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RESEARCH ARTICLE

Experimental Study of the Effect of a Solid Wing
Conveyor on Marine Debris Collection

Erik Sugianto a,b,*, Jeng-Horng Chen a

a Department of Systems and Naval Mechatronic Engineering, National Cheng Kung University, Tainan, 701, Taiwan
b Department of Marine Engineering, Hang Tuah University, Surabaya, 60111, Indonesia

Abstract

Marine debris is a global problem that has not been resolved. This has encouraged the emergence of marine debris
cleaning technologies, one of which is a conveyor ship. However, how effective conveyors are in collecting waste has not
been studied. In this paper, experimental research on conveyors as marine debris collectors is investigated. The capa-
bility of catamarans with or without solid wing conveyors to collect marine debris is explored. Three kinds of marine
debris collection models are used: no-wing conveyor, a 12.5-cm-long wing conveyor, and an 18.75-cm-long wing
conveyor. Artificial marine debris (AMD) is spread on the water surface in a static tank. Then, a marine debris collector
model is pulled using threads tied to the ship's body. This is done several times starting from a low speed and pro-
gressing to a high speed. After the experiment, the effectiveness of marine debris collection from these three models is
analysed. In addition, the cause of marine debris not being caught by the model is investigated. This work proposes a
new approach to evaluate the effectiveness of conveyer wings in marine debris collection. Based on AMD movement
pattern analysis, it is suggested to operate the device at a low speed because the collected AMD ratio is high and the lost
AMD ratio is small.

Keywords: Solid wing, Conveyor, Catamaran, Collection, Marine debris

1. Introduction

M arine debris is a problem for all countries
and it must be addressed immediately [1].

Many countries try to figure out the best solution to
this issue by meetings, conferences, and forum
group discussions. Marine debris can be found in
several different locations such as ecosystems [2],
inhabited coastal areas and islands [3], rivers [4],
and deep oceans [5]. Borrelle et al. [6] estimate that
19e23 million metric tons, or 11% of plastic debris
generated globally in 2016, entered marine areas,
including marine ecosystems. Every year about 8
million metric tons of plastic debris ended up in the
ocean and degraded the Ocean Health Index [7e9].
There are 275 million metric tons of debris dumped

into the sea from 192 coastal countries [10], and 86%
of this pollution comes from Asian rivers [11].
Coastal areas are the first marine systems

impacted by anthropogenic pollution, which poses a
particularly negative impact on the environment
[12]. Other marine debris is also found on the beach
and at sea, namely heavy metals that are harmful to
the environment [13]. In addition, research on the
effects of marine pollution due to port activities on
public health shows that this pollution poses a
serious threat to human health [14]. This situation
has spurred the governments of many countries and
international organisations to make ambitious com-
mitments to reduce marine debris. Several countries
have made regional as well as national action plans
to control debris from terrestrial areas. This also
includes enhancing technology and systems.
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Researchers have reviewed technologies to pre-
vent and collect plastic pollution [15]. They reported
52 technologies focussing on plastic pollution pre-
vention and collection methods. Technologies are
classified based on their functions: they are targeted
to collect macroplastics, microplastics, or other
plastics. Few technologies attempt to prevent
leakage of plastic pollution, and technologies that
have done so are limited in scope. A review of
technologies to prevent or reduce marine plastic
litter in developing countries has also been carried
out [16]. The authors used a platform called
‘GreenHouse’ that was set up by Ubuntoo. The was
authors reported the majority of currently available
technologies for collection.
The marine debris clean-up concept of ‘why move

through the ocean if the ocean can move through
you?’ was proposed by Boyan Slat, CEO of the
Ocean Cleanup Foundation. It developed a floating
device to collect marine debris in the Great Pacific
garbage patch [17]. Similarly, researchers have dis-
cussed passive ocean plastic collection under rough
sea conditions, considering the ocean current speed,
wave height, wave length, and plastic density. The
results indicate that the wave length and plastic
density have a negligible effect on the capture rate.
In contrast, the effects of the other two parameters
are significant [18]. Ji et al. [19] investigated ocean
surface cleaning systems using a mooring system
and motion gauges, an approach that is applicable in
various marine locations. Their results denote that
the system's motion response in the vertical plane is
small, indicating that marine debris is unable to
escape from the top and bottom of the system [19].
However, these previous studies can only be applied
in locations that have large currents and waves; the
idea is not applicable to locations without currents
and waves such as lakes, sedentary rivers, and other
calm waters. Consistently, this research does not
relate to ships and conveyors or to the effects that
appear due to changes in wing dimensions. Hence,
experimental research on conveyors as marine

debris collectors is rare. In addition, no researchers
have discussed the effectiveness of a wing conveyor
in marine debris collection. So, in this work experi-
mental research has been conducted to investigate
the effectiveness of catamarans with or without solid
wing conveyors to collect marine debris. Further-
more, the analysis has been carried out to determine
why marine debris is not caught by the wing
conveyor, and future directions are proposed to
improve this research.

2. Experimental apparatus and procedure

2.1. Experimental apparatus

The experiments were carried out in a static tank
at the Department of Systems and Naval Mecha-
tronic Engineering, National Cheng Kung Univer-
sity; The dimensions are a total length of 5.8 m, a
width of 1.8 m, a height of 1 m, and a water depth of
0.7 m (Fig. 1a). The standard size of a water bottle is
500 ml and measures 60 mm in diameter and
200 mm tall. However, the volume can range from
237 ml all the way up to 1 l [20]. Plastic bottles are
the most abundant type of marine debris and are
found throughout the world's oceans. This is a major
concern because plastic stays in the oceans for a
long time [21]. Plastic bottle waste found in waste
disposal has a length from 75 to 200 mm, while the
diameter ranges from 200 to 500 cm [22]. The size of
marine debris varies from micrometres to tens of
metres. The size distribution of floating plastic waste
found in calm sea conditions is 0.25e1000 mm in
length [23]. So, the average size of marine debris
used for this experiment was 300 mm tall and
90 mm wide. To replace the original marine debris,
artificial marine debris (AMD) was used; it was
spread over the water surface in static tanks. The
AMD to marine debris scale is 1:8. The AMD was
about 3e5 cm long and 1e1.5 cm wide (Fig. 1b).
Eighty pieces of AMD were spread on the water

surface of the static tank. AMD deployment was

Fig. 1. Experimental apparatus: (a) static tank and (b) artificial marine debris.
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done freely, with no rules. This was done to
resemble the real conditions of marine debris in the
sea. The water in the tank was calm. At the begin-
ning of the experiment, there were no waves at all
due to wind and current. After beginning the
experiment, small waves were formed on the water
surface as a result of each model's movement.

2.2. Experiment

Three models were used in this experiment. They
are catamarans with conveyors without wings, cat-
amarans with 12.5-cm-long wing conveyors, and
catamarans with 18.75-cm-long wing conveyors
(Fig. 2). The catamaran has an inner flat hull with a
static conveyor between the two hulls. The angle
between the wing and the conveyor is 45�. The
cross-section area of the wing is 37.7 cm2 for the
12.5-cm-long wings and 55.5 cm2 for the 18.75-cm-
long wings. The detailed specifications of the in-
struments used are given in Table 1. The conveyor
and wing were constructed at a 1:8 scale. The cata-
maran model is made of wood, while the conveyor
is made of Styrofoam, and the solid wing is made of
plastic.

2.3. Experimental procedures

The procedures were carried out on the three
models. As shown in experimental setup in Fig. 3a,
the catamaran model and the wing conveyor were
pulled manually using a thread fixed in the centre of
the model. In addition, two other threads were
attached to each sides of the model to ensure a
straight screening path. AMD deployment was done

freely, with no rules (Fig. 3b). This research was
conducted in calm water conditions before the
model was pulled. The force used to pull each
model was not same; thus, each model had a
different speed. A limitation of this study is that
while each model moved the same distance, each
one took a different amount of time to move that
distance. Each model was pulled with five speed
variations ranging from low to high. The velocity
was determined by dividing the time during which
the model moves by the path length.

3. Experimental results and discussion

This section describes the recorded (observed and
measured) results for pieces of AMD collected,
pieces of AMD in the sail zone, the collected AMD
ratio, the pieces of collected AMD in the sail zone
area, the pieces of AMD collected relative to all
pieces of AMD in the static tank, and the AMD lost
ratio. In addition, an analysis has been conducted to

Fig. 2. Ship and conveyor model: (a) no-wing conveyor, (b) 12.5-cm-long wing conveyer, (c) and 18.75-cm-long wing conveyer.

Table 1. Detailed specifications of the model.

Parameter Model

Length between perpendicular (cm) 50
Breath (cm) 37
Draft (cm) 2.5
Separation ratio S/L 18/50
Conveyor wide (cm) 18
Conveyor length (cm) 10
Conveyor thickness (cm) 1.5
Wing length (cm) 12.5, 18.5
Wing height (cm) 3
Wing thickness (cm) 0.4
Wing angle (degree) 45
Cross section area of wing (cm2) 37.7, 55.5
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determine why AMD was not caught by the cata-
maran with or without a wing conveyor.

3.1. AMD collected

The data obtained were the pieces of AMD
collected at each speed and the pieces of AMD in
the sail zone. The sail zone is area where the model
moves (yellow area in Fig. 4a); this area is the water
surface area swept by the wing conveyor. Before
pulling the model and commencing the experiment,
water in the sail zone is calm and it contains many
pieces of AMD. There were five speed variations e
from low to high e for the no-wing conveyor model
and the 12.5-cm-long wing conveyor model when
collecting AMD. However, the 18.75-cm-long wing
conveyor model had six different speeds (from low
to high) when collecting AMD. Figure 4b shows an
example of pieces of AMD collected by the model.
A comparison graph of the number of AMD

collected at low to high speed is shown in Fig. 5a.
AMD collected by the three models does not have
the same pattern. For the no-wing conveyor and
12.5-cm-long wing conveyor models, the higher the
speed, the less AMD is collected. Meanwhile, for the

18.75-cm-long wing conveyor model, the amount of
collected AMD does not show a linear pattern
relative to speed. The 18.75-cm-long wing conveyor
model collects the least AMD, while the 12.5-cm-
long wing conveyor and no-wing conveyor models
collect the most AMD.
The faster the speed, the less debris is collected,

but it takes less time to collect the debris, and
multiple collections can be carried out over a fixed
time. So, it is better to compare the amount of
garbage collected quickly and slowly over a certain
period of time or at the same speed, because the sail
distance of all models is the same. By comparing the
amount of AMD collected at 0.3 and 0.4 m/s, the
18.75-cm-long wing conveyor model collects the
most AMD, followed by the 12.5-cm-long wing
conveyor and no-wing conveyor models (Fig. 5a).
However, at 0.4 m/s, the 12.5-cm-long wing model
and the no-wing model collect almost the same
amount of AMD. At 0.4 m/s, the AMD in the sail
zone is also almost the same for the 12.5-cm-long
wing conveyer and no-wing conveyer models. This
corresponds to the AMD in the sail zone before the
model moves (Fig. 5b). At 0.3 and 0.4 m/s, the 18.75-
cm-long wing conveyor model collects the most

Fig. 3. Experimental procedures: (a) experiment setup and (b) initial conditions.

Fig. 4. AMD position: (a) in the sail zone and (b) collected AMD.
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AMD in the sail zone, followed by the 12.5-cm-long
wing conveyor and no-wing conveyor models.
The AMD in the sail zone varies across all model

speeds. For the no-wing conveyor and 12.5-cm-long
wing conveyor models, the higher the speed, the
less AMD in the sail zone (Fig. 5b). On the other

hand, for the 18.75-cm-long wing conveyor model,
the AMD in the sail zone changes depending on the
speed. Hence, the AMD in the sail zone in the three
models is different because the sail zone width is
different. The longer the wing conveyor, the wider
the sail zone. However, because AMD spreads
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Fig. 5. Comparison of AMD collected in some experimental conditions: (a) pieces of AMD collected vs speed, (b) pieces of AMD in the sail zone vs
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area vs speed, and (e) AMD collected relative to all AMD in the sail zone vs speed.
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freely, a wider the sailing zone does not necessarily
mean there is more AMD in the sail zone.
Figure 5c shows the collected AMD ratio: the

AMD collected relative to all AMD in the static tank.
For the no-wing conveyor and the 12.5-cm-long
wing conveyer models, the higher the speed, the
lower the AMD collected ratio. On the contrary, for
the 18.75-cm-long wing conveyor model, the AMD
collected ratio goes up and down as the speed
changes. On average, this model has the highest
AMD collected ratio compared with the other two
models. Note that the graphs in Fig. 5a and 5c shows
the same pattern, because the AMD in the static
tank is the same for all conditions.
Figure 5d presents the ratio of the pieces of

AMD collected to the sail zone area (AMD/m2). At
low speeds, the no-wing conveyor model has the
highest ratio, but the higher the speed, the lower
the ratio. Likewise, the 12.5-cm-long wing conveyor
model has a high ratio at low speeds, but the higher
the speed the lower the ratio. On the other hand,
the 18.75-cm-long wing conveyor model shows
no pattern in this ratio. When the speed is less
than 0.4 m/s, the average ratio of the three models
is almost the same. However, after 0.4 m/s, the
18.75-cm-long wing conveyor model has the
highest ratio, followed by no-wing conveyor and
12.5-cm-long wing conveyor models. The sail zone
area is different for all models: the longer the
wing conveyor, the wider the sail zone, and the
larger the angle of the wing conveyor, the wider
the sail zone. So, the fairest way to judge how
effective the tool is to compare between the AMD
collected and the total AMD before collection only
in the sail zone.
Figure 5e shows a comparison of the AMD col-

lecting capabilities of the three models: AMD
collected relative to all AMD in the sail zone. This is
the fairest comparison to judge how effectively
models collect AMD. Because if it only compares the
AMD collected from the three models (Fig. 5a),
there may be differences in the AMD collected
before the model moves or the AMD in the sail zone
(Fig. 5b), and the comparison would not be fair. The
results show that the lower the speed, the higher
the collected AMD ratio. In addition, the longer the
wing, the higher the collected AMD ratio, and
the longer the front view, the higher the collected
AMD ratio, because longer wings produce a longer
front view. Hence, more AMD can be collected as
the wing length increases and the speed decreases.
Overall, the 18.75-cm-long wing conveyor model
has the highest collected AMD ratio, followed by the
12.5-cm-long wing conveyor model and the no-wing
conveyor model.

3.2. Analysis of why AMD is not caught by the
model

There are three hypotheses as to why AMD is not
captured by the model. First, AMD is not caught
because the space in front of the conveyor is already
full of AMD. This happens because after AMD is
collected, as it will stay in front of a static conveyor.
So, when there is not enough space in front of the
conveyor, other garbage cannot be collected. The
model dimensions that influence this hypothesis are
the wing length and the front view length. Second,
AMD is not caught because the AMD moves side-
ways to avoid the conveyor wing when the conveyor
wing wants to catch it. This phenomenon can
happen because of waves and currents caused by
the model's movement. The variables that influence
this hypothesis are speed, the wing length, and the
front view length. Third, there is movement of AMD
while the model runs because of waves and currents
that are generated by the model's movement. So,
AMD moves away from the model. This relates to
the AMD calculations in the sail zone, because no
AMD in the sail zone is counted before the model
moves to collect AMD. The above hypotheses were
tested by observing video clips or images in several
locations while each model is running collecting
AMD.
The causes of AMD not being caught by the

model were determined in five stages. First, exper-
imental video recordings of each model were
examined. Second, two videos for each model, one
at low speed and one at high speed, were viewed in
detail. Third, 3e5 consecutive pictures were taken
from each video. Fourth, AMD movement was
observed, especially movement away from the wing.
Fifth, the observations were used to test the
hypotheses.
Table 2 presents the patterns of AMD movement

of the three models at low and high speeds. At a low
speed of 0.26 m/s, the no-wing model collected 13
pieces of AMD. At a high speed of 0.46 m/s, the no-
wing model gathered 7 pieces of AMD. The trend of
AMD collection for this model shows that the faster
the model moves, the less AMD collected. This
trend also occurs for the 12.5-cm-long wing
conveyor model, but not for the 18.75-cm-long wing
conveyor model. At a low speed of 0.25 m/s, the
18.75-cm-long wing conveyor model captured 17
pieces of AMD, while at a high speed of 0.40 m/s,
this model captured 36 pieces of AMD. However,
selecting the best model to collect AMD from this
point of view would be unfair: the total AMD in the
sail zone must be considered. Hence, comparison of
the AMD collected and AMD in the sail zone can be
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used to determine the best model for collecting
AMD. For low and high speeds in the three models,
this comparison shows the same trend, namely the
faster the speed, the smaller the collected AMD ratio
(Table 2).
At a low speed for the no-wing conveyor model,

only AMD at the catamaran bow tip were not
caught. AMD moves sideways because of the waves
generated by the model's movement. AMD also did
not move too much from the initial position at this
low speed. At 0.26 m/s, 11 out of 24 pieces of AMD
in the sail zone moved to the side; at 0.46 m/s, 7 of 14
pieces of AMD in the sail zone moved to the side. It
appears that the faster the speed, the more AMD
moves to the side. However, the AMD that moves to
the side is also influenced by the AMD in the sail
zone or the AMD in the initial conditions before the

model moves. So, more AMD moves sideways at a
low speed because there is more AMD in the sail
zone at low speeds. In the no-wing conveyor model
at a low speed, AMD cannot be collected, but this is
not because the space in front of the ship is full. At
high speed, many pieces of AMD were not caught
by the no-wing conveyor model. The waves gener-
ated by model movement are sufficient to move
some AMD away from the model. Moreover, the
high speed also makes the model unstable: it tilts
forward and there is no space available in front of
the ship.
At a low speeds, the 12.5-cm-long wing conveyor

model did not catch AMD at the sail zone edge or
wingtip. These pieces of AMD moves sideways
because of the waves generated by the model move-
ment (Fig. 6a). Overall, AMD did not move too much:

Table 2. AMD movement pattern.

Pattern Model

No-wing conveyor 12.5 cm wing length 18.75 cm wing length

Low speed
(0.26 m/s)

High speed
(0.46 m/s)

Low speed
(0.27 m/s)

High speed
(0.41 m/s)

Low speed
(0.25 m/s)

High speed
(0.40 m/s)

AMD collected 13 7 24 9 17 36
AMD in the sail zone 24 14 29 13 18 43
AMD collected per AMD in the sail zone 0.542 0.500 0.828 0.692 0.945 0.837
Wave generated by ship motion Small High Small High Small High
Pieces of AMD that move to the side 11 7 5 2 1 4
Pieces of AMD that pass over the wing No No No 2 No 3
Total AMD lost 11 7 5 4 1 7
AMD lost ratio 0.458 0.5 0.172 0.308 0.055 0.163
Space in front of ship Available None Available None Available None

Fig. 6. Comparison of AMD collected in some conditions: (a) AMD moving to the side, (b) AMD passing over the wing, (c) space in front of the
conveyor is still available, and (d) space in front of the conveyor is not available.
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at 0.27 m/s, 5 out of 29 pieces of AMD in the sail zone
moved to the side, and at 0.41m/s, 2 out of 13 pieces of
AMD in the sail zone moved to the side. This trend is
the same as in the no-wing conveyor model, because
there is an influence from the number of AMD in the
sail zone or the number of AMD in the initial condi-
tions before the model moves. So, more AMD move
sideways when the model moves at a low speed
because there is more AMD in the sail zone. The
space in front of the conveyor is still available (Fig. 6c).
Furthermore, AMD was not captured at the high
speed because the waves generated by the model's
movementwere too large, allowingwater to pass over
the wing (Fig. 6b). AMD also goes over the wings and
is not caught. Indeed, 2 pieces of AMD passed over
the wings. This also resulted in not catching 2 pieces
of AMD at the edge of the screening zone because
they moved to the side. In addition, the space in front
of the conveyor was full, hampering the ability to
collect AMD (Fig. 6d). This happens because the
space becomes smaller due to the water-covered
wings.
At the low speed, the AMD that was not caught by

the 18.75-cm-long wing conveyer model was located
at the wingtip or at the edge of the sail zone. These
pieces of AMD move sideways because of the waves
generated by the model's movement. At 0.25 m/s, 1
out of 18 pieces of AMD in the sail zone moved
sideways; at 0.40 m/s, 4 out of 43 pieces of AMD in
the sail zone moved sideways. This trend differs
from the no-wing conveyor and 12.5-cm-long wing
conveyor models. The trend is that the greater the
speed, the more AMD moves to the side; this is also
in accordance with the effect of the number of AMD
in the sail zone or the number of AMD in the initial
conditions before the model moves. AMD also do
not move too much from the initial position because
the waves generated are not too big. Moreover,
space in front of the conveyor is still available at the
low speed.
Many of the pieces of AMD were not caught by

the 18.75-cm-long wing conveyor model at the high
speed. As the model began moving, there were 4
pieces of AMD at the sail zone edge that were not
caught because they moved away from the wing.
This happened because of the waves generated by
the model's movement. After the model started
moving more quickly, the waves generated by ship
movement were big, so water passed over the
wings. Three pieces of AMD also passed over the
wings and were not caught. Big waves also make the
space in front of the conveyor smaller. This makes
AMD harder to collect.
Pieces of AMD lost are those in the sail zone that

are not caught by the wing conveyor. So, AMD lost

is the difference between the pieces of AMD in the
sail zone and the pieces of AMD caught. Table 2 also
shows the total pieces of AMD lost for the three
models at different speeds. For the no-wing model
at 0.25 m/s, 11 out of 18 pieces of AMD in the sail
zone were lost; at 0.46 m/s, 7 out of 14 pieces of
AMD in the sail zone were lost. For the 12.5-cm-long
wing conveyor model at 0.27 m/s, 5 out of 29 pieces
of AMD in the sail zone were lost; at 0.41 m/s, 4 out
of 13 pieces of AMD in the sail zone were lost. For
the 18.75-cm-long wing conveyor model at 0.25 m/s,
1 out of 18 pieces of AMD in the sail zone were lost;
at 0.40 m/s, 7 out of 43 pieces of AMD in the sail
zone were lost.
Comparing the pieces of AMD lost cannot reveal

which model loses the most AMD, because each
model travels at a different speed. At the low speed,
the no-wing model and 12.5-cm-long wing conveyor
model lose more AMD than at the high speed. The
18.75-cm-long wing conveyor model loses more
AMD at the high speed than the low speed. The
AMD lost ratio can be used to determine which
model loses the most AMD; it is the ratio of the
pieces of AMD lost to the pieces of AMD in the sail
zone. Of note, this measure considers the initial
pieces of AMD in the sail zone. The no-wing
conveyor model has the highest AMD lost ratio,
followed by the 12.5-cm-long and 18.75-cm-long
wing conveyor models (Table 2). Hence, the 18.75-
cm-long wing conveyor is the best model to collect
AMD because it has the lowest AMD lost ratio.

4. Conclusions

Marine debris can be found throughout the world
and remains a huge problem. In this paper, an
approach to assess the effectiveness of the use of
solid wings in marine debris collection has been
proposed. Three kinds of marine debris collection
models were built and then pulled in a static tank to
collect AMD. The 18.75-cm-long wing conveyer
model had the highest collected AMD ratio, fol-
lowed by the 12.5-cm-long wing conveyer model
and the no-wind conveyer model. Thus, the longer
the front view, the higher of collected AMD ratio,
because longer wings produce a longer front view.
So, this means that more AMD can be collected as
the wing length increases and the speed decreases.
The cause of AMD not being caught has also been

investigated. At the low speed of each model, only
AMD at the edge of the display zone or the wingtip
were not captured. AMD moves sideways because
of the waves generated by the model's motion. This
movement becomes more pronounced as the speed
increases. The waves lead to capturing fewer pieces
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of AMD, and water passes over the wings. Besides,
the AMD in the sail zone needs to be considered
when assessing AMD that moves to the side of the
ship. At the low speed, AMD does not move much
and space in front of the conveyor is still available.
At the high speed of the three models, however, the
waves generated by the model's movement are too
large and water and AMD pass over the wings. The
waves also prevent AMD at the sail zone edge from
being caught because they move away from the
wing. Other than that, AMD is not caught because
the space in front of the conveyor is full. This hap-
pens because the space gets smaller due to the
wings being covered in water. The high speed also
makes the model unstable and it tilts forward.
Based on AMD movement pattern analysis, it is

suggested to operate at a low speed because the
collected AMD ratio is high and the resulting
resistance force is also small. Three things can be
considered when designing the wing conveyor in
the future: first, make sure the wing sits higher
above the water, especially if it operates at a high
speed. Second, ship resistance force must be
considered because this will affect the selection of
ship's engine, fuel consumption, and operating
costs. Third, to reduce drag force, a perforated
conveyor wing design can be considered.
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