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RESEARCH ARTICLE

Variance of TD-Mosaic DualeVortex Interactions
Between In-Fa and Cempaka (2021) in the
North Pacific

Tsorng-Lin Chia a,*, Guang-Yang Pan b, Ji-Chyun Liu a

a Department of Computer and Communication Engineering, Ming Chuan University, Taoyuan 333, Taiwan, R.O.C
b School of Data and Computer Science, Guangdong Peizheng College, Guangzhou, Guangdong Province, People's Republic of China

Abstract

A study of the different types of dual-vortex interactions or “Fujiwara effects” between two storms is crucial for
considerably improving weather forecasts. This study combined remote sensing images, empirical formulas based on
the possibility of storm interaction (LioueLiu formula), and vector addition techniques to accurately analyze In-Fa and
Cempaka typhoons and the surrounding weather patterns during the 2021 typhoon season in the North Pacific. Although
the distance separating the typhoons In-Fa and Cempaka was 1,800e2,040 km, the influence of middle air flow and a
tropical depression (TD) caused a "vector superposition TD-mosaic double-vortex” interaction between the two ty-
phoons. Therefore, this paper proposes a new dual-vortex interaction between the typhoons studied here. This newly
discovered interaction is different from the normally observed double-vortex interaction between storms. In the same
context, these interactions caused strong typhoons with eye diameters of 20, 25, 55, 60, 65, 75, and 100 km and led to the
turning and U-turn trajectories of the typhoons In-Fa and Cempaka. This paper uses linear (vector) space technology,
namely vector addition diagrams, to describe the vector addition TD-mosaic double-vortex interaction between tropical
cyclones and TDs.

Keywords: Fujiwhara effect, Vortex interaction, LioueLiu formulas, Vector addition TD-mosaic dual-vortex

1. Introduction

A ccurate prediction of the migratory track,
intensity, and rainfall of tropical cyclones

(TCs) is a crucial research focus for meteorologists
and weather forecasters [1]. Factors influencing
track orientation, track shape, track sinuosity, and
ultimately, landfall points are of particular interest
[2,3]. Satellite-based cloud images can be used to
analyze the TC cloud structure and dynamics [4e8].
Concurrent with climatic variability and global

warming in recent decades, an increasing number of
dual-TC formations has been noted in various ocean
basins. A recent review detected 10 dual-vortex in-
teractions in the Northwest Pacific (NWP) within

just 5 years (2013e2017) [9]. The conventional
“Fujiwhara effect,” also referred to as Fujiwhara
interaction, binary interaction, or dual-vortex inter-
action, occurs between any two TC systems that are
less than 1,400 km apart, with mutual effects on the
strength and direction. The behavior patterns of
such interactions can be classified as complete
merge (CM), partial merge (PM), complete straining
out (CSO), partial straining out (PSO), and elastic
interaction (EI) [10,11]. EI is frequently associated
with changes in the track direction and the execu-
tion of complex/looping tracks. Occasionally, ty-
phoons execute a U-turn with increasing intensity.
Analyzing the different types of dual-vortex in-
teractions is critical for improving future weather
forecasts, as the Fujiwhara effect is yet to be
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incorporated into climate models. This paper in-
troduces a newly detected dual-vortex interaction
referred to as “vector addition leakage (VAL).”
Regarding dual-vortex interactions, a key example is
the dual-vortex interactions between typhoons
Melor and Parma in the NWP basin, which caused
unexpected heavy damage over the Philippines in
2009 and considerable errors in prediction [12].
Several such dual-vortex interactions have been
studied in the past [9e15]. For instance, Hart and
Evans [16] simulated the interaction of dual vortices
in horizontally sheared environmental flows on a
beta plane, and Galarneau et al. [17] investigated the
intensification of Hurricane Sandy in 2012 during
the warm seclusion phase of its extratropical
transition.
Indirect dual-vortex interactions between any two

TCs through another mid-lying weaker tropical
storm (TS) or tropical depression (TD) have been
further identified as an additional and unique type
of dual-vortex interaction in several recent studies.
The interaction between the typhoons Tembin and
Bolaven in 2012 was examined, where TDs located
between the typhoons resulted in an indirect
cycloneecyclone interaction [18]. Empirical for-
mulas (referred to as LioueLiu formulas) have been
proposed for determining the threshold distance
required for substantial interactions between storms
[19]. The formulas are empirically based on the size
factor (SF), height difference (HD), rotation factor
(RF), and current intensity (CI) of TCs, where CI
accounts for the maximum wind speed and intensity
of TCs. The LioueLiu formulas have been success-
fully used to predict and quantify the impacts of
intermediate TDs, and these formulas can therefore
be applied to modeling of TDs mosaic dual-vortex
interactions between two TCs.
Seven typhoon-prone ocean basins have appeared

in the NWP, with an average of 24 typhoons formed
per year in the last four decades (1977e2016) [20,21].
The influence of cooler air masses, air flows, and
outflow jets on typhoons is high in the NWP basin
because upper cooler air masses result in a tem-
perature gradient toward the north, whereas lower
air flows transfer warm and humid air from the
south to the typhoons formed in the NWP. Both the
Haiyan and Hagupit typhoons intensified into
super-typhoons (STYs) through their interactions
with cold fronts in the NWP during the winter
seasons of 2013 and 2014 [22]. Occasionally, south-
west air flows play a crucial role in intensifying ty-
phoons in the NWP during summer [23]. Better
visualization of such influence is essential in the
study of typhoon intensification processes in the
NWP. Studies have analyzed the influence of the

seasonal variations of all seven STYs in 2014 in the
NWP on their distribution and profiles [22,24]. The
results verified the critical role of northwest cold air
masses and southwest air flows in strengthening
both winter and summer STYs. Both cold fronts and
southwest air flows can increase or decrease the STY
intensity in winter. This study investigated how the
weather features of southwest air flows and
occluded fronts play a vital role in changing the
typhoon intensity, such as enhancement and
reduction during the STY passage. STY (Nuri) im-
ages from the winter of 2014 were analyzed [25].
A recent study of all 30 STYs in 2013e2017 in the

NWP showed that each STY is influenced by
southwest air flows in summer and by the Siberian-
Mongolian high-origination cool air masses in
winter [9]. Moreover, on average, winter STYs are
stronger than summer STYs in this region because
of additional weaker southwest air flows in most
STYs in winter. Moreover, the zones in the NWP
where STYs are prone to take a turn/curved track or
achieve the STY strength level were evaluated sea-
son-wise, and the influencing seasonal environ-
mental factors at that time were also identified. It
was found that STYs accompanied by southwestern
air flows or both southwestern air flows and cooler
air masses exhibit a higher degree of interaction
than STYs accompanied by other effects [9]. This
rise of STYs has also recently been reported under
the headline of “Typhoons Getting Stronger, Mak-
ing Landfall More Often” [26] in the Eos science
news magazine. Accordingly, various environ-
mental issues, such as salinity intrusion, which alter
weather, and typhoon intensity have been examined
using various tools, such as an indicator derived
from Landsat 8 OLI data [27].
The observation and quantification of dual-vortex

interactions are essential for the efficiency of
weather prediction models and forecasts. In a pre-
vious study, to validate cyclonic interactions, three
successive dual-vortex interactions were studied
using the generalized LioueLiu formulas, which
calculate the threshold distances between the cen-
ters of two cyclonic systems required for their sub-
stantial interactions [28]. These sets of dual-vortex
interactions occurred between the typhoons Noru
and TS Kulap, typhoons Noru and Nesat, and the jet
flows and air flows separating them, as well as be-
tween the typhoons Nesat and TD Haitang [28].
This study used a combination of various tech-

niques to analyze the In-Fa and Cempaka typhoons
and the surrounding weather patterns during the
2021 typhoon season in the North Pacific; the
development of these storm systems and their in-
teractions are summarized below.
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At 06:00 UTC on July 14, 2021, a persistent area of
convection, associated with a low-level circulation
center, was located 895 km west-northwest of
Guam. At 00:00 UTC on July 18, the disturbance was
upgraded to a depression and was designated TD
Fabian. At that time, TD Fabian moved slowly
northwestward before turning northward. Later,
Fabian became a TS and was assigned the name In-
Fa. It developed rapidly over the Philippine Sea and
continued its trajectory toward Ryukyu Islands.
Typhoon In-Fa began to take a northwest track
before moving west-northwestward over Japan by
the early hours of July 19. At 00:00 UTC on July 19,
In-Fa and intensified to a severe TS. Later, In-Fa
became a typhoon located approximately 895 km to
the east of extreme Northern Luzon. At the same
time, the first curved bending of the track appeared.
In-Fa started to move westward with a west-south-
west track. At 22:00 UTC on July 19, its 65-km eye
was evident on satellite images; then, the eye started
to enlarge, and In-Fa was upgraded to a mid-level
typhoon at 03:00 UTC on July 21, with winds of
145 km/h. At 20:00 UTC on July 21, satellite images
from Okinawa Island showed a marked and clear
eye and revealed that the eyewall was moving
westward. Later, as it shifted its motion west-
southwestward, In-Fa's eye became ragged. At 03:00
UTC on July 22, In-Fa started an eyewall replace-
ment cycle and its northern quadrant started to
weaken as it changed its movement yet again to the
south-southwest. At 09:00 UTC on July 22, the
typhoon started to weaken with its eye expanding
and showed curved bending movement while
tracking westward-northwestward gradually. Then,
a second curved bending movement was caused by
a subtropical ridge to the north. At 15:00 UTC on
July 23, In-Fa passed between Tarama Island and
Miyako-Jima Island, with its eye remaining large as
it slightly shifted its movement toward the north-
northwest. At 02:00 UTC on July 24, the typhoon
further reached its peak with maximum sustained
winds of 150 km/h (90 mph) and a minimum baro-
metric pressure of 950 hPa. At 03:00 UTC on July 24,
In-Fa reformed its convective depth and maintained
a ragged eye while moving northward, and it started
to move north-northwestward over the Sea of Japan.
At 04:30 UTC on July 26, the system made its first
landfall in the city of Zhoushan in the eastern Chi-
nese province of Zhejiang.
Typhoon Cempaka was slowly approaching

China's Guangdong Province, and it was expected to
make landfall on July 20, 2021. At 00:00 UTC on July
20, satellite imagery revealed that the system had
maintained an overall convective signature and
exhibited a well-defined, but cloud-filled, eye as it

tracked very slowly toward China. At 06:00 UTC on
July 20, the center of Cempaka was located
approximately 215 km (135 miles) from Hong Kong.
It had maximum 10-min duration winds at 100 km/h
(62 mph). The minimum central barometric pres-
sure was 992 hPa, and the system was almost sta-
tionary. Tracks of the cyclonic systems In-Fa and
Cempaka over July 17e27, 2021 are presented in
Fig. 1.
During July 19e22, 2021, the centers of the ty-

phoons In-Fa and Cempaka were 1,800e2,040 km
apart. Despite the considerable distance between
the typhoons, the influence of middle air flows and
TD caused vector addition TD-mosaic dual-vortex
interactions between these two typhoons, and two
mid-TDs could be observed in cloud images. A va-
riety of TD-mosaic dual-vortex interactions,
including (a) typical TD-mosaic dual-vortex inter-
action, (b) offset TD-mosaic dual-vortex interaction,
(c) two TD-mosaic dual-vortex interaction, and (d)
vector addition TD-mosaic dual-vortex interaction,
were observed between In-Fa and Cempaka. These
interactions created stronger typhoons with clear
eyes of diameters of 25, 50, 65, and 150 km and
caused the curved bending (zig-zag) tracks of
Typhoon In-Fa and the U-turn track of Typhoon
Cempaka.
The LioueLiu empirical formulas have been suc-

cessfully applied for quantifying the threshold dis-
tance required for interactions between TCs/
typhoons and two TDs whenever all phenomena co-
exist in the North Pacific Ocean. This paper expands
the utility of these formulas by applying vector
space technology, that is, a vector addition diagram
depicting vector addition for TD-mosaic dual-vortex
interactions.

2. LioueLiu formulas and vector addition
diagram

2.1. LioueLiu formulas

The LioueLiu formulas are applied to quantita-
tively describe the chance of dual-vortex in-
teractions, potentially improving weather forecasts.
Moreover, they can characterize several types of
dual-vortex interactions. For any two simulta-
neously occurring individual cyclones designated
TC1 and TC2, which have the current intensity (CI )
values of CI1 and CI2, as obtained from their
respective maximum wind speed and intensity, the
threshold distance can be calculated. The
pressureewind relationship for intense TCs has
been examined [28]; the current intensity focuses on
the physical connections between the maximum
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surface wind and minimum sea-level pressure. The
effects of vortex size, background environmental
pressure, and complex vortex features are not
addressed in these formulas.
The threshold distance dth (km), which is calcu-

lated using the LioueLiu formulas, determines
whether TC1 and TC2 experience marked dual-vor-
tex interactions. The first version of the LioueLiu
empirical formulas defined by (1) is applied for the
typical dual-vortex interactions as follows:

dth¼1000þ 100
�
CI1
4

þCI2
4

�
ð1Þ

For example, in some special situations, a TD or
TS occupies the region between two individual
cyclone systems. A cyclone’s interaction with an
intervening TD or TS is unusual and differs from the
typical cyclone-to-cyclone interaction. Upward
convection may occur between them because a TD
or TS is smaller than a cyclone. Such upward con-
vections can strengthen the cyclone and sustain its
rotation. Thus, size ratios, height differences, and
rotation should be included when calculating
threshold distances by using the LioueLiu formulas
under these specific situations. Under such condi-
tions, the LioueLiu formulas for each threshold
distance, dth1 and dth2, can determine two sets of
dual-vortex interactions that may occur, and these
two distances also exist between TC1 (CI1) and TD
(CId) and between TC2 (CI2) and TD (CId). Hence, a
second version of the LioueLiu formulas defined by

(2) is applied for measuring the threshold distance
Dth to quantitatively determine the TD-mosaic dual-
vortex interaction, as follows:

Dth¼dth1þdth2¼2000þ100
�
CI1
4

þCId
4

�
F1

þ 100
�
CI2
4

þCId
4

�
F2

ð2Þ

where F1 and F2 are the tuning factors dependent on
size, relative height difference, and rotation factors.
For simplification, take F1 ¼ F2 ¼ 1.
Generalized dual-vortex interactions that involve

typical dual-vortex interactions and TD-mosaic
dual-vortex interactions have been introduced in
previous studies [19,28], in which the LioueLiu
formulas could successfully predict these in-
teractions and quantified the impacts of intermedi-
ate TDs on the interactions. In the first case [19], the
typical dual-vortex interactions between the ty-
phoons In-Fa and Cempaka were analyzed using
Eq. (1), and in the second case [28], the TD-mosaic
dual-vortex interactions with one TD/TS among
typhoons/TCs were analyzed using Eq. (2).

2.2. Variety of TD-mosaic dual-vortex interactions

The variety of TD-mosaic dual-vortex interactions
observed between the typhoons In-Fa and Cempaka
included single TD-mosaic dual-vortex interaction,
offset TD-mosaic dual-vortex interaction, double

Fig. 1. Tracks of the typhoons In-Fa and Cempaka in the North West Pacific.
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TD-mosaic dual-vortex interaction, and vector
addition TD-mosaic dual-vortex interaction. The
single TD-mosaic dual-vortex interaction is depicted
in Fig. 2(a), where TC1, TD, and TC2 are located on a
line; the TD-mosaic interaction is located between
the two TCs, and two sets of TCeTD interactions
exist, which cause indirect cycloneecyclone inter-
action. The offset TD-mosaic dual-vortex interaction
is shown in Fig. 2(b). The indirect cycloneecyclone
interaction possibly occurs through the two sets of
depressionecyclone interactions and is related to
the distance between TC1 and TC2; the offset dis-
tance (o) fits the assumption of o < d/3. The double
TD-mosaic dual-vortex interaction is presented in
Fig. 2(c). The indirect cycloneecyclone interaction
possibly results from the two sets of
depressionecyclone interactions and the subse-
quent merging of TD1 and TD2, and the space be-
tween TD1 and TD2 fits the assumption of s < d/3.
The vector addition TD-mosaic dual-vortex inter-
action is illustrated in Fig. 2(d). The neighboring
southwest air flow (s1 and s2) between TC1 and TC2

occurs, which consists of two branched air flows
(with lengths of s1 [TD01 to TD0] and s2 [TD02 to TD0])
connected with a vertex (TD0). The TD-mosaic
interaction is located between the two TCs, and two
sets of TCeTDs interactions exist, which also causes
indirect cycloneecyclone interaction. When this TD-
mosaic cycloneecyclone interaction occurs, the
interaction among “TD01 to TD0” and “TD02 to TD0”

encompasses vector (linear) spaces, wherein vector
spaces (u and w) specify the independent directions
in space. Vector addition indicates that vector u is
added to vector w, yielding the sum u þ w. In the

various TD-mosaic dual-vortex interactions shown
in Fig. 2(a)e(d), the TD-mosaic dual-vortex in-
teractions with TDs among typhoons TCs were
analyzed using Eq. (2).

3. TD-mosaic dual-vortex interactions between
In-Fa and Cempaka (2021)

The Himawari-8 geostationary weather satellite
images of thermal infrared band 1 (3.9 mm) at 10-
min intervals were collected for this current study
[20]. The whole dataset combines vast amounts of
historical observations into global estimates using
advanced modeling and data assimilation systems
and is provided freely for public use through the
online link: https://www.ecmwf.int/en/forecasts/
datasets/reanalysis-datasets/era5.
The tracks of the cyclonic systems In-Fa and

Cempaka over July 17e27, 2021 are presented in
Fig. 1. From 09:00 UTC on 19 July to 09:00 UTC on 22
July, obvious changes occurred in the zig-zag track
of Typhoon In-Fa and the U-turn track of Typhoon
Cempaka. The four time intervals of TA ¼ 09:00 UTC
on 19 July, TB ¼ 09:00 UTC on 20 July, TC ¼ 09:00
UTC on 21 July, and TD ¼ 09:00 UTC on 22 July were
chosen for this study. Based on the four cloud im-
ages presented in Fig. 3, the threshold distances for
the interaction between In-Fa and Cempaka were
determined over the four intervals. For the typical
dual-vortex interaction, the threshold distances
were calculated using Eq. (1). No dual-vortex in-
teractions occurred in the four intervals because the
measured distances (2,040, 1,920, 1,910, and
1,800 km) between the two typhoons were larger

Fig. 2. Variety of TD-mosaic dual-vortex interactions. (a) Single TD-mosaic dual-vortex interaction, (b) Offset TD-mosaic dual-vortex interaction, (c)
Double TD-mosaic dual-vortex interaction, and (d) Vector addition TD-mosaic dual-vortex interaction.
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than the calculated threshold distances (1,130, 1,170,
1,180, and 1,160). All the values are presented in
Table 1.
For the TD-mosaic dual-vortex interaction, the

threshold distances were calculated using Eq. (2),
substituting F1 ¼ F2 ¼ 1 for approximations. At the
TA time interval, the value of CId1,2 was 1.4 for TD1,2

(unclassified TDs at N29�N/127�E and 28�N/123�E),
and the value of CId01,02 was 2.4 for TD01,02 (unclas-
sified TDs at 22�N/116�E and 21�N/136�E). At TB, TC,
and TD time intervals, the values of CId were 1.2, 1.2,
and 1.6 for TD (unclassified TDs at N23�N/118�E,
N21.5�N/115�E, and 17�N/119�E). All the values are
listed in Table 2. Several techniques incorporate the

Fig. 3. Four cloud images for this study. (a) at TA ¼ 09:00 UTC on 19 July, (b) at TB ¼ 09:00 UTC on 20 July, (c) at TC ¼ 09:00 on 21 July, and (d) at
TD ¼ 09:00 UTC on 22 July.

Table 1. Prediction of dual-vertex by using Eq 1

TA: 7/19 09:00
UTC

TB: 7/20 09:00
UTC

TC: 7/21 09:00
UTC

TD: 7/22 09:00
UTC

TC1: In-Fa pressure (hPa) 990 985 965 955
CI1 value 2.7 3.2 4.5 5.1
TC1: Position 25�N

132�E
25�N
131�E

24�N
128�E

23.5�N
126�E

TC2: Cempaka pressure (hPa) 992 977 990 1,000
CI2 value 2.5 3.8 2.7 1.4
TC2: Position 21�N

112.5�E
22�N
112.5�E

20.5�N
110�E

20�N
109�E

Measured distance between In-Fa and Cempaka (d, km) 2,040 1,920 1,910 1,800
Calculated threshold distance by Eq. (1) (dth, km) 1,130 1,175 1,180 1.170
Dual-vertex interaction No No No No
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relationships between CI number and minimum
sea-level pressure or maximum wind speed of TCs
[29]. The wave number-one perturbation technique
[30] and the maximum vertical values of radar
reflectivity with geopotential height [31] have been
proposed to obtain alternative values of F1 and F2.
During the first to fourth intervals, TD-mosaic

dual-vortex interactions were present because the
measured distances (1,982/983, 1,914, 1,891, and
2,133 km) between the two typhoons and TD were
less than the calculated threshold distances (2,200/
2,350, 2,235, 2,200, and 2,243 km). Thus, TD-mosaic
dual-vortex interactions were present in the four
intervals. Regarding typhoon behaviors in the first
interval, In-Fa changed direction with the first
curved bending, and Cempaka changed direction
with a U-turn. In the second interval, a dual-vertex
interaction between In-Fa and Cempaka was noted,
and both typhoons became stronger. In the third
interval, a dual-vertex interaction between In-Fa
and Cempaka was noted, and the typhoons contin-
uously strengthened. In the fourth interval, In-Fa
changed direction with a second curved bending
and continued to strengthen, and Cempaka changed
direction with a U-turn.
Figures 4(a)e4(c), 5, 6, and 7(a)e(f) all clarify the

various TD-mosaic dual-vortex interactions. Double
TD-mosaic dual-vortex interaction and vector
addition TD-mosaic dual-vortex interactions were
analyzed based on the cloud images for July 19 at

07:10 in Fig. 4(a)e(c). Figure 4(a) provides the TIR
image, Fig. 4(b) presents the temperature distribu-
tion image, and Fig. 4(c) provides the height distri-
bution image. The temperature and height
distribution images were obtained through linear
interpolation based on the grayscale of the original
cloud image. According to the definition of the
Himawari-8 satellite cloud image, 200 K is repre-
sented by grayscale white (255), and 330 K is rep-
resented by black (0). Therefore, the relationship
between the image pixel grayscale and the corre-
sponding Celsius temperature is expressed as

temperatureðx;yÞ¼56:85� 130
255

pðx;yÞ ð3Þ

where p(x, y) is the grayscale of the pixels at the
position (x, y) on the satellite cloud image. For dis-
playing the height distribution of the original cloud
image in this paper, the sea level (altitude is 0 m) is
set at the reference temperature of 20 �C, and the
changing basis is a temperature drop of 0.65 �C at a
height of 100 m. The resulting height distribution is
defined as

heightðx; yÞ¼ 20� temperatureðx; yÞ
0:65

,100 ð4Þ

The method of finding the double TDs with
dual-typhoons is illustrated in Fig. 2(c), and (d)
presents VAL, which clearly appears in the images

Table 2. Prediction of dual-vertex by using Eq 2

TA: 7/19 09:00 UTC TB: 7/20 09:00 UTC TC: 7/21 09:00 UTC TD: 7/22 09:00 UTC

TC1: In-Fa pressure (hPa) 990 985 965 955
CI1 value 2.7 3.2 4.5 5.1
TC2: Cempaka pressure (hPa) 992 977 990 1,000
CI2 value 2.5 3.8 2.7 1.4
CId1, CId2 value 1.4 e e e

CId01, CId02 value 2.4 e e e

CId value 1.2 1.2 1.6
Measured distance between In-Fa and TD1,

Cempaka and TD1 (d, km)
666
1,316 (1,982)

e e e

Measured distance between In-Fa and TD2,
Cempaka and TD2 (d, km)

e e e

Measured distance between In-Fa and TD01,
Cempaka and TD02 (d, km)

604
379 (983)

Measured distance between In-Fa and TD,
Cempaka and TD (d, km)

1,338
576 (1,914)

1,411
480 (1,891)

1,027
1,106 (2,133)

Calculated threshold distance by
2nd formula (dth2, km)

2,200
2,250

2,235 2,200 2,243

Dual-vertex interaction Type A Type B Type B Type C
Behavior *I *II *III *IV

Types of dual-vertex interaction: Type A: two TD-mosaic and vector addition TD-mosaic dual-vortex interactions, Type B: typical TD-
mosaic dual-vortex interaction, and Type C: offset TD-mosaic dual-vortex interaction.
*I: In-Fa changed direction with first curved bending, Cempaka changed direction with a U-turn.
*II: Dual-vortex interactions existed between In-Fa and Cempaka; both In-Fa and Cempaka strengthened.
*III: Dual-vortex interactions existed between In-Fa and Cempaka; In-Fa continuously strengthened.
*IV: In-Fa changed direction with a second curved bending and continuously strengthened; Cempaka changed direction with a U-turn.
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of Figs. 3(a) and 4(a) and (c). Moreover, the exis-
tence of VAL among two TDs and dual-typhoons
was identified in the 3-h interval from 07:00 to 10:00
UTC on 19 July. During the VAL interval, the
strengthening of Typhoon In-Fa occurred. The
vector addition TD-mosaic dual-vortex interaction
is shown in Fig. 2(d). The positions of TC1, TC2, and
TDs are presented in Table 3. In addition to TC1 and
TC2, the neighboring southwest air flow is present,
which consists of two branched air flows (with
lengths of s1 [TD01 to TD0] and s2 [TD02 to TD0])
connected with a vertex (TD0). s1 represents a vector
u, and s2 denotes vector w. For such vectors u and w,
the parallelogram spanned by them contains one
diagonal vector that starts at the origin. This new
vector (diagonal) is the sum of the two vectors and
is denoted u þ w.
To elucidate the various single TD-mosaic dual-

vortex interactions, the cloud images at 22:00 UTC
on July 19 and at 00:00 UTC on July 20 are provided
in Figs. 5 and 7(a) and (b), respectively. The cloud

images at 20:00 UTC on July 21, at 10:00 UTC on July
22, at 23:00 on July 23, and at 09:00 on July 24 in Figs.
5 and 7(c), (d), (e), and (f), respectively, display the
various offset TD-mosaic dual-vortex interactions.
The eye pattern is an interesting feature of ty-

phoons. In Figs. 5, 6, 7, the aforementioned in-
teractions led to the strengthening of In-Fa and
Cempaka with clear eyes of diameters 25, 55, 60, 65,
75, and 100 km. First, at 22:00 UTC on July 19 and at
00:00 UTC on July 20, Typhoon In-Fa had eyes (990/
985 hPb) with diameters of 55/60 km, and Typhoon
Cempaka had tiny eyes (985/975 hPb) with di-
ameters of 25/25 km, as shown in Figs. 6 and 7(a)
and (b), respectively. Second, at 20:00 UTC on July
21 and at 10:00 UTC on July 22, Typhoon In-Fa
exhibited whole eyes (955/955 hPb) with diameters
of 65/75 km, and an eye-wall with an aperture of
�/175 km was found for Typhoon Cempaka, as
shown in Figs. 6 and 7(c) and (d), respectively. Third,
at 23:00 on July 23, Typhoon In-Fa had a bigger eye
(960 hPb) with a diameter of 100 km, and Typhoon

Fig. 4. Cloud images at T1 ¼ 07:00 on 19 July. (a) TIR image. (b) Temperature distribution. and (c) Height distribution.
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Cempaka had an eye-wall with an aperture of
165 km, as illustrated in Figs. 6 and 7(e). Finally, at
09:00 on July 24, the whole eye (low pressure of 950
hPb) with a diameter of 55 km was present in
Typhoon In-Fa, as shown in Figs. 6 and 7(f). The
diverse eyes with various diameters are tabulated in
Table 4.

4. Applications

For applications, a typhoon forecasting procedure
is proposed as follows:
Step 1:
When two typhoons exist simultaneously, the

empirical LioueLiu formulas (1) are used to

Fig. 5. TIR images.
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calculate the threshold distance for the interaction
between two TCs with their respective CI numbers
for determining the possibility of marked dual-
vortex interactions. When the threshold distance for
the interaction is higher than the actual measured
distance between the centers of two typhoons, dual-
vortex interactions are confirmed to occur.

Dual-vortex interactions are frequently associated
with increased typhoon track sinuosity through
changes in the track direction and the execution of
complex/looping tracks. Occasionally, typhoons
make U-turns with increasing intensity. As a result,
several potential dual-vortex interactions, such as
CM, PM, CSO, PSO, and EI, occur.

Fig. 6. Temperature distribution images (a) at 22:00 on July 19, (b) at 00:00 on July 20, (c) at 20:00 on July 21, (d) at 10:00 on July 22, (e) at 23:00 on
July 23, and (f) at 09:00 on July 24.

JOURNAL OF MARINE SCIENCE AND TECHNOLOGY 2022;30:102e115 111



Step 2:
When two typhoons with single TD-mosaic

vortices exist simultaneously, the empirical
LioueLiu formulas (2) are used to calculate
threshold distances for interactions between TC and
TD/TS related to the CI number, size factor, height

difference, and rotation factor for determining
whether dual-vortex interactions occur. When
threshold distances for interactions are higher than
the measured distances between the centers of both
typhoons and TD, dual-vortex interactions are
confirmed to occur.

Fig. 7. Height distribution images (a) at 22:00 UTC on July 19, (b) at 00:00 UTC on July 20, (c) at 20:00 UTC on July 21, (d) at 10:00 UTC on July 22,
(e) at 23:00 on July 23, and (f) at 09:00 on July 24.
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Step 3:
When two typhoons with offset TD-mosaic

vortices exist simultaneously, indirect cyclonee
cyclone interaction may occur through two sets of
depressionecyclone interactions and is related to
the distance between TC1 and TC2; the offset dis-
tance (o) fits the assumption of o < d/3. The
empirical LioueLiu formulas (2) are used to esti-
mate threshold distances for interactions between
TC and TD related to the CI number, size factor,
height difference, and rotation factor for deter-
mining whether dual-vortex interactions occur.
Dual-vortex interactions are confirmed to occur
when the threshold distances for interactions are
higher than the actual measured distances between
the two typhoons and TD centers.
Step 4:
When two typhoons with double TD-mosaic

vortices exist simultaneously, indirect cyclonee
cyclone interactions may occur through the two
sets of depressionecyclone interactions and the
subsequent merging of TD1 and TD2, and the space
(s) between TD1 and TD2 fits the assumption of s < d/
3. The empirical LioueLiu formulas (2) are used to

calculate threshold distances for interactions be-
tween two TCs and two TDs related to the CI num-
ber, size factor, height difference, and rotation factor
for determining whether dual-vortex interactions
occur. When the threshold distances for interactions
are higher than the actual measured distances be-
tween the centers of the two typhoons and TDs,
dual-vortex interactions are confirmed to occur.
Step 5:
When mid-southwest air flows are located be-

tween two TCs, vector addition TD-mosaic vortices
exist, and two sets of TCeTD interactions occur,
causing indirect cycloneecyclone interactions. This
type of TD-mosaic cycloneecyclone interaction is
termed as vector addition TD-mosaic double-vortex
interaction.

5. Conclusion

In this paper, the various TD-mosaic dual-vortex
interactions include (a) simple TD-mosaic dual-
vortex interaction, (b) offset TD-mosaic dual-vortex
interaction, (c) double TD-mosaic dual-vortex
interaction, and (d) vector addition TD-mosaic dual-

Table 3. Positions of TC1, TC2, and TDs

TA: 7/19 09:00 UTC TB: 7/20 09:00 UTC TC: 7/21 09:00 UTC TD: 7/22 09:00 UTC

TC1: Position 250N
1320E
210N
1360E

25�N
131�E

24�N
128�E

23.5�N
126�E

TC2: Position 210N
112.50E
220N
1160E

220N
112.50E

20.50N
1100E

200N
1090E

TD1: Position 290N
1270E

e e e

TD2: Position 280N
1230E

e e e

TD01: Position 220N
1160E

e e e

TD0: Position 170N
1250E

e e e

TD02: Position 210N
1360E

e e e

TD: Position 230N
1180E

21.50N
1150E

170N
1190E

Table 4. Eye patterns

Typhoon Performance 7/19 22:00 7/20 00:00 7/21 20:00 7/22 10:00 7/23 23:00 7/24 09:00

In-Fa Pressure (hPb) 990 985 955 955 960 950
In-Fa Eye diameter (km) 55 60 65 75 100 55
In-Fa Eye-wall aperture (km) e e e 175 165 e

Cempaka Pressure (hPb) 985 975 e e e e
Cempaka Eye diameter (km) 25 25 e e e e
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vortex interaction. They are observed in addition to
the early known conventional patterns of dual-vor-
tex interactions between TCs, such as CM, PM,
CSO, PSO, and EI. Despite the enormous distance
(2,050e2,150 km) between the respective centers of
the typhoons In-Fa and Cempaka, the influence of
middle air flows and a TD caused TD-mosaic dual-
vortex interactions between these typhoons.
The LioueLiu empirical formulas have been suc-

cessfully used for quantifying the threshold distance
for interactions between TCs/typhoons and two TDs
whenever all phenomena co-exist in the North Pacific
Ocean. Linear (vector) space technology, that is, the
vector addition diagram, is used to depict the vector
additionTD-mosaic dual-vortex interaction amongall
TCs and TDs. For the first time, the existence of VAL
between twoTDsanddual typhoonswas identified, in
this case, during the 3-h time interval from 07:00 to
10:00 on 19 July. During the VAL interval, the
strengthening of Typhoon In-Fa occurred.
One interesting feature of typhoons is the eye

pattern resulting from the TD-mosaic dual-vortex
interaction. Temperature and height distribution
techniques are proposed for applying versatile im-
ages exhibiting eyes of various diameters. The
aforementioned interactions lead to stronger ty-
phoons with clear eyes of diameters 20, 25, 55, 60, 65,
75, and 100 km, diverting the movement to the zig-
zag track of Typhoon In-Fa and the U-turn track of
Typhoon Cempaka. This research provides a prac-
tical application in the form of a proposed typhoon
forecasting procedure in cases of diverse conditions
of dual-vortex interactions.
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