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RESEARCH ARTICLE

Solving Nonlinear Boundary Value Problems with
Nonlinear Integral Boundary Conditions by Local and
Nonlocal Boundary Shape Functions Methods

Chein-Shan Liu a, Yung-Wei Chen b,*, Jian-Hung Shen b

a Center of Excellence for Ocean Engineering, Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20231,
Taiwan
b Department of Marine Engineering, National Taiwan Ocean University, Keelung 202301, Taiwan

Abstract

The paper considers the second-order nonlinear boundary value problem (NBVP), which is equipped with nonlinear
integral boundary conditions (BCs). Two novel iterative algorithms are developed to overcome the difficulty of NBVP
with double nonlinearities involved. In the first iterative algorithm, two nonlocal shape functions incorporating the
linear integral terms are derived, and a nonlocal boundary shape function (NBSF) is formulated to assist the solution. Let
the solution be the NBSF so that the NBVP can be exactly transformed into an initial value problem. The new variable is
a free function in the NBSF, and its initial values are given. For the NBVP with linear integral BCs, three unknown
constants are to be determined, while for the nonlinear integral BCs, five unknown constants are to be determined. Two-
point local shape functions and local boundary shape functions are derived for the second iterative algorithm, wherein
the integral terms in the boundary conditions are viewed as unknown constants. By a few iterations, four unknown
constants can be determined quickly. Through numerical experiments, these two iterative algorithms are found to be
powerful for seeking quite accurate solutions. The second algorithm is slightly better than the first, with fewer iterations
and a more accurate solution.

Keywords: Nonlinear BVP, Nonlinear integral boundary conditions, Nonlocal shape functions, Local shape functions,
Iterative algorithms

1. Introduction

N onlinear boundary value problems (NBVPs)
are frequently encountered in scientific and

engineering problems. In particular, second-order
NBVPs have been studied extensively. Agarwal [1]
investigated the existence and uniqueness of solu-
tions of BVPs of higher order. To solve NBVPs,
Kubí�cek and Hlav�a�cek [2] conducted a complete
survey of the development, analysis, and application
of numerical techniques. Keller [3] described an
elementary yet rigorous account of practical nu-
merical methods for solving general two-point
boundary value problems (BVPs).

Recently, Hajipou et al. [4] and Jajarmi and
Baleanu [5] proposed a new iterative method to
solve high-order nonlinear fractional boundary
value problems. Then, different studied views
further are applied to analyze nonlinear boundary
value problems such as stability [6], nonlinear frac-
tional-order derivatives [7] and optimal control
problems [8,9]. Mahariq [10] and Mahariq et al.
[11e13] applied the spectral element method to
solve the application field's electromagnetic and
photonic nanojet problems.
In this paper, we consider nonlinear and nonlocal

boundary conditions (BCs) for second-order NBVPs.
They are different from the conventional two-point
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BCs, which are specified at boundary points of a
given interval. The nonlocal BCs involving certain
integrals are specified for the solution at all points
within the given interval. Therefore, the nonlocal
NBVP is more challenging to solve than the local
NBVP. As defined by Lin et al. [14], the boundary
shape function (BSF) automatically satisfies the BCs,
which includes the solution of BVP as a special case
since the solution must exactly satisfy the specified
BCs. Liu and Chang [15] extended the work of Lin
et al. [14] to address the multipoint boundary con-
ditions for NBVPs. Liu and Chang [16] applied the
BSF to solve nonlinear singularly perturbed prob-
lems with Robin boundary conditions. Furthermore,
Liu [17] used the BSF to analyze nonlinear com-
posite beams subjected to nonlinear boundary
moment conditions. The idea of the BSF has been
adopted to solve some BVPs with conventional local
BCs and then extended to solve 2D and 3D
nonlinear problems [18e20]. However, the method
of BSF has not yet been developed for solving the
NBVP endowed with nonlinear and nonlocal BCs.
For the numerical method of nonlocal BVP, it is of

utmost importance to preserve the given BCs.
However, this is not an easy task when the given
BCs involve the solution in the entire interval, which
is itself an unknown function in the interval. In the
case of an NBVP subject to nonlinear and nonlocal
BCs, reducing the boundary error and then the error
of the solution in the entire interval is an important
issue. Hereon, we attempt to develop novel methods
for providing accurate numerical solutions to
nonlinear and nonlocal NBVPs. To exactly preserve
the nonlinear and nonlocal BCs, we formulate nu-
merical algorithms based on local and nonlocal
boundary shape functions.
In this paper, we also cover the Duffing-type

NBVP, which is a nonlinear ordinary differential
equation (ODE) well-known in applied science as a
powerful model to discuss practical phenomena
such as nonlinear mechanical oscillators, bending
models of DNA, and the prediction of diseases.
Some works on the forced Duffing equation with
integral boundary conditions [21e24] are effective
methods for solving the NBVP with linear integral
BCs [24e26]. To date, most papers have developed
numerical methods for solving the Duffing-type
NBVP with linear integral BCs [23,27,28]. The NBVP
with nonlinear integral BCs is more difficult; hence,
few papers are devoted to solving this problem.
To address nonlinear and nonlocal BCs, we will

develop two novel iterative algorithms to determine
the solution for the NBVP with nonlinear integral
boundary conditions. For both iterative algorithms,

the basic idea is to transform the NBVP to the cor-
responding initial value problem for the new vari-
able, whose initial conditions are given. In the
transformed ODE for the new variable, some un-
known constants need to be determined. Detailed
descriptions of local and nonlocal BSFs are provided
in the next section. The paper is structured as fol-
lows. In Section 2, we derive two nonlocal shape
functions and nonlocal boundary shape functions
for a second-order NBVP. An iterative algorithm for
linear integral BCs of the second-order NBVP is
developed in Section 3, where three unknown con-
stants are to be determined. Section 4 gives the first
iterative algorithm for the nonlinear integral BCs of
the second-order NBVP, where five unknown con-
stants are to be determined. In Section 5, we
develop a second iterative algorithm for the
nonlinear integral BCs of the second-order NBVP,
where four unknown constants are to be deter-
mined. In Section 6, several examples are tested.
Finally, Section 7 draws conclusions.

2. Nonlocal boundary shape function

Consider a second-order nonlinear ODE:

u
00 ðxÞ¼ f ðx;uðxÞ;u0ðxÞÞ; 0 < x<1; ð1Þ

where f satisfies the Lipschitz condition, which is
endowed with the integral BCs:

a1uð0Þþb1u0ð0Þ¼
Z 1

0
q1ðx;uðxÞÞdx; ð2Þ

a2uð1Þþb2u0ð1Þ¼
Z 1

0
q2ðx;uðxÞÞdx:

When q1 and q2 are constants, the Robin-type
BCs are specified at two boundary points. When q1
and q2 are linear functions of u, the BCs are linear
integral BCs; otherwise, they are nonlinear integral
BCs.
To explore the new iterative method more clearly,

we start from the linear integral BCs:

a1uð0Þþb1u0ð0Þ � r1

Z 1

0
uðxÞdx¼ p1; ð3Þ

a2uð1Þþb2u0ð1Þ � r2

Z 1

0
uðxÞdx¼ p2; ð4Þ

which are obtained from Eq. (2) by inserting
q1 ¼ r1uþ p1 and q2 ¼ r2uþ p2.
Upon defining linear operators
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L1fuðxÞg : ¼a1uð0Þþb1u0ð0Þ � r1

Z 1

0
uðxÞdx; ð5Þ

L2fuðxÞg : ¼a2uð0Þþb2u0ð0Þ � r2

Z 1

0
uðxÞdx; ð6Þ

Eqs. (3) and (4) can be written as

L1fuðxÞg¼p1; L2fuðxÞg¼p2: ð7Þ

Theorem 1. If there are nonlocal shape functions
s1ðxÞ and s2ðxÞ satisfying
L1fs1ðxÞg¼1; L2fs1ðxÞg¼0; ð8Þ
L1fs2ðxÞg¼0; L2fs2ðxÞg¼1 ð9Þ
then for any free function zðxÞ2C1½0; 1�,
uðxÞ ¼ zðxÞ � s1ðxÞ

�
L1fzðxÞg� p1

�
� s2ðxÞ

�
L2fzðxÞg� p2

�
;

ð10Þ

which satisfies the linear integral BCs (3) and (4).
Proof. We first prove Eq. (3). Applying L1 to Eq. (10)
and using the linear property of L1, we have

L1fuðxÞg ¼ L1fzðxÞg� L1fs1ðxÞg
�
L1fzðxÞg� p1

�
� L1fs2ðxÞg

�
L2fzðxÞg� p2

�
;

which, with the aid of the first equations in Eqs. (8)
and (9) becomes

L1fuðxÞg¼L1fzðxÞg�
�
L1fzðxÞg�p1

�¼p1:

Similarly, applying L2 to Eq. (10) and using the
linear property of L2 yields

L2fuðxÞg ¼ L2fzðxÞg� L2fs1ðxÞg
�
L1fzðxÞg� p1

�
� L2fs2ðxÞg

�
L2fzðxÞg� p2

�
;

which, with the aid of the second equations in Eqs.
(8) and (9) becomes

L2fuðxÞg¼L2fzðxÞg�
�
L2fzðxÞg�p2

�¼p2:

We have proven Eq. (7), and thus Eqs. (3) and (4)
are proven.

3. Numerical algorithm for linear integral BCs

Eqs. (8) and (9), including the integrals of s1ðxÞ and
s2ðxÞ, are called nonlocal shape functions (NSFs).
With the help of Theorem 1, a feasible and efficient
way to obtain uðxÞ is transformed into a new vari-
able zðxÞ by

zðxÞ¼uðxÞ þWðxÞ; ð11Þ

where

WðxÞ ¼ �
L1fzðxÞg� p1

�
s1ðxÞ

þ �
L2fzðxÞg� p2

�
s2ðxÞ: ð12Þ

If we can determine zðxÞ, then Eqs. (3) and (4)
are automatically satisfied by uðxÞ ¼ zðxÞ� WðxÞ, as
proven in Theorem 1.

3.1. Initial value problem

From Eqs. (1) and (11), zðxÞ is governed by a new
ODE:

z
00 ðxÞ¼Hðx;zðxÞ;z0ðxÞÞ;

:¼WðxÞþ f ðx;zðxÞ�WðxÞ;z0ðxÞ�W 0ðxÞÞ; ð13Þ

where WðxÞ given by Eq. (12) involves three un-
known constants:

a : ¼ zð1Þ; b :¼ z0ð1Þ; g :¼
Z 1

0
zðxÞdx; ð14Þ

as shown in Eqs. (5) and (6). Eq. (13) is an initial
value problem (IVP), upon giving the initial values
zð0Þ and z0ð0Þ.
In Theorem 1, s1ðxÞ and s2ðxÞ can be determined as

follows. Suppose that s1ðxÞ ¼ aþ bxþ cx2 and insert
it into Eq. (8). Then, we can obtain

aa1þb1b�r1

�
aþb

2
þ c
3

�
¼1; ð15Þ

a2½aþbþ c�þb2½bþ2c��r2

�
aþb

2
þ c
3

�
¼0; ð16Þ

which are underdetermined linear systems to
determine a, b, and c. There are many solutions of a,
b, and c. Similarly, we can do this for s2ðxÞ. We
choose the suitable values of a, b, and c such that the
Runge‒Kutta method RK4 can be applied to inte-
grate the ODE (13) with the given initial values zð0Þ
and z0ð0Þ.

3.2. Iterative algorithm

When RK4 is adopted to integrate ODE (13) with
the given initial conditions, we can iteratively
determine a, b, and g until they are convergent as
follows: (i) given z1ð0Þ ¼ a0, z2ð0Þ ¼ b0, a0, b0, g0 and
e; (ii) for k ¼ 0, 1, 2, …., integrate

z01ðxÞ¼ z2ðxÞ;
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z02ðxÞ¼Hðx; z1ðxÞ; z2ðxÞ;ak;bk;gkÞ; ð17Þ

z03ðxÞ¼ z1ðxÞ; z03ðxÞ ¼ z1ðxÞ;

where z1ð0Þ ¼ a0, z2ð0Þ ¼ b0, and e given initial
values. Take

akþ1¼ z1ð1Þ; bkþ1 ¼ z2ð1Þ; gkþ1 ¼ z3ð1Þ: ð18Þ

Until

rk : ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	
ðakþ1 � akÞ2 þ ðbkþ1 � bkÞ2

þ ðgkþ1 � gkÞ2

s
< o� ð19Þ

is satisfied. If Eq. (19) is not fulfilled, then go to (ii)
for the next iteration.

4. First iterative algorithm for nonlinear
integral BCs

When Eq. (1) is subjected to the nonlinear
integral BCs in Eq. (2), the BVP is more challenging
to solve than that with linear integral BCs (3) and (4).
We suppose that q1 and q2 can be decomposed as

q2ðx;uÞ¼r2uþp2 þ F2ðx;uÞ; ð20Þ

where F1 and F2 are nonlinear functions of u. Let

c1 : ¼p1þ
Z 1

0
F1ðx;uðxÞÞdx;

c2 : ¼p2 þ
Z 1

0
F2ðx;uðxÞÞdx;

ð21Þ

where unknown constants c1 and c2 are to be
determined. Eq. (2) is rewritten as

a1uð0Þþb1u0ð0Þ � r1

Z 1

0
uðxÞdx¼ c1;

a2uð1Þ þ b2u0ð1Þ � r2

Z 1

0
uðxÞdx¼ c2:

ð22Þ

4.1. Transformation to IVP

Let

uðxÞ¼yðxÞ þGðxÞ; ð23Þ

GðxÞ¼½L1fyðxÞg�c1�s1ðxÞ þ½L2fyðxÞg�c2�s1ðxÞ; ð24Þ

such that uðxÞ satisfies Eq. (22) automatically, as
proven in Theorem 1.
It follows from Eqs. (1) and (23) that

y
00 ðxÞ ¼ Fðx;yðxÞ;y0ðxÞÞ;
:¼ G

00 ðxÞ þ f
�
x; f ðxÞ �GðxÞ;y0ðxÞ �G0ðxÞ�; ð25Þ

where we can give yð0Þ and y0ð0Þ as the initial values
for y, while yð1Þ, y0ð1Þ, g :¼ R 1

0 yðxÞdx, c1 and c2 are
five unknown values in GðxÞ as shown by Eq. (24).

4.2. First iterative algorithm

For solving the NBVP in Eqs. (1) and (22), we list
the iterative algorithm. (i) Given y1ð0Þ, y2ð0Þ, d0, e0,
g0, c01, c

0
2, e, and N; (ii) for k ¼ 0, 1, 2, …, apply the

RK4 to integrate

y01ðxÞ¼y2ðxÞ;
y02ðxÞ¼F

�
x;y1ðxÞ;y2ðxÞ;dk; ek;gk; c

k
1; c

k
2

�
;

y03ðxÞ¼y1ðxÞ;
y04ðxÞ¼F1

�
x;y1ðxÞ�GðxÞ�þp1;

y05ðxÞ¼F2
�
x;y1ðxÞ�GðxÞ�þ p2;

where y3ð0Þ ¼ y4ð0Þ ¼ y5ð0Þ ¼ 0. Take dkþ1 ¼ y1ð1Þ,
ekþ1 ¼ y2ð1Þ, gkþ1 ¼ y3ð1Þ, ckþ1

1 ¼ y4ð1Þ, and ckþ1
2 ¼

y5ð1Þ.
We terminate the iterations if the residual satisfiesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi8<
: ðdkþ1 � dkÞ2 þ ðekþ1 � ekÞ2 þ ðgkþ1 � gkÞ2

þ �
ckþ1
1 � ck1

�2 þ �
ckþ1
2 � ck2

�2
9=
;

vuuut <o�;

otherwise, go to (ii) for the next iteration.
When ck1 and ck2 are convergent, the solution uðxÞ is

given by

uðxÞ¼yðxÞ� s1ðxÞ
�
L1fyðxÞg�ck1

� �s2ðxÞ
�
L1fyðxÞg�ck2

�
:

5. Second iterative algorithm for nonlinear
integral BC

In Section 4,fiveunknown constants d, e,g, c1, and c2
are determined. Instead of the nonlocal shape func-
tions s1ðxÞ and s2ðxÞ, we may consider two-point local
shape functions T1ðxÞ and T2ðxÞ as determined by

a1T1ð0Þþb1T 0
1ð0Þ ¼ 1; a2T1ð0Þ þ b2T 0

1ð0Þ ¼ 0; ð26Þ

a1T2ð0Þþb1T 0
2ð0Þ ¼ 0; a2T2ð0Þ þ b2T 0

2ð0Þ ¼ 1: ð27Þ

In Eq. (2), we let

c1 : ¼
Z 1

0
q1ðx;uðxÞÞdx; c2 : ¼

Z 1

0
q2ðx;uðxÞÞdx ð28Þ

be unknown constants to be determined. Then,
replacing s1ðxÞ and s2ðxÞ in Section 4 with T1ðxÞ and
T2ðxÞ, we have the following iterative algorithm: (i)
given y1ð0Þ, y2ð0Þ, d0, e0, c01, c02, e, andN; (ii) for k¼ 0, 1, 2,
…, apply RK4 with a step size Dx ¼ 1=N to integrate
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QðxÞ ¼ T1ðxÞ
�
a1yð0Þ þ b1y0ð0Þ � ck1

�þ
T2ðxÞ

�
a2dk þ b2ek � ck2

�
;

y01ðxÞ ¼ y2ðxÞ;
y02ðxÞ ¼ F

�
x;y1ðxÞ;y2ðxÞ;dk; ek; ck1; ck2

�
;

y03ðxÞ ¼ q1
�
x;y1ðxÞ �QðxÞ�;

y04ðxÞ ¼ q2
�
x;y1ðxÞ �QðxÞ�;

where y3ð0Þ ¼ y4ð0Þ ¼ 0 and F ¼ Q
00 ðxÞþ f ðx; yðxÞ�

QðxÞ;y0ðxÞ � Q0ðxÞÞ. Take dkþ1 ¼ y1ð1Þ, ekþ1 ¼ y2ð1Þ,
ckþ1
1 ¼ y3ð1Þ, and ckþ1

2 ¼ y4ð1Þ.
The iterations are terminated if the residual

satisfiesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi8<
: ðdkþ1 � dkÞ2 þ ðekþ1 � ekÞ2þ�

ckþ1
1 � ck1

�2 þ �
ckþ1
2 � ck2

�2
9=
;

vuuut < o�;

otherwise, go to the next iteration in (ii).
The first iterative algorithm, as presented in Sec-

tion 4.2, is reduced to the present algorithm if r1 ¼
r2 ¼ 0 since s1ðxÞ ¼ T1ðxÞ and s2ðxÞ ¼ T2ðxÞ, and the
parameter g in the first iterative algorithm is no
longer needed. However, when r1s0 and r2s 0, the
first iterative algorithm is different from the second
iterative algorithm. The latter is more efficient since
only four unknown constants d, e, c1, and c2 are to be
determined. The second iterative algorithm can be
used to solve the NBVP with the nonlinear integral
BCs in Eq. (2).

6. Numerical examples

6.1. Example 1

Consider an NBVP

u
00 ðxÞþu0ðxÞ � u2ðxÞ ¼ 3ex þ 2xex � x2e2x; ð29Þ

uð0Þ þ u0ð0Þ �
Z 1

0
uðxÞdx¼ 0;

uð1Þ � u0ð1Þ � 2
Z 1

0
uðxÞdx¼ e� 2;

ð30Þ

whose exact solution is

uðxÞ¼xex: ð31Þ
In Eq. (30), a1 ¼ 1, b1 ¼ 1, r1 ¼ 1, p1 ¼ 0, F1 ¼

0, a2 ¼ 1, b2 ¼ � 1, r2 ¼ 2, p2 ¼ e� 2, and F2 ¼ 0.
For this problem, s1ðxÞ ¼ �2=3þ 2x and s2ðxÞ ¼ �
2x� 3x2 are derived. Utilizing zð0Þ ¼ 0, z0ð0Þ ¼ 1,
a0 ¼ b0 ¼ g0 ¼ 0, e ¼ 10�10, and N ¼ 500, the NBSF
method converges, as shown in Fig. 1(a), with 84
iterations. Upon comparing numerical and exact

solutions, Fig. 1(b) displays the absolute numerical
error whose maximum error (ME) is 6.61 � 10�12,
which is very accurate.
The above results are computed by the

method in Section 3.2, which is a special case of the
first iterative algorithm in Section 4.2 with F1 ¼ 0
and F2 ¼ 0. Next, we apply the second iterative
algorithm in Section 5 to solve this problem, of
which T1ðxÞ ¼ x and T2ðxÞ ¼ x� 1 are derived. In
Eq. (30), a1 ¼ 1, b1 ¼ 1, q1 ¼ u, a2 ¼ 1, b2 ¼ � 1,
and q2 ¼ 2uþ e� 2. Taking yð0Þ ¼ y0ð0Þ ¼ a0 ¼
b0 ¼ c01 ¼ c02 ¼ 0, e ¼ 10�10, and N ¼ 500, as shown
in Fig. 2(a), the second iterative algorithm is
convergent within 19 iterations. Upon comparing
numerical and exact solutions, Fig. 2(b) displays
the absolute numerical error, whose
ME ¼ 1.31 � 10�12 is very accurate.
The method in Section 5 converges more quickly

and more accurately than that in Section 3.2, where
84 iterations and ME ¼ 6.61 � 10�12 were obtained
for this problem.

6.2. Example 2

The following NBVP is to be solved:

u
00 ðxÞþu0ðxÞ � 2uðxÞ þ 2sin2ðxÞ ¼ 0; ð32Þ

Fig. 1. For example 1 with NBSF method: (a) convergence of absolute
error and (b) numerical and exact solutions and absolute error.
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uð0Þ � 3
8
u0ð0Þ � 1

4

Z 1

0
uðxÞdx�

Z 1

0
u2ðxÞdx¼�1;

uð1Þ þ 1
4
u0ð1Þ � 1

2

Z 1

0
uðxÞdx¼ 1;

ð33Þ

of which no closed-form solution is available.
In Eq. (33), a1 ¼ 1, b1 ¼ � 3=8, r1 ¼ 1=4, p1 ¼ �

1, F1 ¼ u2, a2 ¼ 1, b2 ¼ 1=4, r2 ¼ 1=2, p2 ¼ 1, and
F2 ¼ 0. For this problem, s1ðxÞ ¼ 1� x=2 and s2ðxÞ ¼
1þ 23x=14� 3x2=7 are derived. Because a nonlinear
integral term occurs on the left side, only ck1. is
unknown.
Utilizing yð0Þ ¼ y0ð0Þ ¼ d0 ¼ e0 ¼ c01 ¼ g0 ¼ 0,

e ¼ 10�10 and N ¼ 100, as shown in Fig. 3(a), the first
iterative algorithm converges with 45 iterations, and
in Fig. 3(b), we plot the numerical solution. Since
there exists no exact solution, we assess the numerical
error by showing the absolute errors of BCs, which
are 1.5 � 10�8 for the left boundary condition and
2.4� 10�8 for the right boundary condition in Eq. (33).
The above results are computed by the first iter-

ative algorithm in Section 4.2. Next, we apply the
second iterative algorithm in Section 5 to solve this
problem. In Eq. (33), a1 ¼ 1, b1 ¼ � 3=8, q1 ¼ u2 þ

u=4� 1, a2 ¼ 1, b2 ¼ 1=4, and q2 ¼ u=2þ 1.
T1ðxÞ ¼ 10=13� 8x=13 and T2ðxÞ ¼ 3=13þ 8x=13 are
derived. Taking yð0Þ ¼ 0, y0ð0Þ ¼ 1, a0 ¼ b0 ¼ c01 ¼
c02 ¼ 0, e ¼ 10�5, and N ¼ 100, the second iterative
algorithm converges with 44 iterations. The absolute
errors of BCs are 8.74 � 10�11 for the left boundary
condition and 4.35 � 10�9 for the right boundary
condition in Eq. (33). The second iterative algorithm
is more accurate than the first iterative algorithm.

6.3. Example 3

Consider [28]:

u
00 ðxÞþu0ðxÞþxð1�xÞu3ðxÞ¼FðxÞ; ð34Þ

uð0Þ � 2
p2u

0ð0Þ ¼ �
Z 1

0
uðxÞdx;

uð1Þ þ 1
p2u

0ð1Þ ¼ �
Z 1

0
xuðxÞdx;

ð35Þ

Fig. 2. Example 1 is solved by second iterative algorithm: (a) conver-
gence of absolute error and (b) numerical and exact solutions and ab-
solute error.

Fig. 3. For example 2: (a) convergence of absolute error of iterations, and
(b) numerical solution.
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uðxÞ¼ sinðpxÞ: ð36Þ
F(x) can be obtained by inserting uðxÞ ¼ sinðpxÞ

into Eq. (34).
In Eq. (35), a1 ¼ 1, b1 ¼ � 2=p, q1 ¼ � u, a2 ¼ 1,

b2 ¼ 1=p2, and q2 ¼ xu2. For this problem, we take
T1ðxÞ ¼ ðp2 þ1Þ =ðp2 þ3Þ � p2x =ðp2 þ3Þ and
T2ðxÞ ¼ 2 =ðp2 þ3Þ þp2x =ðp2 þ 3Þ. Utilizing yð0Þ ¼ 0,
y0ð0Þ ¼ 2, d0 ¼ e0 ¼ c01 ¼ c02 ¼ 0, e ¼ 10�10, and
N ¼ 100, the second iterative algorithm converges
with 77 iterations, and the maximum relative error is
2.54 � 10�8.
To compare with the reference shown in Table 1,

we list the relative errors at some points and
compare the results to those obtained by Geng and
Cui [28]. For this problem, it can be seen that the
presented accuracy obtained by the second iterative
algorithm is approximately four orders of magni-
tude more accurate than that obtained by Geng and
Cui [28].

6.4. Example 4

Let us consider

u
00 ðxÞ¼3

2
u2ðxÞ; ð37Þ

uð0Þ¼4; uð1Þ¼
Z 1

0

�
u2ðxÞ�11

3

�
dx; ð38Þ

uðxÞ¼ 4

ð1þ xÞ2: ð39Þ

In Eq. (38), a1 ¼ 1, b1 ¼ 0, q1 ¼ 4, a2 ¼ 1, b2 ¼
0, and q2 ¼ u2 � 11=3. Because a nonlinear
integral term occurs on the right side, only ck2 is
unknown. We derive T1ðxÞ ¼ 1� 2xþ x2 and
T2ðxÞ ¼ x2. Using yð0Þ ¼ y0ð0Þ ¼ d0 ¼ c02 ¼ 0,
e ¼ 10�6, and N ¼ 100, the second iterative algo-
rithm converges with two iterations, as shown in
Fig. 4(a). In Fig. 4(b), we compare the solutions, and
the numerical error is ME ¼ 7.92 � 10�9. This value
is smaller than that obtained in [29], where the Lie-
group shooting method (LGSM) was adopted to

solve the problem under the usual boundary
condition:

uð0Þ¼4; uð1Þ ¼ 1:

The results show that the proposed algorithm
avoids the need for step-by-step adjustment of the
weighting value and multisolution problems by the
LGSM. The proposed method is very efficient and
stable in approximating the true solution.

6.5. Example 5

Consider Eq. (29) again, which is now subjected to
nonlinear integral BCs

uð0Þ �
Z 1

0

�
u2ðxÞ � e2 � 1

4

�
dx¼ 0;

uð1Þ �
Z 1

0

�
u2ðxÞ � e2 � 1

4
þ e

�
dx¼ 0;

ð40Þ

the exact solution is still given by Eq. (31).
In Eq. (40), a1 ¼ 1, b1 ¼ 0, q1 ¼ u2 � ðe2 � 1Þ =4,

a2 ¼ 1, b2 ¼ 0, and q2 ¼ u2 � ðe2 � 1Þ =4þ e. We
derive T1ðxÞ ¼ 1� x and T2ðxÞ ¼ x. Because integral
BCs occur on both sides, ck1 and ck2 are unknown

Table 1. For example 3: comparison of relative errors at some points.

x Exact uðxÞ [28] Present

0.01 0.314108 7.49 � 10�5 2.48 � 10�9

0.08 0.248690 8.17 � 10�5 1.07 � 10�10

0.16 0.481754 8.11 � 10�5 5.03 � 10�11

0.32 0.844328 8.09 � 10�5 1.62 � 10�10

0.48 0.998027 8.08 � 10�5 3.12 � 10�10

0.64 0.904827 8.03 � 10�5 5.82 � 10�10

0.80 0.587785 7.97 � 10�5 1.26 � 10�9

0.96 0.125333 7.85 � 10�5 6.46 � 10�9

Fig. 4. For example 4: (a) convergence of absolute error and (b) nu-
merical and exact solutions and absolute error.
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constants. Utilizing yð0Þ ¼ 0, y0ð0Þ ¼ 1, d0 ¼ e0 ¼
c01 ¼ c02 ¼ 0, e ¼ 10�10, and N ¼ 500, the second
iterative algorithm converges with two iterations, as
shown in Fig. 5(a). The absolute numerical error is
shown in Fig. 5(b), with ME ¼ 3.53 � 10�11 being
very accurate.

6.6. Example 6

Let us consider the following NBVP [2,29]:

u
00 ðxÞþ1

x
u0ðxÞ ¼ �deuðxÞ; ð41Þ

u0ðxÞ ¼ 0;

uð1Þ þ u0ð1Þ ¼
Z 1

0

h
euðxÞ=2 � 2�p

2

i
dx¼ 0:

ð42Þ

For d ¼ 2, there is only one solution:

uðxÞ¼ ln
4

ð1þ x2Þ2: ð43Þ

In Eq. (42), a1 ¼ 0, b1 ¼ 0, q1 ¼ 0, a2 ¼ 1, b2 ¼
1, and q2 ¼ eu=2 � 2� p=2. Because the integral

boundary condition occurs on the right side, only ck2
is unknown. We obtain T1ðxÞ ¼ x� 2x2=3 and
T2ðxÞ ¼ x2 � 2. Taking yð0Þ ¼ 0, y0ð0Þ ¼ 0:5, d0 ¼ e0 ¼
0, c02 ¼ � 1:5, e ¼ 10�2, and N ¼ 500, the second
iterative algorithm converges with 89 iterations, as
shown in Fig. 6(a), and the absolute numerical error
is shown in Fig. 6(b) with ME ¼ 1.13 � 10�3. This is
more accurate than that in [29], who employed the
LGSM to solve Eqs. (41) and (42).

6.7. Example 7

Let us consider the following NBVP:

u
00 ðxÞþu0ðxÞþu3ðxÞ¼3þ2xþ �

xþ x2
�3
; ð44Þ

uð0Þ þ
Z 1

0
uðxÞdxþ

Z 1

0
u2ðxÞdx¼ 28

15
;

uð1Þ � 1
2

Z 1

0
ð1þ 2xÞuðxÞdx¼ 0;

ð45Þ

uðxÞ¼xþ x2: ð46Þ
In Eq. (45), a1 ¼ 1, b1 ¼ 0, q1 ¼ ð28 =15Þ� u�

u2, a2 ¼ 1, b2 ¼ 0, q2 ¼ ð1 þ 2xÞu, T1ðxÞ ¼ 1� x, and
T2ðxÞ ¼ x are derived. In the second iterative algo-
rithm, we take yð0Þ ¼ 0, y0ð0Þ ¼ 1, d0 ¼ e0 ¼ c01 ¼
c02 ¼ 0, e ¼ 10�6, and N ¼ 100. This converges with

Fig. 5. For example 5: (a) convergence of absolute error and (b) nu-
merical and exact solutions and absolute error.

Fig. 6. For example 6: (a) convergence of absolute error and (b) nu-
merical and exact solutions and absolute error.
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two iterations, as shown in Fig. 7(a). The absolute
numerical error is shown in Fig. 7(b) with
ME ¼ 5.78 � 10�9.

7. Conclusions

In this paper, nonlocal boundary shape functions
and local boundary shape functions were demon-
strated. Using a new concept of these functions, we
developed two novel iterative algorithms to deter-
mine the solution for the NBVP with nonlinear in-
tegral boundary conditions. For both iterative
algorithms, the basic idea is to transform the NBVP
to the corresponding initial value problem for the
new variable, whose initial conditions are given. In
the transformed ODE for the new variable, the BSF
automatically satisfies a two-point solution, and
unknown constants of the first and second iterative
algorithm can be determined iteratively. With re-
gard to numerical stability and computational effi-
ciency, the proposed algorithms avoid directly
solving the nonlinear governing equations and
instead use the BSF indirectly to iteratively satisfy
the two-point solution on the BCs. The proposed

algorithms successfully avoid the need for step-by-
step adjustment of the weighting value and multi-
solution problems by the LGSM. Simultaneously,
the BSF does not need to use high-order series to
obtain approximate solutions. Numerical tests
confirmed that the proposed methods are straight-
forward, easy to implement, and able to approxi-
mate the true solution very accurately. Moreover,
the numerical solution precisely satisfied the
nonlinear integral boundary conditions of the
NBVP. The second iterative algorithm is slightly
better than the first iterative algorithm, with fewer
iterations and a more accurate solution. Future work
will extend the BFS to solve optimization parame-
ters and period orbits of chaos in terms of nonlinear
problems.
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