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RESEARCH ARTICLE

A Hybrid Finite Difference Method for Singularly
Perturbed Delay Partial Differential Equations with
Discontinuous Convection Coefficient and

Source Term

Nitika Sharma °, Aditya Kaushik " *

? Department of Applied Mathematics, Delhi Technological University, Delhi 110042 India
® University Institute of Engineering and Technology, Panjab University, Chandigarh 160014 India

Abstract

The article presents a hybrid finite difference scheme to solve a singularly perturbed parabolic functional differential
equation with discontinuous coefficient and source. The simultaneous presence of deviating argument with a discon-
tinuous source and coefficient makes the problem stiff. The solution of the problem exhibits turning point behaviour
across discontinuity as ¢ tends to zero. The hybrid scheme presented is a composition of a central difference scheme and
a midpoint upwind scheme on a specially generated mesh. At the same time, an implicit finite difference method is used
to discretize the time variable. Consistency, stability, and convergence of the presented numerical approach have been
investigated. The presented method converges uniformly independent of the perturbation parameter. Numerical results
have been presented for two test examples that verify the effectiveness of the scheme.

Keywords: Singular perturbation, Functional differential equation, Finite difference method, Interior layer

1. Introduction

D ifferential equations model a wide range of
phenomena in almost every branch of sciences
and engineering. Often mathematical models as-
sume specific behaviour or phenomenon which
depends on the present and the past states of a
system [17,42]. In other words, previous events have
a direct impact on future outcomes. Modelling such
systems leads to functional differential equations
that are more realistic and frequently appear in a
wide range of applications. Classical examples cover
oscillatory, excitable as well as chaotic behavior [1]
in physiological control systems [29], nonlinear op-
tics [19], population dynamics [16] and neuroscience
[31]. Particularly in nonlinear optics, the finite-time
communication delays are typically much larger

than the device's internal time-scales [39], and
therefore, give rise to rich dynamical phenomena
[27]. Specific examples of delay systems with (mul-
tiple) large delays include semiconductor lasers
with two optical feedback loops of different lengths
[30], ring-cavity lasers with optical feedback [12],
and others [10,37].

When we associate a mathematical model with
physical phenomena, we often capture the essen-
tials and ignore the minor components involving
small parameters. A mathematical model with small
parameters is called a perturbed model, while an
unperturbed or reduced model is a degenerate
simplified model. If a small parameter is multiplied
with the highest-order derivative term, then the
problem is called singularly perturbed from a
mathematical perspective [4]. In that case, the
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corresponding degenerate problem cannot satisfy
the prescribed boundary/initial conditions. More-
over, the stiffness, attributed to the simultaneous
presence of a deviating argument and discontinuous
coefficient, give rise to multiple time scales as ¢
approaches the limiting value zero. There exist
narrow regions across the turning points where the
solution varies exponentially and approaches a
discontinuous limit [28,36]. In these regions, the
solution reveals sharp interior layers, and it is not
easy to find an asymptotic expansion in terms of ¢ or
to find a consistent numerical approximation.

The numerical methods on a uniform mesh fail to
approximate singular perturbation functional dif-
ferential equations. They require an unacceptably
large number of mesh points to sustain the
approximation because the mesh width depends on
the perturbation parameter. This limitation of the
conventional numerical methods has encouraged
researchers to develop robust or adaptive numerical
techniques that perform well enough independent
of the perturbation parameter. Many researchers
have made efforts to develop parameter uniform
methods for partial functional differential equations;
for an overview, see [5,20] and references therein. In
[2], the authors studied a Dirichlet boundary value
problem for the partial functional differential
equation. In this paper, a numerical method
comprising a standard finite difference operator
(centered in space, implicit in time) is presented.
The method presented is robust in the sense that its
numerical solution converges to the exact solution
uniformly. The higher-order methods are of partic-
ular interest and reasonably understood for prob-
lems without a deviating argument [8,23].
Nevertheless, attempts of having a higher order of
uniform convergence for parabolic functional dif-
ferential equations are lacking. In [25], a higher-
order uniformly convergent hybrid method is pro-
posed for parabolic problems with a delay. A
scheme of HODIE type [24] is used in spatial di-
rection over a generalized Shishkin mesh, whereas
the implicit Euler scheme discretizes the time vari-
able. Richardson extrapolation improves the order
of convergence in time-variable. It is proved that the
computed solution is uniformly convergent of
Z((L/N)* + (A#)%). In [22], a stable finite difference
scheme is presented for singularly perturbed dif-
ferential-difference equations with delay and
advanced term. In [13], a standard finite difference
method on an equidistributed layer adapted mesh is
presented. The method approximates a singularly
perturbed parabolic functional differential equa-
tions of convection-diffusion type using an upwind
finite difference method on a piecewise uniform

Shishkin mesh. In [38], a singularly perturbed
differential—difference equation with small shifts is
considered. The terms containing the delay and
advance parameters are approximated by using the
Taylor's series expansion. A quadratic B-spline
collocation method is used in the space direction on
exponentially  graded  mesh  while the
Crank—Nicolson finite difference method is used in
the time direction on uniform mesh.

For a time-delayed convection-diffusion problem,
a hybrid scheme is reported in [9]. The method
presented is a composition of an upwind scheme
and a central difference scheme and has almost
second-order accuracy in space which is optimal
compared to [14]. While a hybrid difference scheme
for parabolic differential equation with delay and
advance terms is studied in [15,34]. Besides, uni-
formly convergent methods based on fitted mesh
and fitted operator approach are presented in [6].
The fitted operator methods used have coefficients
of exponential type and are quite capable of repro-
ducing the multiscale character of the exact solution
of the problem [36]. On the other hand, the fitted
mesh method [32,41] adopted concentrates on the
appropriate choice of the grid points in narrow layer
regions. Moreover, a Robin type boundary value
problem for parabolic functional differential equa-
tion is brought to attention in [3]. A numerical
method comprising a standard finite difference
scheme on a rectangular piecewise uniform fitted
mesh is presented. It is shown that the errors are
bounded in the maximum norm by C(N;*In’N, +
N; 1). In [21], the authors considered a class of
singularly perturbed parabolic problem with delay
and discontinuous data. An implicit numerical
scheme is used to find the numerical solution. The
method is uniformly convergent of #(N 'In’N +
At). However, the analysis of higher-order methods
for singularly perturbed parabolic partial functional
differential equations with discontinuous data and
degenerating convective terms has seen little
development and lacks due attention. Conse-
quently, this paper aims to extend the idea of
parameter uniform difference schemes to solve a
singularly perturbed parabolic functional differen-
tial equation with discontinuity in coefficients with
turning points and presents a higher-order accurate
approximation.

2. The continuous problem

Consider the following initial-boundary-value
problem on the domain S~ U S™ = (0,1) x (0,T] U (1,
2) x (0,T):



218 JOURNAL OF MARINE SCIENCE AND TECHNOLOGY 2022;30:216—235

Lo = ety (x,t) + a(x)u,(x, 1) — b(x)u(x,t) — u(x, t)

=f(x,t) +c(x)u(x—1,#)inS" U S*,
u(x,t) = p,(x) on [0,2] x {t =0},
u(x,t) = p,(x,t) in [-1,0] x [0, T],
u(x,t) =p,(t) on {x =2} x [0, T},

(2.1)

where ¢x1 is a small positive parameter, b
and c are sufficiently smooth functions such that
c(x)>0, b(x)>0 for all x€[0, 2]. Moreover, we as-
sume that

a1(x)1f0§x§1 fl(x7t)if(x7t)6§7
a(x)= . (x,8) = . =+

ap(x)if1<x <2, fo(xb)if (x,t)ES |
71 <a1(x) < — v, <0, 7;>a(x)>v,>0,

la]| <C, |[f]|<C,
(2.2)

where v = min{y;, 7,} and " = max{v], v,}. The
solution of (2.1) satisfies [u] =0 and [u,] =0atx = 1.
Here, [u] denotes the jump of u defined at the
point of discontinuity x =1 as [u](1, ) = u(1", t)—
u(1-, t) where u(1*¢t) = 11m u(x f).

The functions p, p, and'p,) Py 4¥e Holder continuous
and the compatibility conditions hold at the corners
(0,0), (2,0) and at the transition point (1,0). On the
domain S~, the delay term u(x — 1,t) = p,(x — 1,t).
Under these assumptions, the solution of (2.1)
exists and unique uesC"(D=(0,2) x
(0,T])n C***(S~ U S") [26,35].

The presence of a discontinuity and a delay makes
the problem challenging. The solution u(x, t) of (2.1)
displays a strong interior layer in the neighbour-
hood of the point x = 1. Moreover, it is easy to
follow that the differential operator L. satisfies the
following maximum principle on D.

Lemma 2.1 Suppose P € C°(D)n C*(S™ uS™) sat-
isfies P(x,t) <0 for all (x,t)€I:=D\D and
L.P(x,t) >0 for all (x,t)€S” U S". Then P(x,t) < 0
for all (x,t)E€D.

Proof. Choose (x¥,t*)e D such that P(x*, t5) =
max, , <pP(x,t). Consequently,

P (x*,#)=0, P,(x*,#)=0 and P.(x* t)<0.

Suppose P(x, t*) > 0 and it follows that (x*,t*) &
I. If (x%, #)eS" U S", note that L.P(x, t*)<0. A
contradiction to the assumption and consequently
the required result follows.
Establishing the boundedness of solution is an
important application of the maximum principle. As
an immediate application, we obtain

Lemma 2.2 Let u be the solution of (2.1). Then

IIMIIOOD_IIuHoorJr [flop> y=min{yy, 7>} (23)

Proof. Consider

_”u”OOF__”f”ooD— ifx<1
V.=
* 2-2) [ fll
*||u||oo,r*# ifx>1.
For (x,t)€S7, it follows that
_ ||f||
Loy, (x,t) = £ Lo — a1 (x) =—+b(x) [| u ||

since a1(x) < 0 and b(x) > 0. Similarly, for (x,t)€S",
it is easy to verify that L.y, (x,t) > 0. The required
result (2.3) now follows from Lemma 2.1.

In general, one can assume homogeneous
boundary conditions p, = p, = p, = 0 by subtracting
from u some suitable smooth function that satisfies
the original boundary conditions [36]. To find
sharper bounds on the solution and its derivatives,
we decompose the solution u into smooth and sin-
gular components. We write # = v+ w. The smooth
component v is solution of

Lo(x,t) =f(x,t) +c(x)v(x —1,¢) in STUS™,
v(x,t)—u(xt in [-1,0] x [0,T],
BH=h(),

) in
(1 t) (%, o(1%,8) =j,(¢), t€(0,T], (2.4)
t) o

on{x 2} x (0,T),
n [0,2] x {ffo}

where the functions j, (t) and j,(t) will be computed
using the Theorem 2.4. The singular component w is
solution of

Low(x,t)=c

w(x,f)
w(x,t)=00on {x=2}x(0,T],

w(x,b)= {t=0},

(1.6 =1 (14).
)26 o]

Following are the direct results from [18] that
will be used in Theorem 2.4.

(x)w(x—1,t)inS"US™,

=0in[1,0] x[0,T],

Oon[0,2] x
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Theorem 2.3 Let a, b, ceC?[0, 2], f€C*™*(D) and
a(x) > v >0 for x€[0,2]. Also suppose p,,p, and p,
are identically zero so that the compatibility condi-

tions hold in I'. = (—1,0) U (0,0) U (2,0) U (1,0) and
ak+mP

- = < 2m <2

Ao 0, 0<k+2m<2,

where F(x, t)

e = f(x, t)+
C**(D) and

c(x)u(x — 1, t). Then ue

ak+m u

— || <Ce*, 0<k+2m<A4.
awkapn|| S0 0 DskEAms

(2.6)

Theorem 2.4 There exist smooth functions j, (¢),
j»(t) such that the smooth and singular component
defined in (2.4) and (2.5), respectively, satisfy the
following bounds for 0 <k <3, m >0and 0 < k+
2m < 4

ak+mv 642) i
ool . =G gal =€ !
0,5 ust 0.5 ust
and
PLE 7w le C(e*kexp(—(l_x),yl/g)) for (x,t) €S
dxkor™ C(e*kexp(—(x—l)yz/g)) for (x,t)€S",
0w —(xt)] < C(e*exp(— (1—x)vy/¢)) for (x,t)ES"
ox* C 874exp( - (x — 1)72/3> for (x, t) eS*t.

Proof. We conduct our analysis separately in the sub-
regions S~ and S* to obtain stronger bounds on the
solution and its deriyatives. We start with the subre
gionS* and define D suchthatS' cD'. LetD =Q°
(0,T], Q" = [-2,2] and define a function v" on D" as

® % * 2 x 3 %
U =0y +ev; €0, + €703,

where the functions v;, v; and v, are solutions of

vy
a-2L2—-bo,—

Ox
v(x,t) = pi(x,t) in [-3,0] x [0,T],
vp(x,t) = py(x) on [-2,2] x {t =0},

%—f +cvy(x—1,¢) in D,

NN A R
axibviiati 0l +cv;(x—1,¢) in D',
v; (x,t)=0 in [-3,0] x (0,T],v; (x,0)

=0 on [—22] x{t=0},

and v; is solution of

vy L0V .« . OV . . vy . .
6x3+ 6x3 bo,——2 5 3=c'v,(x—1,t)— szmD,
v,(x,t) =0 in [-3,0] x [0,T],

v;(x,0)=0 on [—2,2] x {t=0},

v, (x,£) =0 on {x=2}x (0,T]

(2.8)

Here, the coefficients a*, b and ¢* as well as the
condition p, are respective smooth extensions of 4, b,
c and p, from the domam [1,2] to the domain [ — 2,2].
The functions f~ and p; are the smooth extensions of
f and p, from the domain S to the domain D . In a
nelghbourhood of the point ( — 2 0) the functlons Por
p; and f* are bullt Euch that p =p = ff=o.
Assuming that 4", b, ¢ and f are sufficiently
smooth on D . We set all the initial- -boundary data
associated with (2.7) equal to zero. Define
F' =f +cv'(x—1,t) and impose the following
compatibility condition on the set I'c:
ak+mF*
oxkor™

Follows from the results of [7] for the first order
differential equations deﬁned in (2.7), we have

0 for 0<k+m<7. (2.9)

U; ;€CF(D ) nC**D ), i=0,1,2 which implies
%GCZH( ) and therefore U;EC‘LH(E*). Then it
follows that
ak+m *
: <C, i=0,1,2
avkorn|| = T T
ak+m
% <Ce* for 0<k+2m<4.
axkot™|| . p

i=1,2
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The smooth component v is now defined as a
restriction of v* on the domain S . Define v"(1,) =
J»(t) = v(1,t). Thus v satisfies
Lo=f+c(x)v(x—1,t) in S*,
v(x,t)=v" (x,t) on {x=1}x(0,T],
v(x,t)=u(x,t) on [1,2] x {t=0}.

. * * * * %
Since v* = vy + ev; + ?v, + €305, thus

ak-Hﬂ,U* 6k+m03 N ak+mv;
- ell———L
oxkorm = ||oxkot™ dxkot™

0,5" 0,5" 0,5T

) ak+mU; 3 ak+mU;

&
Oxkot™ Oxkt™
0,5" 0,5

<C(1+&*) for 0<k-+2m<4.

. o« 4 . &t
As v is a restriction of v* on the domain S, we
have

ak+mv

-z v < 3—k < <4,
S <C(1+&7%) for 0<k+2m<4

©0,5T

Thus for 0 < k<3 and 0 < k+ 2m < 4, the smooth
component v satisfies
o*v

oxct

ak+mv

< Ce .
koL ¢

0,5T

<C and

0,5T

Similarly, the desired bounds for smooth compo-
nent v in the subregion S~ can be obtained. Define
the barrier functions on S~ U S*

(1-x)7,

(v — C)exp <_ - )i w, (x,H)ES

O*(x,t)=
(v — C)exp (@) + w, (x,t)EST,

where C is a constant. For (x, t)€S™, using
assumption (a+v;) <0 to obtain

L.¢*(x,t)=L, ((iv—C)exp (—(%x)qq) > +L.w(x,t)>0.
(2.11)
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Similarly, for (x,t)€S* we obtain

Log*(x.t) = Zexp (ﬂ)

&

((iv —C)(—a+1,) —2ev, +C—b€)

V2

+ 2 exp (_(x - 1)72> (f+ colx = 1’t)) >0 (2.12)
€ € Y2

Moreover, ¢*=C’(D) and ¢*(x,t) <0 for (x,
t)eI. Consequently, the required bounds on w
follows from Lemma 2.1. The required estimates for
the derivatives of w follow from [33].

3. Difference scheme

The solution of the problem exhibits strong inte-
rior layer at x = 1. Therefore, we descretize the
. . =N,
domain by constructing a rectangular mesh D ™" =
S, x TM in such a way that it will condense around
the point x = 1. We write

0,2=[0,1—0]U [1—0,1]U[1,1+0]U[1+0,2],

where ¢ = min{}, 0oeInN'} and oy is a constant that
will be chosen later on. We place ¥ mesh points in
each of the subintervals. Consequently, we obtain

N N
Sf:{xi:izl,z...,i—l}u {xi:i:EH,...,N—l}

and
hi:xi —Xi-1, 1'21,27

hi=hi+hi,i=1,2,...,N—1,

(2.10)

We define the uniform mesh for the domain [0,T], as
follows

TV ={t,=kAt,k=0, ... ,M,At=T /M}.



JOURNAL OF MARINE SCIENCE AND TECHNOLOGY 2022;30:216—235 221

=419 4 N/43N/A+1,..N

To discretize the differential operator in (2.1), we

first define the finite difference operators on the
—N.M

mesh D as

i=N/4+1,...N/2,N/2+1,...,3N/4.

We use the classical central difference scheme in
the intervals

(1-0,1),(1,140¢) and the midpoint upwind
scheme in the rest of the intervals. At the point

K k k ok
Dokl "% pk Ui T Vi of  discontinuity, = second-order  one-sided
Yt hin o hi difference approximations are used to keep the
ok Uka—vl, o o —of! continuity of the spatial derivative. We use
Dyo; = hii+hi Dyvi = Ar the backward-Euler method for discretizing the time
derivative. The discrete problem thus reads:
ok Dk Kok
and 0%f = %. Also define U,k;Tl = M7
v% — (U,+12+‘U,)
Uio=p,(x:) for i=0,...,.N
. N
LNMOL :f%kﬂ +ciap, for i=1,. Y
. N N
Lﬁii\/{ui:kﬂ :fi,k+l+cipl for lzz+1,...,3—1
. N 3N
LYMU, pq =fixa tCli-Nj2 ki1 for 1254‘17 . "7T_1 (3.1)
N.M,(R) _f _ f ;SN _
L. Ui —f%kﬂ +calli Ny for i= m o N—1
. N
DfUi‘kH —Df ui7k+1 =0 for l:E
for k=0,.... M—1,
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where

U

N

N.M,(L _ 2 . — . -1T7.
LM U = €0iUipin + aaDy Usgn — baliagey — Dy Uy,

~

N.M 2 0 -
L., Uik = €0 U;x1 +aiD Ui — billi1 — Dy Ujpiq

cen

N.M,(R 82 ) + . i -17.
Lt Ui = eQUipia +asaD] Uiy — biaUigq — Dy Uiy

7

(3.2)

and

D, Uy = | —Uyyppn +4Uy 0 —3Uy g / 2h

Dfu%k = Ugfzkﬂ - 4u§71,k+1 + 3u¥,k+1 /Zh-

After simplifying the terms in (3.1), we obtain

U = p,(x:) for i=0,....N
LU =fipq for i=1,.. ,N-1

Uigp1 = p; (xitia) for i=-N/2,....0
uN‘kH:pz(tkH) for k:07"'7M_17

(3.4)

where

(17 Ui per + 10 Uigern + 17 U] + [pr Uicak + P Uik + p; Ui e
for i=1, ...,N/Z —17N/2—|—17 .oN-1

q{’z Ui 5p41+ q{‘l Ui 1je1+ q?ui.kﬂ + q?‘l Ui+ L]?"Zuﬂz,kﬂ

for i= N/2

N.M
L> Ui7k+1:

€

(3.5)

and

Mifi qpnt m?fi,k+1 1 f e T8 P (s b)) 5 Ui njakn
fip=13 for i=1,...N/2-1,N/2+1,...N—1
0 for i=N/2.
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Here, for i€ {1: N /4}
r,_<}6_”i1/2_”i1/2_1>,

0_ —2¢ n A1)z bi_12 1
i\ T 2 2At)

rf*' = = — 0 = —

! hlhm’ Pi =oar Pi T oar
1 1

p; =0, m::? m?:? m;r:0>

s{ =cii1j2, 5 =0,

1

forie{N /4 +1:3N /4 — 1}/{}}

forie{N/4+1:N/2 -1}
si=c, s; =0,
forie{N/2+1:3N/4 — 1}

+ _ - _
s; =0, s/ =,

foric{3N/4:N — 1}

o2 o (2 @i b 1
A hihii1 hip 2 2At)7

N < 2¢ +ui+l/27bi+l/27 1 >’

ri=(= i el
hihivn  hi 2 2At
1 1
Pi =5 Fi Zopp Pi T oap
1 1
mz_ = Oa m? = Ea m1+ = Ea S+ = 07 s = Ci+'1/2

(3.9)

and lastly,

L, =1 2 3 2 -1
quzz o qN}lz ~w q?\f/z T b‘[;f/lz w qlff’/22 “on
(3.10)

4. Error estimates

The difference operator LNM in (3.5) fails to fulfill
the conditions of discrete maximum principle (as for
this we need g, > 0 to prove A to be an M-matrix
defined in Equation (4.9)). As a consequence, we
have to modify the equation (3.4), for i = N/2

L];;/Zz Unpoxiat %?f/lz Unja-1x1+ CI?\]/Z Un/2k41
a1 ‘2 (4.1)
+an)2Unj211k01 + Gy U 22401 =0.

From (3.4), for i = N/2— 1, we have

2¢ — hanja-1
(T Unjp-241=f N/2-1k+1

+onja-apy (X-1,tiga)

0 +
=N/ Unp2-1k1 + 151 Unj2 e

1
—Un /- 4.2
+At N/2-1k (4.2)

and, fori =N/2+1

(28 + hay /241

o ) Unjzi2k1 =y o1 pi1 + o2 U (X1, i)

0 +
—Tnjp1Unp2iikin 13501 Unj2in

1
JrEUN/zﬂ,k- (4.3)

Now putting the values of Uy, sx:1 and
Un/2+24+1 from Equations (4.2) and (4.3) into (4.1),
we get

210
-2
In/2 (W) (fN/sz+1 +onj2-1Py

(xl , tk+1) - 7’21/2_1 uN/Zfl‘kJrl

1 _
— N2 1 U2k — EUN/ZLk) + qN’/lz Unja-1k11
+ L]?\, /2 Uy 1+ q:,‘/lz Unj211k11

2K
+,2
+an)2 (28 T hay /2+1> (f N/2+1 k1 T enj2ald (Xl ; tk+1>

0
—TNj211 UN/2+1.1<+1
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1

— rﬁ/ZH Un/zp1 — _UN/2+1,k> =0.

< (4.4)

After rearranging the terms in (4.4), the discrete

and for i#N/2, these coefficients are defined in

(3.7-3.9). Let DN'M = DA Dand I = DM\ DM,
Lemma 4.1 Let N > Ny be such that

N *
problem thus reads > 250y° and 4.7)
0
Ui = p,y(xi) for i=0,...,.N N
INMU, G =f o for i=1,...N—1 (Ib)o+ar") <72 (4.8)
S . (45) 2
Uik = py(xi,tia) for i=-N/2,...,0 Let Y be the mesh function such that Y < 0 on
Unii1 =p,y(ten)  for k=0,...M—1, I'NM and INMy > 0 in DN™. Then Y < 0 in DM,
where
(ri Ui jr + 19U + 77 Ui s
-u* Uk +ptu; ifi=N/2
L:-\]"Mui,k+1 _ +(p1 i—-1 + pl i + pl +l.k) lfl / (46)
LNMU; 444 ifi#N /2
Proof. Write LN'M as
and N M
. —L"Yik1 =AYk +Aii ik +Aiia Yie o]
[m;fifl,k+l +mifi«,k+l +mi+fi+l,k+l} Bty B Y BirYinns] (49)
7 o —|bii—1Yik+DbiiYixk +Diir1Yivk, .
frika= +hp, (x-1,te) LU (X, Eeir) if i=N/2 L ¢ A
Fira if i=N/2, where A := (A;j) and B := (B;;) are written as
where, for i = N/2 Aija=—r17, Ai=—1], Aija=—r],
h2
2 R
A, 2(26+h b11+At>
P 2h 2¢ — hai_l ’
1 2¢+ha;_1 2¢—ha;,
0 i i+
0_ -~ ( _¢6
Ti 2h ( + 2¢ — hai,l 2¢+ hui+1 ’
hZ
2 JR—
L 4_2(26+h blHJrAt)
P Zh 26 + haH,l ’
h 0 h
Pi =2 —hayar P =% Vi T e hay)ar
h 0 h
= Y—0 =
i (2¢ — ha; 1)’ M= (2e+ha; 1)
—hc;_q —hei4
ll - ) 2=
2¢ — I’l&li_1 2¢+ I’l&li+1
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Bii1=p;, Bij= P?, B =p;.

Clearly B > 0, since p; ,p?,p;” > 0 and using (4.7) and
(4.8) to show A is an M-matrix [11]. Remaining part
is proved by induction. Assume

Yix <0, k=0,....N—-1.
Then, we can rewrite (4.9) as
AY 1 =BYx — LMY 4.

Since B>0, Y;x <0, A”* >0 and LNMY;;,; > 0 by
hypothesis. Then, Y;x1 <0 in DNM,

We obtain the following estimate as an immediate
consequence of Lemma 4.1.

Lemma 4.2 Let U be the solution of (4.5) and the
conditions (4.7) and (4.8) hold true. Then

1 -~
I Ul o < | Ul F o

Proof. Let

xim$ Uik for 1<i<N/2

¢ =—||U]| g psa— } :
(Z—xi)m$ Uik for N/2<i<N
Y :

Then ¢! <0, ¢¥*" <0, -N/2<i<0 and
¢7°<0, 0<i<N. For i#N/2, LNMgprk1 >y,
Further

1 ~
+k ,
e LR A
+ UN/2.k+1} > (DL - Df)(ﬁff;(; !

and

e 1
(Di —D? )d’ﬁg ! =5n ( — Ny 4PN 211

—6dn/2 — Pnj22 +4¢N/2—1) > 0.

VL«,i,kJrl + WL,z:,k+1;
ui.,k+1 =
VRiks1 + Wrikst,

Consequently, the required result follows from
Lemma 4.1.

Next, we decompose the solution into smooth and
singular component. We write Ujx1 = Vigr+
Wi ks1. Here the mesh functions V; and Vy satisfy

LMV ik =f, 40 for i=1,..,N/2-1,
Viiki1 =0(x;,ten) for i=-N/2,...,0,
Vinjzki =017 teia), k>0,
Viio=0(x;,0) for i=1,....N/2

and

LXMViiki =f, 50 for i=N/2+1,.. N-1,

Venjokin =017 i), Vengr =0(2,t:1), k>0,
VR,LO = v(xi,O) for l:N/z, 7I\]

0<i<N/2-1
Viiks1 ¥ Wiikrr = Vrigr + Wrign, i=N/2
N/2+1<i<N-1

(4.11)
The mesh function Wy and Wy satisfy
LMW, i51=0 for i=1,..,.N/2-1,
LYWk =0 for i=N/2+1,...,.N—1,
Wiika=0 for i=-N/2,...,0,
Winie1 =0, k>0, (4.12)
Wiio=0 for i=0,...,N/2,
Wgio=0 for i=N/2,....N,
Wen/2 k1 + Venjzei = Winjzka + Vin/ze,
DEWR‘N/Z,kH +D£VR,N/2,k+1 =D? WrnN/2k+1
+DBV Nj2ks1,k > 0.
Numerical solution U satisfies

(4.13)

Lemma 4.3 Let V; and Vi are the solutions of
(4.10), (4.11) and v is the solution of (2.4). Then under
the assumptions (4.7) and (4.8), we have
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{ [Viikir —v(Xi, b)) | < C(N_2 + At)xi

fori=1,..

LN/2-1

\Vrika — (X, te1)| <C(N2+At)(2—x;) fori=N/2+1,...,.N—1.

Proof. Consider W’E’i = —C(N? + At)x;, i€ {0,...,

N /2}. Then
LYM(Vi i1 —o(xi, b)) = (L.— LY™)o(x;, teia).-
We observe that for ie{1,...,N /2 — 1}

ILYM(Veikir —0(xi, b)) |

Arguing similarly for (Vg — v), we obtain the
following estimate for ie{N /2 + 1,...,N — 1}

[VRikt1 —v(xi, tig1)] < C(N72 + At) (2—x;).

Now, we define the following two mesh functions
on Si’ = {xi}f)\] :

0%v , [ ]|0% ov 0%v
N(hi + hi)||— 2 (| — — At||=— 1<i<N/4
C{(e+hl)(hl+hl+1) o m+hl< v m+ o m>+ t Y J, <i<N/
o*v v 0%v
2 el - - <i< ~1.
C[h (e 5 m+ P m>+At o2 J N/4+1<i<N/2-1

Using Theorem 2.4, conditions h; < CN7' and ¢ <
N~ to obtain

ILNM(Vy g1 —0(xi, tein)) | S C(N T2+ At) < LMyt

Further the required result follows from Lemma 4.1
|VLAi7k+1 — v(xi,tn)| S C(Z\]_2 + At)xi, 1 SISN/Z —1.
Consider

Yri=—C(N?+At)(2—x), i€{N/2,...,N}.
Similarly, for i€ {N /2+1,...,N —1} we obtain

LYM(V ki1 —0(xi, b)) |

641} 630 8211

W i — At||—

C[ (8 Fre I P w>+ o
< 0%v » (||o%0 ov
C|:(£+hi+1)(hi+hi+l) [ @Hw +hi+1< 2 - + o

3N/4<i<N-1.

Olh] .
;= — <i<
S; H(1+ €>711N/2, and
N—i h
Q.= <1+&), N/2<i<N-1
€

so that So =1 and Qy = 1, where « is a positive
constant.

Lemma 4.4 Let « < /2, then the functions S; and
Q; satisfy

LHSi if izl,...,N/4
_[NMg 5 Et+w
¢ S, if i:N/4+1,...,N/2—1
e+ah
and

}, N/2+1<i<3N/4-1

>—|—At

i

o

J
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C o
s+ahQi if l—N/2+1,...,3N/4—1

C e
€—|—0(HQi if 1—3N/47...,N—1.

—LYMQ; >

Proof. Fori =1,...,

(1+ 2981, Si—Si1="!Si1 and

2

2
—Li\]’MSi: —%(Si—si,l) ai1 1S 1—|—le 1

i

> i
e+ ah;

Next, fori =N/4+1,....N/2—-1

—LZ;]’MSI' = —86)%51' — ain:Si + bisi —+ D;Sl Z SLS

+ah "
Now, fori = N/2+1,...,
—LYMQ; = —62Q; — a;D2Q; + b;Q; + D; Q;

_ _¢ |:(Qi+l - Qz) - <Q1 - Qi1>:| _a'(QiJrl - Qil>
- h hi+1 hi l Ei

+b;Q;.

3N/4—1

*Oth—iQi 1 and a; > v, > 2a. Thus

Qi)

Since Q14 — Qi =
o
—-LYMQ, zz(QiH Q)+

c
Z et

(Q1+1

Fori =3N/4,...N—1

Qi1 — Qs Q—Qiy
e G(5555) - (%5

) Qz+1 Ql
alzl < h1+1
and Qi+l — Qi = —Oél;‘leiQi+1, a; 2 ’)’2 Z Za. Therefore
2a o C
—INMO.>Z7(0.., —O. in—Q, 4 > ——7——0..
T QI - hi (Q1+1 Ql) +a71€Ql+1 = (€+ Oéthi)Ql

Lemma 4.5 Let 0o > 2/a. Then for {x;}), the
following inequalities are satisfied:

( Si )<CN¥7 i=N/4,.,N/2-1

4.14
S (4.14)

and

(&)SCN4(ﬁ)7 i=N/2+1,...,.3N /4. (4.15)
Qny2

Proof. Since h; =h fori = N/4, ...,

5 o\ N2
i (1=
(SN/Z) ( e+ th)

Taking log on both sides to obtain

S; . —oh 4(1-2i/N)
< — <
<SN/2) exp ((N /2—1) (e n ah> ) CN~

8(ag)?(1-2i/N)(N~1InN)
Since sequence N (1+4ecoN i)
fori =N/2+1,...,3N/4

Qi HN—i (1 + th) (1 N (Xh) —(i—N/2)
Qn )2 HN/ 2 (14 k) € .
Similarly, it is
Q& —4(2i/N-1)
(o) <N .
Now, we will calculate the errors for the layers
components Wy and Wg in ((0,1 — o] U [1 + 0,2)) X
(0,T7.
Lemma 4.6 Let « < v/2 and g9 > 2/«. Then under
the assumptions (4.7) and (4.8), the errors associated
to the layer components satisfy

| Wik —w(xi,te1)| SCN T2 for i=
|[Wriiki1 —w(xites1)| SCN 2 for i=3N/4,...

N/2— 1, thus

is bounded. Further,

easy to follow that

1,...N/4
N-1.

Proof. From (4.13), we have

Un25e1=VrN/2061 + WrN/2K4+1

=Vinpg1 +Winjzes

|Un 21| < |Vinjaker| + [Wonjzial-

Using Theorem 2.4 and Lemma 4.2 to obtain
!WN/27k+1| < C. Consider

= —C<i> for i=
Sny2

Fori=0,...,

0,...,N/2.

N/2 and using Lemma 4.4, we have
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NM [ g1 NM ki1, [NM
L] ( +Wsz+1) L1 £L7 " Weika

C S;
> >0
Te+aH Sy,

and WL,O,k+1 =0= WLJ',(] for i < N/2 Thus

—CSo

= <0.
Sny2

k1 et
b0 £Wroka =

Similarly, we can show ¢} +Wp ;o <0. Therefore
using Lemma 4.1, we get

S;
|WL1k+1|<C<

) for i=1,...,.N/2—-1.  (4.16)
Sn )2

Further

|WL1M|<C< L ) SC<M>
Sn/2 Sny2

and from Lemma 4.5, we have

[Wiike| <CN 2 (4.17)

Since a < y/2 <w, ¢ = gpelnN, g9 > 2/ and using
Theorem 2.4, we have

— 1_x.
w(xi,ter1)| <Cexp (%

(4.18)

Combine (4.17) and (4.18) to obtain

Wik —w(xi, te1)|[ <CN > for i=1,...,N /4.

Now, consider ¢! = —C(&) for i=N/2,..,N

Onj2
Then using Lemma 4.4, for i=3N/4,....N—1 to

obtain

NM [ gk+1 NM (k+1 , TNM
L, (¢ +WR1k+1) L7 ¢r; £L7 " Wrika

> C G >0
£+0(HQN/2

and Wrnii1 =0 = Wgjp. Thus ¢k+1+WR,N,k+1
¢k+l <0.

Similarly, we can show qﬁ?{jiWR_i,g < 0. Thus using
Lemma 4.1, we have ¢§;1in,1'.1<+1 <O0fori = N/2,
..,N. Thus

)SCN‘Z fori=1,....N /4.

kt1
WRzk+1|<‘¢>+

Qi) for i=N/2+1,..,.N-1
QN/z

N/2

C(QN/4> for i=3N /4,....N—1

since Q is decreasing and from Lemma 4.5, we have

(g%;) < CN2. Thus

[Wrika] < CN2. (4.19)

Now, using Theorem 2.4 and doing the same
calculation as we do for W, we have

|w(x;, tri1)| < Cexp (ﬂ) <CN2 (4.20)

Using (4.19) and (4.20), we obtain |WR1k+1 — w(x;,
te)] < CN72

Next, we w111 state and prove some lemmas
required to obtain ¢ uniform error bounds.

Lemma 4.7 The following inequalities hold true:

exp(—a(l—xi)/s)ﬁ(sil'/z), =1,..,.N/2-1
(4.21)

and

exp(—a(xi—1) /&) < (Q?m) i=N/2+1,..,N-1.

(4.22)

Proof. Follows from Lemma 2.5 in [40], for each j, we
obtain

exp <_‘:h7) <exp (o‘gh ) ) (1 + ‘%’) _1. (4.23)

N/2 to obtain

Multiplying (4.23), forj=i+1,...,

ﬁexp( )Jﬁ(H )1<i.

i+1 i+1 Sn/2

Further, multiplying (4.23), for j =
N/2, we have

N/2 —oh N/2 B 1 .
f on(2)< 0,2 "<
N )

N—(i+1) —(i+1

N-(@G+1),..

Lemma 4.8 The difference operators D? and D%
satisfy the following inequalities:
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C
DSy > msw/z, _D;iQN/2 >——0Qnp-

e+h

Proof. Since (S; — Si—1) = “T}“"Si_l, we have

1
DSy = o (Snj2-2 —4Snj2-1435n)2)
S h C
zazwz(ua) =€ 5o
€ (1+4) € e+ ah

Since Qi — Qi = ~“-Q;,;, we have

1
_D§QN/2 =on (QN/2+2 - 4QN/2+1 + 3QN/2)

@ (1+4)

F(rey’

Theorem 4.9 Let u and U; ;1 be the solution of
(2.1) and (4.5), respectively. Then under the as-
sumptions (4.7), (4.8) and a < y/2 and gy > 2/a, we
get

Onjz 2 —/——Qnp2-

eJrah

C(N?+At) for i=

U — (s )| < {

Proof. We compute the error separately in the layer
region and outside the layer region.

Case 1: Fori = 1,...,N/4,3N/4,...,N — 1.Follows
from the triangle inequality to U —u and using
Lemma 4.3 and Lemma 4.6 to obtain

U i1 — u(xi, b)) | < |Viiger — (X, tegn)|

+ Wik —w(xi, tee)]

< C(N?+At).

Case 2: Here, we need to find out the error esti-

mate |Ui,k+1 —u(xi,tkH)‘ fori =N/4+1,...,3N/ 4—
1. Fori = N/4,3N /4, From Case 1

[Uiker —u(xi, tian)| < C(N 24 At). (4.25)
Consider

LM (U jeq —u(xi,tienn)) =LY MU5 e =LY Mu(xi b))

(el )0 o

C(NIn’N +At) for i=N/4+1,...,

Using Theorem 2.4, we have

Xit+1
o*u u
f’M(Ui,k+1—u(xiatk+1))| Sh/<€ 3 )dx
Xi-1
u
CAt
Mied TN

<C [hz —&—Ezexp (M) sinh (ﬂﬂ + At.
& e e

(4.26)
From (3.5), we have
N 2N 4071 2N hvyq
= <o
2007 SRR ST N S M <2
Since sinhx <cx, x€[0, 2]. This implies
sinh (h%) < C(%) Therefore (4.26) becomes
1,..,N/4,3N/4,...N—1
4.24
3N/4- 1. (4.24)
|LYM (U ey —u(xi b)) |
2 I —(1—=xi)74
<C|(h+Zexp| ——— | | At (4.27)
& &
Similarly, fori = N/2+1,...,3N/4—1
|LYM (U ey —u(xi b)) |
2 W —(xi=1)y,

Further at xy, = 1

LYY (Unjo 1 =1 (o2, t11) ) |

. 2
— VT,N/z,k+1 *LZTV.,MuN/z,kH ‘ <C (3_3+At> .
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Define the following discrete function

_C(N_2+At)(1+(xi—(1—0)))—Chj( 51’) for i=N/4,...N/2

. & \Sn)2
oF = 2l o
—C(N*+At)(1+((1+0)—x))—C— | ==~] for i=N/2+1,....3N/4.
€ QN/z
Then
hZ LNMS
—C(N2+At)LMM(x;) — C— (S—> for i=N/4,...,N/2
LN’M(’DI-H—‘I: € N/2

-2 NM K (LIMQ, .
C(N?+At)LYM(x) - C— | —=—'| for i=N/2+1,...,3N/4
& QN/Z

—C(N72 + At) (ﬂi — bixi) -C

82

2 /I NMc.
h_<Lr S‘) for i=N/4,...N/2

N/2

-2 W (LYMQ; .
C(N™*+ At)(a; — bx;) —C— | = for i=N/2+1,...,3N/4.
€ QN/2

Using assumption « < y/2, Lemma 4.6 and Lemma
4.7 to obtain

hZ
Cy1 (N> +At) + C—exp(— (1 —x;)y,/e) for i=N/4,...,N/2
[NMgktl > ¢
T i = hz
Cv,(N >+ At) + C—exp(— (x; — 1)y,/e) for i=N/2+1,....3N/4.
€

Assumption (4.7) implies 2 < % and using Lemma
4.8, we get

2

LM > (DE - DF)@ >2C(N 2+ At) + zcg.
(4.29)
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Therefore, it follows from (4.25)—(4.29) that

LYMOF > |INM (U — u(xi, b)) |
—OF > |Uipr — ulxi tin)|
—0) > U — u(x;,to)|.

Then applying discrete maximum principle to

®f+1i(ui,k+1 —u(x;, txr1)) over the domain EN’MH
(1 —0,1+0] x[0,T]) we obtain for i = N/4+ 1, ...,
3N/4—1

2

h
|Ujg1 —u(xi,trn)| <C <€2 + At) < C(N_2ln2N +At).

5. Numerical illustration

The performance of the proposed method is
examined in this section and the theoretical esti-
mates are numerically verified. We consider two test
problems for numerical computations.

Example 5.1 Consider the following singularly
perturbed problem of class (2.1) — (2.3)

for i=N/4+1,...3N/4-1
for i=N/4,3N/4and

where

[—(@a+¥), x<€[0,1]
a(x) {w{x%) ieﬂl]
and

Flt) = {4xt2exp(—t), (x,t)€[0,1] x [0,2]
’ 4(2 —x)fexp(—t), (x,t)€(1,2]%[0,2]

The exact solutions for the problems are un-
known for comparison. Therefore, we use the dou-
ble mesh principle to estimate the error. The
maximum point—wise error (EN'2') and order of
convergence (RV2Y) are calculated using:

ety +a(x)ue —x(2—x)u(x,t) —u =f(x,t) +u(x—1,¢), (x,t)€(0,2) x (0,2],

u(x,0) =0, x<]0,2],

u(x,t) =1, (x,t)€[-1,0]x]0,2],

u(2,t)=0, t<(0,2],
where

_ _(2+ (2_ ))7 6[071]
w={ G e
and

_[2(1+2)2, (x,t)€[0,1] x[0,2]
f(xaf)—{3gl+x2;t2, (i,t)e(lﬁ]i[ovz}

Example 5.2 Consider the following singularly
perturbed problem of class (2.1) — (2.3)

~ 2N, /\t/2
E‘I:]"At = max‘ UN’At (xi, tk+1) — UZN (xi, tk+1) |,

N,/A\t . 1 ESI,At
Re' L= ng E_ZN‘Af/z )

where UN’At(xi,tkH) and EIZN’At/Z(xi,tk) are the

approximate solutions obtained on the mesh DNM
and DM, respectively. When, the perturbation
parameter approaches zero, the problem's solution
exhibits turning point behaviour (Figs. 1—4).

ety +a(x)ue —5u(x,t) —u =f(x,t) +2u(x—1,¢), (x,t)€(0,2) x (0,2],

u(x,0) =0, x<]0,2],
u(x,t) =0, (x,t)€[-1,0]x]0,2],
u(2,) =0, t€(0,2],
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Maximum absolute error and order of convergence
for problems 5.1 and 5.2 are tabulated in Tables 1
and 2. Moreover, the maximum absolute errors for
problems 5.1 and 5.2 are plotted in Figs. 5 and 6,
respectively. The surface plot of the numerical so-
lution for problems 5.1 and 5.2 are plotted in Figs. 1
and 3, respectively. Also, the numerical solutions at
final time step (t = 2) for different values of ¢ are
displayed in Figs. 2 and 4.

The numerical results tabulated in Tables 1 and 2
do not clearly depict the theoretical order of
convergence for spatial discretization. It is to be
noted that the error in numerical solution is due to
spatial and temporal discretization. As a conse-
quence, the errors given in Tables 1 and 2 are a
combination of temporal and spatial errors, with the
layer regions playing a significant role.

The hybrid difference scheme improves accuracy
in space only. To verify this, we performed numer-
ical experiments for M = N* and numerical results
are tabulated in Table 3. In Table 4, we have fixed
¢ =27% and N = 512 and reduce At by half and the
associated errors are presented at different values of
x. It can be observed that the errors reduce by
almost half which confirms the first-order conver-
gence in time. Figures 7 and 8 have also been
illustrated to show the errors in layer region and
outside layer region. This demonstrates that the
numerical method is second-order spatially accu-
rate outside of the interior layer and the errors are
reduced in the layer region as claimed in Theorem
4.9. The implementation of the proposed method is
done in MATLAB R2015b (The Mathworks, Inc.).
The program code is uploaded in GitHub and the
URL of the source code is http://shorturl.at/gjlCS.

solution (u)

Fig. 1. Numerical solution of Example 5.1 for e=2"* when
M =N =128

Fig. 2. Numerical solution of Example 5.1 at t = 2 for different values of
e when N = 128.

solution (u)

Fig. 3. Numerical solution of Example 5.2 for ¢=2"* when
M =N =128

0.05 T T T T T T T T T

0.2 1 1 1 1 1 1 1 1 1

Fig. 4. Numerical solution of Example 5.2 at t = 2 for different values of
e when N = 128.
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Table 1. Maximum absolute error and order of convergence for Example 5.1 for different values of ¢, M and N when M = N.

N e=2"2 27 276 28 2710 2712

32 1.099e-01 8.697e-01 8.723e-01 8.712e-01 8.709e-01 8.708e-01
1.6274 1.5675 1.2466 1.2572 1.2601 1.2609

64 3.558e-02 2.934e-01 3.676e-01 3.644e-01 3.635e-01 3.633e-01
1.3320 2.0478 1.5866 1.6018 1.6060 1.6071

128 1.413e-02 7.096e-02 1.223e-01 1.200e-01 1.194e-01 1.192e-01
1.1428 1.9332 1.7309 1.7302 1.7308 1.7311

256 6.400e-03 1.858e-02 3.687e-02 3.619e-02 3.598e-02 3.592e-02
1.0336 1.7107 1.6093 1.6294 1.6359 1.6376

512 3.126e-03 5.676e-03 1.208e-02 1.169e-02 1.157e-02 1.154e-02
1.0066 1.5189 1.5926 1.6132 1.6207 1.6241

Table 2. Maximum absolute error and order of convergence for Example 5.2 for different values of ¢, M and N when M = N.

N e = 2—2 2—4 2—6 2—8 2—10 2—12

32 1.886e-03 4.150e-03 2.485e-03 2.146e-03 2.288e-03 2.323e-03
1.4071 1.6239 1.1244 1.0741 1.0986 1.1044

64 7.113e-04 1.346e-03 1.139e-03 1.019e-03 1.068e-03 1.080e-03
1.5199 1.6981 1.5245 1.3442 1.3740 1.3811

128 2.480e-04 4.149e-04 3.961e-04 4.015e-04 4.122e-04 4.149e-04
1.5620 1.4068 1.5615 1.6111 1.6576 1.6714

256 8.400e-05 1.565e-04 1.342e-04 1.313e-04 1.304e-04 1.302e-04
1.5102 1.5403 1.5137 1.6794 1.7007 1.7062

512 2.949e-05 5.380e-05 4.700e-05 4.101e-05 4.014e-05 3.991e-05
1.4117 1.5972 1.4798 1.4726 1.4368 1.4272

6. Concluding remark

Singularly perturbed parabolic functional differ-
ential equation with discontinuous coefficient and
source term is numerically solved. The problem's
solution takes into account not just the present state
of the physical system but also its history. The
simultaneous presence of discontinuous data and
delay makes the problem stiff. In the limiting case,
the solution of the problem exhibits multi-scale
character. There are narrow regions where solution

102 T
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2
>
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<
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Fig. 5. Error plot for Example 5.1.

derivatives grow exponentially and exhibit turning
point behaviour, leading to sharp interior layers
across discontinuities.

A hybrid numerical scheme composed of a central
difference scheme in the layer region and a
midpoint upwind scheme outside the layer region is
used to discretize space variable over a specially
generated mesh. Whereas an implicit finite differ-
ence scheme is used to discretize the time variable.
The mesh has been chosen so that most of the mesh
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Fig. 6. Error plot for Example 5.2.
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Table 3. Maximum absolute error and order of convergence for Example 5.1 and 5.2 for different values of M and N when M = N? and ¢ = 271°.

For Example 5.1 For Example 5.2

N left region interior layer region righ tregion left region interior layer region right region
0,1 — g] 1l-90,140) 1+ 0,2 0,1 — g] 1l-90,14+0) 1402

32 7.602e-03 9.073e-01 2.237e-02 1.863e-04 2.215e-03 6.044e-05
1.9665 1.3111 1.9344 1.9878 1.1088 1.8829

64 1.973e-03 3.656e-01 5.687e-03 4.652e-05 1.026e-03 1.632e-05
1.9760 1.6430 1.9033 1.9624 1.3972 1.7645

128 5.083e-04 1.170e-01 1.478e-03 1.182e-04 3.895e-04 4.790e-06
1.9592 1.7816 1.8513 1.9592 1.7332 1.5841

256 1.323e-04 3.404e-02 3.992e-04 3.064e-06 1.186e-04 1.594e-06
1.9438 1.9236 1.8205 1.9382 1.8560 1.5632

Table 4. Maximum absolute error and order of convergence for Example 5.2 for different values of M and x when N = 512 and ¢ = 275,

x M =32 64 128 256 512

XN/241 3.837e-04 2.058e-04 1.071e-04 5.486e-05 2.773e-05
0.8988 0.9423 0.9651 0.9843 0.9981

XN /244 3.999¢-04 2.122e-4 1.093e-04 6.530e-05 3.225e-05
0.9142 0.9571 0.7432 1.0178 1.0184

points remain in the regions with rapid transitions.
o etregon The proposed numerical method has been analyzed
% interior layer region for consistency, stability and convergence. Extensive

right region theoretical analysis is performed to obtain consis-
tency and error estimates. It is found that the
method proposed is unconditionally stable, and the
convergence obtained is parameter uniform. Nu-
3 merical illustrations are presented for two test ex-
amples that demonstrate the effectiveness of the
technique. Convergence obtained in practical sat-
isfies theoretical predictions.
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