðxn�x*Þþ1

2
f
000 ðx*Þðxn � x*Þ2 þ/:

ð13Þ
Neglecting the higher-order terms and insert-

ing it into Eq. (12), we have

xnþ1¼xn � f ðxnÞ
f 0ðx*Þ þ f 00 ðx*Þðxn � x*Þ: ð14Þ

However, we have

f ðxnÞ¼ f 0ðx*Þðxn�x*Þþ1
2
f
00 ðx*Þðxn � x*Þ2 þ/: ð15Þ

Neglecting the higher-order terms and replac-
ing xn � x* in Eq. (14) by f (xn)/f 0 (x*), we can derive
a derivative-free Newton method (DFNM):

xnþ1¼xn � f ðxnÞ
aþ bf ðxnÞ; ð16Þ

where

a¼ f 0ðx*Þ; b¼ f 00 ðx*Þ
f 0ðx*Þ: ð17Þ

Theorem 1. The iterative scheme (16) with the pa-
rameters a and b given by Eq. (17) for solving f (x) ¼
0 has second-order convergence. Furthermore, by
taking

a¼ f 0ðx*Þ; b¼ f 00 ðx*Þ
2f 0ðx*Þ; ð18Þ

the iterative scheme (16) has the third-order
convergence.

Proof. For the proof of convergence, we let x* be a
simple solution of f (x)¼ 0, i.e., f (x*) ¼ 0 and f 0 (x*)
s 0. Thus, let

en¼xn � x*; ð19Þ
be a small solution error. It follows that

enþ1¼ en þ xnþ1 � xn; ð20Þ

f ðxnÞ¼ f 0ðx*Þ�enþ c2e2nþ c3e3nþ c4e4nþ/
�
; ð21Þ

where

ck : ¼ f ðkÞðx*Þ
k!f 0ðx*Þ; k¼ 2; 3;…; ð22Þ

Inserting Eq. (21) into Eq. (16) yields

f ðxnÞ
aþ bf ðxnÞ ¼

en þ c2e2n þ c3e3n þ c4e4n þ/

1þ ben þ bc2e2n þ bc3e3n þ/

¼ en þD2e2n þD3e3n þD4e4n þ/;

ð23Þ

where we have used the first one in Eq. (17), and D2,
D3 and D4 are given by

D2 ¼ c2 � b; D3 ¼ c3 � 2c2bþ b2;
D4 ¼ 2b2c2 � bc3 þ c2

�
b2 � bc2

�� c3bþ c4 � b3:
ð24Þ
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Inserting Eq. (23) into Eq. (16) and using Eq. (20)
yields

enþ1 ¼ en � en �D2e2n �D3e3n �D4e4n �/

¼�D2e2n �D3e3n �D4e4n �/

¼ ðb� c2Þe2n þO
�
e3n
�
:

ð25Þ

If we take b ¼ c2, i.e., b given by Eq. (18), enþ1

reduces to Oðe3nÞ, which ends the proof of this
theorem.

Then, we turn our attention to the determination
of a and b in Eq. (17), whose values will influence
the convergence speed. Similar to the half-interval
method, the first step is choosing two initial guesses
x0 and x2 such that f (x0) f (x2) < 0 to render x* 2 (x0,
x2). Then, we take x1 ¼ (x0 þ x2)/2. As the approxi-
mations of a and b in Eq. (17) with generalization by
a constant factor b, we can evaluate them by finite
differences:

a¼ f ðx2Þ � f ðx0Þ
x2 � x0

;

b¼ b

a
f ðx2Þ � 2f ðx1Þ þ f ðx0Þ

ðx1 � x0Þ2

¼ 4bf ðx2Þ � 8bf ðx1Þ þ 4bf ðx0Þ
ðx2 � x0Þ

�
f ðx2Þ � f ðx0Þ

� :

ð26Þ

The resulting iterative algorithm is termed the
generalized derivative-free Newton method
(GDFNM).

The iterative algorithm with the GDFNM for
solving u(x) in Eqs. (7)e(9) are summarized as fol-
lows: (i) Given b, the initial guesses A0 and A2 are
made to render [a2u (1, A0) þb2u0 (1, A0)�c2][ a2u (1,
A2) þ b2u0 (1, A2)� c2] < 0 by inspecting the target
curve, and give e, and Dx ¼ 1/N. (ii) Compute A1 ¼
(A0 þ A2)/2,u (1, A1), and a and b by

a¼ uð1;A2Þ � uð1;A0Þ
A2 �A0

;

b¼ b

a
uð1;A2Þ � 2uð1;A1Þ þ uð1;A0Þ

ðA1 �A0Þ2

(iii) Let A0 ¼ A0 and for k ¼ 0, 1, …, doing

Akþ1¼Ak � a2u
�
1;Ak

�þ b2u0�1;Ak
�� c2

aþ b
�
a2u

�
1;Ak

�þ b2u0�1;Ak
�� c2

�

until rk¼
��a2u�1;Ak

�þb2u0�1;Ak
�� c2

��< e;

where rk is the residual to match the right boundary
condition. Unless specified otherwise, we will take b

¼ 1 for all computations.

In each iteration, an integration of Eq. (7) is required
subject to the initial conditions:

uð0Þ¼Ak; u0ð0Þ ¼ c1 � a1Ak

b1
;

to obtain the end values u (1, Ak) and u0 (1, Ak), which
is time saving if the number of iterations is small.

For the case with b1 ¼ 0, Eq. (8) is a Dirichlet
boundary condition, and we can take u0 (0) ¼ B and
repeat the same process to determine B. To solve a
scalar equation f(x)¼ 0, the numerically computed
order of convergence (COC) is approximated by
[28].

COC : ¼ lnjðxnþ1 � rÞ=ðxn � rÞj
lnjðxn � rÞ=ðxn�1 � rÞj; ð27Þ

where r is a solution of f(x)¼ 0 and the sequence xn is
generated from an iterative scheme. In the compu-
tation of COC, we store the values of An where n �
k0 � 1 and take r ¼ Ak0 , where k0 is the number of
iterations for convergence.

4. Numerical examples

4.1. Example 1

u
00 ¼3

2
u2; ð28Þ

2uð0Þþu0ð0Þ ¼ 0; uð1Þ � 2u0ð1Þ ¼ 3: ð29Þ
An exact solution is

uðxÞ¼ 4

ð1þ xÞ2: ð30Þ

By

uð0Þ¼A; u0ð0Þ ¼ �2A; ð31Þ
where A is an unknown constant to match the target
equation u (1) � 2u0 (1) � 3 ¼ 0. We apply the
shooting method together with GDFNM to solve
this problem with N ¼ 5000 and e ¼ 10�14. The target
curve shown in Fig. 1(a) possesses two intersection
points to the zero line. For the first solution, we take
(A0, A2) ¼ (3.9, 4.1), which is convergent with 9 it-
erations, and the numerical solution coincides with
the exact solution in Eq. (30) with the maximum
error (ME) ¼ 6.21 � 10�15, as shown in Fig. 1(b). To
test the stability and accuracy of the present algo-
rithm, we consider the same setting and add
random noise with a maximum level of
2.247 � 10�2 at the right condition in Eq. (29). The
results show that ME ¼ 8.381 � 10�3 and u
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(0) ¼ A ¼ 3.9964917777, and our algorithm has very
good accuracy and stability even under random
noise.
As shown in Table 1, the COC reveals that the

GDFNM converges fast for b ¼ 0.5, 1, 1.2; however,
NI is not sensitive to b. When we take (A0, A2) ¼
(1.26, 1.3), we obtain the second solution as shown in
Fig. 1(b) by the dashed line.
which is convergent with 5 iterations and obtains

A ¼ 1.273133257721444.
With the aid of the target curve, as shown in

Fig. 1(a), it is easy to select A0 and A2 such that
A 2 (A0, A2) is the solution of the target equation.
Without inspecting the target curve, we may choose
A0 and A2, which do not satisfy [u (1, A0) � 2u0 (1,
A0) � 3] [u (1, A2) � 2u0 (1, A2) � 3] < 0; however, we
find that the GDFNM is still applicable but with
slower convergence. For example, when we take (A0,

A2) ¼ (4.3, 4.4), it is convergent with 42 iterations to
obtain the first solution with ME ¼ 6.22 � 10�15.
When we take (A0, A2) ¼ (2.1, 2.2), it is convergent
with 27 iterations to obtain the second solution with
u (0) ¼ A ¼ 1.273133257721443, which is very close to
the above solution with an error of 10�15. Table 2
with (A0, A2) ¼ (4.3, 4.4) lists the NI and COC.

4.2. Example 2

A reaction problem was studied by Finlayson [36],
where an isothermal situation with an n-th order
irreversible reaction leads to

u
00 ¼Peðu0 þRunÞ; ð32Þ

Peuð0Þ�u0ð0Þ ¼ Pe; u0ð1Þ ¼ 0; ð33Þ
where Pe ¼ 1, R ¼ 2 and n ¼ 2.

Fig. 1. For example, 1, (a) the target curve with two intersection points to the zero line, (b) comparing the first and second solutions obtained by the
shooting method with DFNM and showing the error for the first solution.

Table 1. For example, 1 with different values of b lists the number of
iterations (NI) and COC.

b 0 0.2 0.5 1.0 1.2 1.3

NI 10 9 8 9 11 10
COC 0.27575 0.83985 0.99899 1.13599 1.20898 0.36327

Table 2. For example, 1 with different values of b and (A0, A2) ¼ (4.3,
4.4), listing the NI and COC.

b 0 0.2 0.5 1.0 1.2 1.3

NI 41 41 41 42 42 42
COC 1.1537 1.1364 1.4682 1.0402 1.1537 1.2676
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For N ¼ 5000 and e ¼ 10�15 and (A0, A2) ¼ (0.63,
0.65), we obtain the first solution as shown in Fig. 2
by a solid line, which is convergent with 7 iterations
with the error of the right boundary condition being
4.69 � 10�16. COC ¼ 0.96497 is computed. With (A0,
A2) ¼ (�1, 0), we obtain the second solution as
shown in Fig. 2 by the dashed line, which is
convergent with 10 iterations with the error of the
right boundary condition being 7.83 � 10�16.

4.3. Example 3

We solve a nonlinear singular perturbation
problem [31]:

eu
00 þ2u0 þ eu ¼ 0; ð34Þ

uð0Þ¼0; uð1Þ ¼ 0: ð35Þ
For the purpose of comparison, we write a

uniform approximation provided by Bender and
Orszag [37]:

uðxÞ¼ ln
2

1þ x
� e�2x=e ln 2: ð36Þ

However, we let the above u(x) be an exact so-
lution of the following BVP:

eu
00 þ2u0 þ eu¼ e

ð1þ xÞ2 þ
2½1�e�2x=e� � 2

1þ x
; ð37Þ

which is subjected to the Robin boundary
conditions:

uð0Þ�u0ð0Þ ¼ 1� 2 ln 2
e

; 2uð1Þ þ eu0ð1Þ ¼ �e

2
: ð38Þ

In [38], using the boundary shape function
method with 221 iterations, the authors find the
numerical solution with ME ¼ 1.993 � 10�4 for
e ¼ 0.02. Here, we take e ¼ 0.001 for a highly singular

case, and with the parameters N ¼ 5000 and
e ¼ 10�15 and (A0, A2) ¼ (�0.1, 0.1), we obtain the
solution as shown in Fig. 3 by a solid line that is
convergent with 7 iterations, as shown in Fig. 3(a).
COC ¼ 1.2721 reveals that the GDFNM converges
fast. The numerical solution coincides with the exact
solution in Eq. (36), and the numerical error is
shown in Fig. 3(b) with ME ¼ 1.35 � 10�4. In Table 3,
we tabulate the absolute errors at different x. 2.1E-4
means that 2.1 � 10�4. Because we imposed the
Robin boundary condition at the right end, the error
is on the order of 10�4 at the singular point, which is
within a strongly singular boundary layer, and after
that, the error quickly tends to the orders of 10�14

and 10�15.

4.4. Example 4

Let us calculate the Bratu equation [39]:

u
00 ðxÞþleuðxÞ ¼ 0; ð39Þ

uð0Þ¼0; uð1Þ ¼ 0; ð40Þ
which has an exact solution:

uðxÞ¼ � 2 ln

2
664cosh

�
x� 1

2

�
q
2

cosh q
4

3
775; ð41Þ

where q satisfies

ffiffiffiffiffi
2l

p
cosh

q

4
¼q: ð42Þ

The Bratu problem has zero, one and two so-
lutions when l > lc, l ¼ lc and l < lc, respectively,
where lc ¼ 3.513830719.
In the shooting method, we assume that u0 (0) ¼ A

as an initial slope to be determined. We take l ¼ 2,
N ¼ 1 � 104, e ¼ 10�15 and (A0, A2) ¼ (8.1, 8.3),
obtaining A ¼ 8.268763180545193, which is very
close to the exact value with an error of 3.55 � 10�15.
With 9 iterations, as shown in Fig. 4(a), for conver-
gence, we obtain the solution shown in Fig. 4(b) by a
solid line. The numerical solution coincides with the
exact solution in Eq. (41), and the numerical error is
shown in Fig. 4(b) with ME ¼ 7.55 � 10�15.
COC ¼ 0.9445 is obtained. In Table 4, we tabulate
the absolute errors and compare them to those ob-
tained in [39e41].
A smaller solution with the initial slope

A ¼ 1.248217517758 is plotted in Fig. 4(b) by a
dashed line. In the shooting method with GDFNM,
we take (A0, A2) ¼ (1.2, 1.3), and with 6 iterations forFig. 2. For example, 2, compare the first and second solutions obtained

by the shooting method with DFNM.
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the convergence, we obtain a very accurate second
solution with ME ¼ 1.06 � 10�15.

4.5. Example 5

Let us calculate a three-point boundary value
problem and 1 � x � 3:

u
00 ðxÞ�1

8

�
32þ2x3�uðxÞu0ðxÞ�¼0; ð43Þ

uð1Þ¼17; uð2Þ þ uð3Þ ¼ 79
3
; ð44Þ

which has an exact solution:

uðxÞ¼x2 þ 16
x
: ð45Þ

Previously, Liu [42] employed a two-stage Lie-
group-shooting method to solve this problem,
whose procedures are quite complicated. We

suppose that u0 (1) ¼ A is an unknown constant and
use the GDFNM to solve the target equation u
(2) þ u (3) � 79/3 ¼ 0. We take N ¼ 1 � 104, e ¼ 10�15

and (A0, A2) ¼ (�14.1, �13.8), obtaining
A ¼ �13.9999994188434, which is very close to the
exact one A ¼ �14 with an error of 5.8 � 10�7. With 6
iterations for convergence, the numerical solution
coincides with the exact solution in Eq. (45) with
ME ¼ 3.45 � 10�7. COC ¼ 1.05156 is obtained. The
accuracy is limited by the target equation, whose
value is already zero at the sixth iteration; hence, we
cannot further raise the accuracy by solving u (2) þ u
(3) � 79/3 ¼ 0.

4.6. Example 6

Another three-point boundary value problem is
[42,43]:

u
00 ðxÞþ u2ðxÞ

1þ uðxÞ ¼ 0; uð0Þ � u0ð0Þ ¼ 0; uð1Þ � 1
3
uð0:5Þ

¼ 1;

ð46Þ
We suppose that u (0) ¼ u0 (0) ¼ A is an unknown
constant and use the GDFNM to solve the target

Fig. 3. For example, 3 of a highly singular perturbed problem, (a) convergence rate and (b) showing the solution obtained by the shooting method with
DFNM and errors.

Table 3. For example, 3 with e ¼ 0.001 list errors at different x.

x 0 0.1 0.2 0.3 0.5 0.7 0.9 1

Error 2.1E-4 3.0E-14 2.4E-14 1.8E-14 1.1E-14 7.9
E-15

5.7
E-15

4.9E-15
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equation u (1) � u (0.5)/3 � 1 ¼ 0. We take N ¼ 1000,
e ¼ 10�15 and (A0, A2) ¼ (0.8, 0.85), obtaining
A ¼ 0.841091466, as shown in Fig. 5(a), with one
intersection point. With 8 iterations for convergence,
the numerical solution shown in Fig. 5(b) can match
the target equation with an error of 2.22 � 10�16.

5. Splitting-linearizing method and examples

The splitting-linearizing method was adopted in
[34,44] to solve a nonlinear equation, which is quite
promising. Later, this method was employed by Liu

et al. [45] to solve nonlinear elliptic equations and by
Liu et al. [46] to solve nonlinear BVPs. In this sec-
tion, we employ the splitting-linearizing method
together with the Lyapunov technique to determine
the approximate analytic solutions of nonlinear
BVPs.

5.1. Example 7

We employ the following example to demonstrate
the splitting-linearizing method (SLM) [47]:

u
00 ðxÞþ3uðxÞu0ðxÞ þ u3ðxÞ ¼ 0; uð0Þ ¼ 1; uð1Þ ¼ 1;

ð47Þ

whose exact solution is

uðxÞ¼ 2xþ 1
x2 þ xþ 1

: ð48Þ

Let

u0ðxÞ¼yðxÞ0uðxÞ ¼ 1þ
Zx

0

yðsÞds; ð49Þ

where the left condition u (0) ¼ 1 is considered. We
suppose that u0 (0) ¼ A is unknown, such that

Fig. 4. For example, 4, (a) convergence rate and (b) showing two solu-
tions obtained by the shooting method with DFNM and errors for the
first solution.

Table 4. For example, 4 with l ¼ 2, comparing errors at different x.

x Present [39] [40] [41]

0.1 3.33 E�16 4.03 E�6 1.52 E�2 2.13 E�3
0.2 8.88 E�16 5.70 E�6 1.47 E�2 4.21 E�3
0.3 1.78 E�15 5.22 E�6 5.89 E�3 6.19 E�3
0.4 2.67 E�15 3.08 E�6 3.25 E�3 8.00 E�3
0.5 7.10 E�15 1.46 E�6 6.98 E�3 9.60 E�3
0.6 3.11 E�15 3.05 E�6 3.25 E�3 1.09 E�3
0.7 2.22 E�15 5.20 E�6 5.89 E�3 1.19 E�2
0.8 1.55 E�15 5.68 E�6 1.47 E�2 1.24 E�2
0.9 3.33 E�15 4.01 E�6 1.52 E�2 1.09 E�2

Fig. 5. For example, 6, (a) the target curve with one intersection point to
the zero line, (b) displaying the solution obtained by the shooting
method with DFNM.
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yð0Þ¼A; ð50Þ

where A is to be determined by the GDFNM in
Section 3. Eq. (47) can be written as

y0ðxÞþ3
�
1þ

Zx

0

yðsÞds
	
yðxÞ¼ �

�
1þ

Zx

0

yðsÞds
	3
:

ð51Þ
We suppose that

y0ðxÞ¼ðAþbÞe�lx � be�2lx; ð52Þ

which satisfies y0(0) ¼ A, where b and l are pa-
rameters. Then, we have

1þ
Zx

0

y0ðsÞds

¼ bþ 2lþ 2A
2l

�Aþ b
l

e�lxþ b
2l
e�2lx;

¼ a1e�lxþa2e�2lx

ð53Þ

b¼ � 2l� 2A; a1 :¼�Aþ b
l

; a2 :¼ b
2l
; ð54Þ

where b is selected such that the constant term in
Eq. (53) is zero.
Now, we recast Eq. (51) to

y0ðxÞþ3mq0
�
a1e�lxþa2e�2lx

�
yðxÞ

¼ 3m
�
q0�1

��
a1e�lxþa2e�2lx

�
y0ðxÞ

�m
�
a1e�lx þ a2e�2lx

�3
;

ð55Þ

where m is a dummy parameter. Then, the analytic
solution is determined by

yðxÞ ¼ y0ðxÞ þ
Xm
k¼1

ð�mÞkykðxÞ

¼ y0ðxÞ � my1ðxÞ þ m2y2ðxÞ þ/;

ð56Þ

where yk(x), k ¼ 1, 2, …, m are to be determined.
Inserting Eq. (56) into Eq. (55) and equating the

coefficients preceding mk, k ¼ 1, 2, …, m, we can
derive

y01ðxÞ ¼ 3
�
a1e�lx þ a2e�2lx

�
y0ðxÞ þ

�
a1e�lx þ a2e�2lx

�3
;

y1ð0Þ ¼ 0;

ð57Þ

y0kðxÞ ¼
�
3q0a1e�lx þ 3q0a2e�2lx

�
yk�1ðxÞ;

ykð0Þ ¼ 0;k¼ 2; :::;m:
ð58Þ

For the first-order solution, inserting Eq. (52)
into Eq. (57), we have

y01ðxÞ¼a12e�2lx þ a13e�3lx þ a14e�4lx þ a15e�5lx þ a16e�6lx;

ð59Þ
where

a12 ¼ 3a1ð1þ bÞ;a13 ¼ 3a2ð1þ bÞ þ a31 � 3a1b

a14 ¼ 3a21a2 � 3a2b;a15 ¼ 3a1a22;a16 ¼ a22:
ð60Þ

Let us define

EkðxÞ ¼
Zx

0

e�klsds¼ 1
kl

�
1� e�klx

�
;

FkðxÞ ¼
Zx

0

EkðsÞds¼ x
kl

½x� EkðxÞ�:
ð61Þ

It follows from Eqs. (49), (56) and (59) with
m ¼ 1 and m ¼ �1 that

uðxÞ¼a1e�l1xþa2e�2l1xþa12F2ðxÞ
þa13F3ðxÞþa14F4ðxÞþa15F5ðxÞþa16F6ðxÞ; ð62Þ

where we have replaced l in the first two terms by l1
to control the rising part of the curve.
We take l ¼ 1.05, l1 ¼ 1.5, A0 ¼ 0.9, and A2 ¼ 2, and

A ¼ 0.78556551 is obtained by using the GDFNM
through 18 iterations under e ¼ 10�15. The first-
order approximate analytic solution is quite close to
the exact one in Eq. (48), as shown in Fig. 6, with
ME ¼ 4.42 � 10�3. We consider the same setting and
add random noise with a maximum level of
6.95 � 10�3 on the right condition at x ¼ 1. The re-
sults show that ME ¼ 6.95 � 10�3 and A ¼ 0.
7783669605352804, the absolute error depends on
the boundary conditions. Thus the present

Fig. 6. For example, 7 compares the first-order approximate analytic
solution obtained by the SLM to the exact solution.
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algorithm provides very good numerical stability,
even when considering random noise.

5.2. Example 8

We consider a second-order BVP [35]:

u
00 ðxÞ¼3

2
u2ðxÞ; uð0Þ ¼ 4; uð1Þ ¼ 1; ð63Þ

whose exact solution is given by Eq. (30).
For this BVP, the SLM presented in Section 5.1 is

not applicable, since Eq. (63) does not include the
term u0 (x). We give the zeroth order solution with

u0ðxÞ¼4� 3x; ð64Þ
satisfying u0 (0) ¼ 4 and u0 (1) ¼ 1 and directly
considering the linearization of Eq. (63) by

u
00 ðxÞþ3

2
q0u0uðxÞ¼3

2

�
q0þ1

�
u2
0ðxÞ; ð65Þ

Inserting

uðxÞ¼u0ðxÞ þ
Xm
k¼1

pkukðxÞ; ð66Þ

where p is a dummy parameter, into

u
00 ðxÞþ3

2
pq0u0uðxÞ¼3

2
p
�
q0þ1

�
u20ðxÞ: ð67Þ

and equating the coefficients preceding pk, k ¼ 1, 2,
…, m, we can derive

u
00
1ðxÞ¼

3
2
u2
0ðxÞ; u1ð0Þ ¼ 0; u1ð1Þ ¼ 0; ð68Þ

u
00
kðxÞ¼ � 3

2
q0u0ðxÞuk�1ðxÞ; ukð0Þ ¼ 0; ukð1Þ ¼ 0 ; k

¼ 2;…; m:

ð69Þ
We can sequentially solve the above linear BVPs to
derive uk (x) and insert them into Eq. (66) with p ¼ 1
to obtain an analytic solution of m-order.
We take m ¼ 2 and q0 ¼ �1, and the second-order

approximate analytic solution is a polynomial with
seventh order:

F1ðxÞ ¼ 3
2

Z Zx

u20ðsÞds; D¼ F1ð1Þ;

u1ðxÞ ¼D� 2Dxþ F1ðxÞ;
ð70Þ

F2ðxÞ¼ � 3q0
2

Z Zx

u0ðsÞu1ðsÞds; E¼ F2ð1Þ; u2ðxÞ

¼ E� 2Exþ F2ðxÞ; ð71Þ

uðxÞ ¼ u0ðxÞ þ u1ðxÞ þ u2ðxÞ; ð72Þ

which is quite close to the exact one in Eq. (30), as
shown in Fig. 7, with ME ¼ 2.51 � 10�2.
When the considered boundary conditions are

given by

2uð0Þþu0ð0Þ ¼ 0; uð1Þ ¼ 1: ð73Þ

the procedure is more complicated, where the
boundary conditions become 2u0 (0) þ u00 (0) ¼ 0, u0
(1) ¼ 1 and 2uk (0) þ u0k (0) ¼ 0, uk (1) ¼ 0, k ¼ 1, 2.
We start from

u0ðxÞ¼A�2Axþ ð1þAÞx2; ð74Þ

where A is to be determined such that the approx-
imate analytic solution in Eq. (72) is close to the
exact one, in which we insert Eq. (74) for u0(s). We
take m ¼ 2 and q0 ¼ �320, and with A0 ¼ 0.35 and
A2 ¼ 0.4, the GDFNM to determine A is obtained as
A ¼ 0.3779179154 through 9 iterations under
e ¼ 10�14. The second-order approximate analytic
solution is a polynomial with tenth order, which is
quite close to the exact solution in Eq. (30), as shown

Fig. 7. For example, 8 under the first boundary conditions, the second-
order approximate analytic solution obtained by the SLM is compared to
the exact solution.
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in Fig. 8, with ME ¼ 3.734 � 10�2. Here, we consider
the same setting and add random noise with a
maximum level of 3.18 � 10�2 on the right condition
at x ¼ 1. The results show that ME ¼ 5.28 � 10�2 and
A ¼ 0.376301981031081. Hence, the present algo-
rithm is very robust and stable even when consid-
ering random noise.

6. Conclusions

Based on the shooting method, a novel and
effective solver with a generalized derivative-free
Newton method (GDFNM) was developed in this
paper to solve the second-order nonlinear BVPs.
The convergence analysis resulted in a second-
order and third-order convergence of the iterative
scheme GDFNM for b ¼ 1 and b ¼ 0.5. The involved
a and b in the proposed iterative scheme xnþ1 ¼ xn e
f (xn)/[a þ bf (xn)] were approximated by the finite
difference technique on the data at three points. As
a demonstration of the use of the shooting method
and GDFNM, we have investigated the numerical
solutions of the Bratu problem et al., whose missing
initial slope is obtained quickly and accurately. The
initial guessed value of A can be obtained quickly by
inspecting the intersection points of the target curve
with the zero line. Furthermore, we can easily find
multiple solutions of the considered problems. The
results clearly showed that this method provides
excellent approximations to the true solution of the
nonlinear BVP with high accuracy, which is of the
order of magnitude (Dx)4, by using the fourth-order
Runge‒Kutta method to integrate the ODE with

“almost exact” initial values obtained by the pre-
sented method. We have derived an approximate
analytic solution for the BVPs involving the first-
order differential term with exponential functions
and for those without having the first-order differ-
ential term with polynomials as the approximate
elements. With first-order or second-order approx-
imations, the analytic results are good enough even
for the Robin-type boundary condition.
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