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RESEARCH ARTICLE

Polyketides and Terpenes in Marine Microalgae:
Ecological Roles and Mechanisms of Biosynthesis

Yunxuan Xie*, Mohammad Elsheikh

School of Environmental Science and Engineering, Tianjin University, China

Abstract

Marine microalgae comprise a large number of polyketides and terpenes identified to date with highly diverse mo-
lecular scaffolds and the biological activities (Kalaitzis et al., 2010) [1]. These compounds play significant roles in marine
food web and nutraceutical supplementation in marine animals. Compounds of this class are often synthesized by gene
clusters with dedicated domains responsible for carbon chain extension and modification. The unique molecular
structure of these compounds encourages people to investigate their biosynthetic mechanisms in-depth. In this review,
we summarize relevant articles to unravel the shared mechanisms of these compounds to further understand the variety
of domain organizations and the subsequent impact on the carbon chain diversity. In addition, the ecological role of
these compounds and their modes of distribution in natural sea water is also discussed. We expect this study to bring
multifaceted aspects regarding the assemblage and the ecological function of these secondary metabolites and to provide
information to those who wish to obtain further understanding in these compounds whose structure and ecological
function remain underexplored.

Keywords: Marine microalgae, Polyketides, Terpenes, Biosynthetic mechanisms

1. Introduction

M arine microalgae are ubiquitous marine mi-
crobes capable of synthesizing a variety of

bioactive secondary metabolites through carbon
chain extension. There are more than 20,000 of
known species of microalgae that grow in marine
environments [2]. The distribution of microalgae in
different ecosystems leads to diverse chemical
compositions, making them attractive for industrial
bioprocessing. Some of the microalgae contain
photosynthetic apparatus that allows the fixation of
carbon dioxide into metabolically active compounds
such as polyketides and terpenes. These compounds
are products from complicated intracellular carbon
anabolism and display a broad scope of biological
activities. Many commercially high-value com-
pounds, including carotenoids, bioactive peptides
and polyunsaturated fatty acids (PUFA), compete

for intracellular two-carbon units (acetyl-CoA) for
their biosynthesis [3,4]. For some photosynthetic
microalgae, carbons can be further assembled into
more complicated scaffolds such as microalgae
toxins [1]. A few microalgae species produce toxins
whose chemistry have been intensively studied for
decades. Despite of the clarification in their chemi-
cal structure, chemoenzymatic catalysis remain
poorly understood so far.
Polyketides share a common biosynthetic origin

despite of their highly diversified molecular struc-
ture. Assemblage of the carbon backbone of all
polyketides is catalyzed by polyketide synthase
(PKS) in a manner similar to fatty acid biosynthesis
[5]. Both classes of compounds are constructed via
the sequential decarboxylative Claisen condensa-
tion of smaller carboxylic acid units to create carbon
backbone. To be specific, the initiation unit (acetyl-
CoA) was loaded onto the acyl-carrier protein
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(ACP), and was then transferred to ketosynthase
(KS) domain onto its active site cystein pre-modified
by phosphopantetheinylation reaction (Fig. 1).
Continued chain extension occurs by using exten-
sion unit malonyl-CoA, which is continuously
loaded onto the active site serine of the ACP domain
pre-modified with phosphopantetheinyl group.
Condensation reaction occurs between the initiation
unit and extension unit to form diketide under the
catalysis by KS domain. For iterative polyketide
synthase, same steps are repeated on the same
module until products with designated chain
lengths are obtained. For non-iterative polyketide
synthase, the diketide products are passed onto the
ACP domain of the second module to initiate
another round of catalysis at KS domain. Presence
of additional domains in the module such as
ketoreductase (KR) and dehydratase (DH) allows
post-condensation modifications to bring over the
diversified product scaffolds. Both types of PKS
maintain product releasing mechanism by thio-
esterase domain either as free acid or as cyclized
products. Terpenoids, as exemplified by caroten-
oids, are formed by two common precursors, i.e.
isopentenyl-pyrophosphate and dimethylallyl py-
rophosphate [6,7] as acetyl-CoA derivatives. The
conversion of dimethylallyl pyrophosphate
(DMAPP) to geranylgeranyl pyrophosphate (GGPP)
is catalyzed by geranylgeranyl pyrophosphate
(GGPP) synthase, followed by condensation of two
molecules of geranylgeranyl pyrophosphate to

phytoene by phytoene synthase and eventually to b-
carotene by lycopene b-cyclase [8]. For different
polyketides and terpenoids, the core mechanism of
carbon chain assemblage remains the same
(Figure S1).
We summarize studies to demonstrate the char-

ateristics of polyketide synthases available for ma-
rine protists to assemble polyketides and their
derivatives in marine protists. Our focus is to sum-
marize different types of polyketide synthases,
probing their putative functions to illustrate the
diversified catalytic mechanisms available in marine
protists in making scaffolds of individual poly-
ketides. Amino acid sequences of representative
polyketide synthases with well-established catalytic
activity are further analyzed with regard to their
protein homologues sharing similar modes of
catalysis. Candidate strains with plethora polyketide
synthases are phylogenetically analyzed to give a
clear idea of mining better polyketide producers
among unexplored marine protists. We show that
marine protists bear a significant potential for
discovering new metabolic features allowing
combinatorial biosynthesis for the production of
novel polyketide products. In addition, marine
microalgae thraustochytrids are shown to have un-
usual carbon incorporation efficiency into the sec-
ondary metabolic pathway and could be an ideal
host for combinatorial biosynthesis. The presence of
noncanonical polyketide synthases also suggests
efforts to be worth pursued to elucidate their

Fig. 1. Assemblage of polyketide scaffolds and its release from phosphopantetheinylated enzyme cluster.

64 JOURNAL OF MARINE SCIENCE AND TECHNOLOGY 2022;30:63e74



catalytic mechanisms and the subsequent applica-
tions. The ecological functions of these compounds
are illustrated.

2. Polyketides from marine microalgae

Polyketides from marine microalgae are
comprised of two large families, linear polyketides
and polyketides with ring structure [1,9]. Linear
polyketides include fatty acids of medium or long
carbon chain lengths and are good nutrient sup-
plement with multiple bioactivities [10]. Most of
these bioactive fatty acids can be found in hetero-
trophic marine animals such as seafood and fish.
They are shown to be transferred via food web from
marine microalgae to its higher level predators
[11,12]. Generally, multiple carbonecarbon double
bonds can be found within these bioactive fatty
acids, making them easily to be oxidized. Micro-
algae produces a vast scope of fatty acids with
different chain lengths and degrees of desaturation.
Normally those with less than four carbon atoms
can be used for producing natural gases. Longer
carbon chain fatty acids are of gasoline origin and
are used for burning as petroleum. Longer carbon
chain fatty acids can be used as biodiesels. Poly-
unsaturated fatty acids possessing even longer car-
bon chains (such as DHA and EPA) are regular
dietary supplements that provides essential antiox-
idants to animals and human for normal brain and
retinal functions. Phylogenetic analysis suggests
that high yield strains for producing long chain
polyunsaturated fatty acids are present that include
Nannochloropsis sp., Isochrysis sp. etc. [13e15]. They
are particularly good at enriching omega-3 fatty
acids and can transfer into different predators via
secondary trophic link, entering into marine bio-
logical nutrient circulation [15,16] (Fig. 2). Caprellid
amphipods, for instance, is an important natural
dietary component in a variety of marine fish. They
are mostly included in epibiotic communities and
live on a variety of natural substrata. Environment
with rich organic loading offers better nutrient to
ensure fast growth and quick reproductive maturity
of caprellid [17]. Feeding caprellid amphipods into
finfish ensures a longer body length and more body
weight. Marine larval fish that are fed on lipid-
encapsulated rotifers after being treated with oil
emulsions also possess a more stable body compo-
sition of the larvae fish [18]. Copepods (Acartia grani,
Centropages hamatus and Eurytemora affinis) are also
included in the optimization of feed quality to grow
juvenile marine fish. Enrichment in total fatty acids
and carotenoids in the dietary menu of copepods
increased the feeding quality of marine fish culture

[19]. These feeding experiments suggest the pres-
ence of the potential nutrient transfer pathways
from microbes to higher level predators. Photosyn-
thetic algae also synthesize secondary metabolites

Fig. 2. Major secondary predators for fatty acid circulation in food web
(A: Caprellid amphipods, B: Rotifers, C: Copepods).
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with extreme long carbon chain length, most of
which are harmful toxins and are posing threat to
marine animals [1]. Microalgal toxins penetrate into
the body of other seafood during the outbreak of
algal bloom, causing massive death of these
animals.

3. Linear polyketides

Among most linear polyketides, polyunsaturated
fatty acids are the most intensively studied com-
pounds. Fermentative studies address the use of
appropriate carbon and nitrogen sources to
augment the yield of desired fatty acids and to
commercialize microalgae strains particularly with
capacity in producing nutraceutically important
fatty acids in high yield. In recent years, microalgae
has provided a few heterotrophic strains that offer
high yield production of bioactive polyunsaturated
fatty acids such as docosahexaenoic acid, ecosa-
pentanoic acid, etc. [20e25,27]. Mechanistic studies
in microalgal capacity to synthesize polyunsaturated
fatty acids at molecular level were facilitated by the
conduction of whole genome sequencing of a few
microalgae strains, unraveling the presence of large
amount of unusual polyketide sequence tags.
Among them, a few have been characterized via
heterologous expression in model prokaryotic hosts
such as E. coli [26a,b]. Unlike canonical polyketide
synthases, these synthases do not maintain
conserved sequence markers that allows the easy
identification of the PKS genes from genome
sequencing data. Many sequences remain unchar-
acterized, in part, due to the difficulties to obtain a
clear sequence boundary to denote the full gene.
Even for genes that were successfully expressed in
heterologous host, the substrate specificities and
catalytic mechanisms of the corresponding enzymes
remain obscure. Total metabolite analysis indicated
that these enzymes maintained multiple substrate
binding capacities and could increase the yield of
more than one fatty acids in the heterologous host.
Further inspection into the domain organization and
the identification of catalytic center are needed to
explain the mechanism of catalysis.
Transcriptomic studies also illustrate the whole

cell regulatory mechanism in the biosynthesis of
major polyunsaturated fatty acids in microalgae.
Preliminary studies (Wang et al., unpublished data)
indicated that the change in salinity in culture me-
dium affects the dynamics in metabolite profile. It
was reported that lower salinity stimulated the for-
mation of osmotic sensor molecule, the alpha-
tocopherol and contributed to the increased lipid
oxidation efficiency [28]. Modulation in the carbon

and nitrogen source also affects the total biosyn-
thetic efficiencies of major secondary compounds
[29e33]. Higher yield in polyunsaturated fatty acids
was obtained when both glycerol and glucose were
used as carbon sources [34,35]. Analysis in key gene
transcription efficiency suggests that rate-limiting
enzymes in major fatty acid biosynthetic pathways
are transcribed at higher level when appropriate
carbon sources are used [35e37]. Key genes that are
associated with central carbon metabolism (such as
short-chain amino acid catabolism, tricarbolylic acid
cycle) also achieve higher transcription level
compared to un-optimized culture conditions.

4. Unusual polyketides from marine
microalgaedstructure and biosynthesis

4.1. Mode of carbon scaffold organization–different
HAB toxins and their biosynthetic mechanism

Among natural producers of polyketides, bacteria
and microalgae make up the majority of all available
species (particularly those that are laboratory cul-
turable). Natural bioactive polyketides available in
nature maintain dramatically different scaffolds as a
result of different assemblage mechanisms [38].
Bacteria developed various strategies in making
polyketides by creating variations in polyketide
chain lengths and modes of ring structure. Di-
noflagellates rivals their bacteria counterparts by
offering biosynthetic machinery to assemble scaf-
folds with unusual carbon chain length and struc-
ture complexity. Maitotoxin, which was isolated
from the dinoflagellate Gambierdiscus toxicus, repre-
sents the largest non-peptidic, non-polymeric nat-
ural product described to date (Fig. 3A, B, C).
Similar molecular scaffolds were also observed for
some polyether natural products such as brevetoxin
A and ciguatoxin (isolated from dinoflagellates
Gymnodinium breve and Gymnodinium toxicus), the
only known natural products possessing five, six,
seven, eight and nine membered rings in the same
molecule. These polyether compounds are recog-
nized primarily for their notorious toxicity, while
their unusual scaffolds inspired research in their
assemblage mechanisms remain poorly understood.
Difficulties in studying the biosynthetic mecha-

nisms of these polyketides are, in partial, attributed
to the fact that dinoflagellates are recalcitrant to
laboratory cultivation, particularly to meet the de-
mand in the production of secondary products [39].
Dinoflagellates mostly grow as autotrophic micro-
organism but rarely produce toxic polyketides in
medium when exogenous substrates are provided.
In an in-vitro experiment that tests the production of
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natural toxic compounds, a stable isotope feeding
experiment was performed using 1-13C, 2-13C and 1,
2-13C labelled sodium acetate to evaluate the
incorporation patterns of each labelled carbon. In
brevetoxin B, three distinctive incorporation pat-
terns were observed, including six c-m-m (m:
methyl group in sodium acetate, C: carbonyl group
in sodium acetate), one c-m-m-m and one c-m-m-
m-m modes. Feeding experiments with single
labelled succinate [2, 3-14C] as substrate suggests no
visible incorporation of radio-labelled substrate into
brevetoxin scaffold [40]. Examination in carbon
incorporation pattern of sodium acetate in other
compounds (such as okadaic acid, goniodomin and
amphidinolide J) suggests the presence of two
incorporation patterns that are originated from so-
dium acetate. For okadaic acid, a Favorski rear-
rangement occurs to delete C-1 in acetate (Fig. 4A).
This explained the labelling pattern in okadaic acid,
brevetoxins, amphidinolide J and goniodomin A as
well as 1, 2 and 1, 4 oxygenation patterns found in
other polyketides from zooxanthellae [41]. Heterol-
ogous expression also offers direct evidence to
decipher the biosynthetic mechanisms of HAB
toxins such as saxitoxins (Fig. 4B-D). Adding inter-
mediate compounds in tricarbolylic acid cycle into
culture medium (such as malate, succinate and a-
ketoglutarate) clearly enhances saxitoxin production
in the heterologous bacterial host. It is therefore
reasonable to deduce that bacteria be the major host
for saxitoxin production, the presence of di-
noflagellates provides essential nutrition for sym-
biotic bacteria and enhances its productivity.

The complexity in the biosynthetic mechanisms of
saxitoxins were further characterized by a series of
in-vitro enzymatic assays that involves the use of
cell-free lysate and substrate feeding experiments. It
was demonstrated that two saxitoxin derivatives
with 1-NH can be converted to 1-NOH upon incu-
bation in the cell free extract obtained from Alex-
andrium tamarense. At the presence of adenosine 30-
phosphate-50-phosphosulfate, 21-NH can be modi-
fied into 21-NSO3

- in Gymnodinium catenatum. Saxi-
toxin modification enzyme was also detected in
shellfish, suggesting that the complete biosynthetic
pathway may comprise enzymes from other mi-
crobes. Identification of the accurate open-reading
frame coding for individual proteins and purifying
enzymes in vitro still represent a big technological
hurdle that retards the characterization of their
catalytic activities precisely. UV-induced mutation
in coupling with medium colony screening provides
a rapid evolution strategy to obtain highly toxic
producing strains [42].

5. Brevetoxin

Brevetoxins are a group of molecules that feature
a ladder-like, all-trans-fused polycyclic ether toxins
[43,44] with two carbon backbones assembled indi-
vidually to make up their carbon scaffolds (Fig. 5A-
C). Systematic investigation in brevetoxin synthases
was carried out to explain their biosynthetic mech-
anisms, particularly in regard to the formation of the
ether bonds [45]. These ether bonds are not the
typical characteristics of polyketide products in

Fig. 3. Structure of maiotoxins (A: AM1, B: AM2, C: AM3).
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regular cells. It was proposed that carbon chains
were truncated after forming the epoxide in-
termediates, followed by subsequent thioester-
ification. This allows further chain extension to take
place. Deciphering the biosynthetic mechanism at
genetic level required complete genome sequencing
of Karenia. brevis to be done. This attempt, however,
was hampered by the presence of permanently
condensed chromatin, the lack in the typical tran-
scription activation sequences (such as TATA box)
and the presence of many tandem repeats that
caused the frame-shift reading of many genes [46].
The large genome size and the presence of non-
coding sequences necessitated the screening of
cDNA library through reverse transcription assay. A
general approach to be used for searching universal
polyketide synthases includes high-throughput

sequencing, performed with well-defined gene
probes to identify individual expression tags within
microalgae cells (Table 1). Six different dinoflagel-
late species were subject to a preliminary assay that
was designed to screen the presence of type I pol-
yketide synthases [47]. Two independent KS do-
mains were identified from Karenia brevis non-
axenic culture samples and seventeen expression
sequence tags were considered relating to PKS or
FAS. Rapid amplification of cDNA ends (RACE)
yielded individual PKS fragments with fragment
lengths of approximately 2800bp. Eight sequence
tags were identified to contain KS domains (Table 2)
by referring to NCBI's Conserved Domain Database
(CDD) [48]. Screening the conserved KS domains for
other dinoflagellates suggested that two were
shared by Karlodinium veneficum and A. tamarense,
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Fig. 4. Schematic illustration of Favorski rearrangement (A) and the formation of okadaic acid (B), goniodomin (C) and amphidinolide J (D).
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one was conserved in KB1008 and the last one was
conserved for A. tamarense.
Comparing four PKS fragments unique to K. brevis

suggested the presence of a “splicer leader”
sequence with approximately 100bp upstream to
each start codon (Fig. 6) [49]. This splicer leader is
considered as a sequence marker of K. brevis and
can be used to identify novel polyketide synthases
isolated from similar strains. To authentuate the
classification of PKS in K. brevis, amino acid
sequence alignment assay using Clustal X was
performed with representative sequences for type I
PKS (from prokaryotes, fungi, protists and animals)
and type II PKS (from prokaryotes). Sequence
comparison suggested the complexity of PKSs in
different K. brevis strains. Among them, K. brevis
AT2-10L, AT2-15, AT1-6L and Kbrevbac30 contain
protist's type I PKS clade while the other Kbrevbac
sequences from K. brevis culture clearly show bac-
terial contaminations that are manifested by the
presence of bacterial type II PKS clade. It is note-
worthy that the splicer leader sequence also play
roles in post-transcriptional regulation of PKS syn-
thesis, suggesting that the brevetoxin biosynthesis is
under tight cellular regulation. Presence of four PKS
genes unique to brevetoxin producing strains sug-
gests that they are directly involved in the biosyn-
thesis of brevetoxins while those conserved genes
may participate in the biosynthesis of some com-
mon fatty acids or unknown polyketides. The fact
that the expression profile of these genes alters ac-
cording to the change in brevetoxin productivity
suggests they are indirectly involved in the biosyn-
thesis of brevetoxin. Although the biosynthesis of
polyether brevetoxin is considered to occur pri-
marily through polyketide synthase pathway, the
presence of nitrogen containing compounds (such
as DTX-5a, DTX-5b [50] and brevisamide [51])
indicated that mixed NRPS-PKS synthases are
available to incorporate certain amino acids as a
source of nitrogen. RT-PCR analysis demonstrated
that both PKS and NRPS were actively expressed
within K. brevis cultures.

Table 1. PKS transcripts in Karenia brevis strains and other dinoflagellate species þ indicates transcripts in Karenia brevis strains and other
dinoflagellate species.

KB1008 KB2006 KB4825 KB5299 KB5361 KB6380 KB6736 KB6842

K. brevis þ þ þ þ þ þ þ þ
K. brevis þ þ þ þ þ þ þ þ
K. brevis þ þ þ þ þ þ þ þ
K. brevis þ þ þ þ þ þ þ þ
Karenia mikimotoi þ þ þ þ
Karlodinium veneficum þ þ
Amphidinium veneficum þ
Alexandrium tamarense þ þ þ

A: 

O

O
O

O

O O O

O O
OH

O

HO
OH

O

HO

B: 

O

O
O

O

O O O

O O
OH

O

HO
OH

O

HO

C: 

Fig. 5. Chemical structure of toxins in Karenia brevis with trans-fused
rings (A: zooxantholatoxins), carbonecarbon bridge six member ring (B:
pectenotoxin) and head-to-head ladder fused rings (C: Goniodomin A).
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Subcellular localization of the expressed PKS,
NRPS and b-tublin genes within K. brevis cells sug-
gested they occurred primarily in nucleus and had
no contamination to chloroplasts. Tracing the origin
of the PKS-NRPS genes suggests that they are from
freshwater cyanobacteria, a microbial strain that
produces freshwater toxins. To locate individual
PKS genes for brevetoxin biosynthesis, Western blot
approach was adopted with probes designed to
characterize the keto-reductase domain and keto-
synthase domain [52]. Post-transcriptional analysis
suggests that in non-toxic cultures, KS abundance is
approximately 55e70% less compared to toxic cul-
tures. The discovery that the green fluorescence
appears only in the nucleus region indicates that
brevetoxin biosynthesis is primarily controlled by
chromosomal genes. Screening cDNA libraries for
transcripts using type I PKS degenerate probes
identified large integral transcripts in K. brevis. To
further characterize the size of catalytic functional
group, an immuno-reactive experiment was per-
formed using degenerate sequences of KS and KR

domains to describe the size of the enzymatic
products. Anti-KS reaction specified a product of
100 KDa, about the same size as the expected
101 KDa. Anti-KR reaction however, identified a
product of 40 KDa, which is slightly different from
the theoretical value of 56 KDa. When the immuno-
reactive antibody was designed against type I PKS
from Cryptosporidium. parvum, a product size of
100 KDa was identified. Appearance of the green
fluorescence signal indicates PKS resides primarily
in chloroplast. Transcriptional analysis of mid-log-
arithm growth phase of both toxic and non-toxic K.
brevis suggests KS and KR were associated with
brevetoxin biosynthesis. Altered expression level in
KS and KR accounts for productivity differences in
brevetoxin between toxic and non-toxic K. brevis
strains. Light induction is very likely to be the
reason stimulating brevetoxin biosynthesis and also
explains the mechanism in the biosynthesis of other
toxic compounds such as okadaic acid in Pro-
rocentrum lima. Additional compounds produced by
K. brevis include brevenal [53], hemibrevetoxin B

Table 2. PKS transcripts identified in K. brevis and proposed functions.

Sequence
ID

Base
Pairs

Amino
Acids

Proposed
Function

Sequence Similarity (Protein, origin) Identity/
Similarity (%)

Accession
Number

KB1008 3397 1016 ACP/KS Beta-ketoacyl synthase (Anabaena
variabilis ATCC 29413)

32/50 YP_324603

KB2006 2923 944 KS MxaD (Stigmatella aurantiaca) 39/52 AAK57188
KB4825 3288 1023 KS MmxC (Cystobacter fuscus) 29/48 ABA29781
KB5299 1875 515 KR Protomycinolide IV (Micromonospora

griseorubida)
43/62 BAC57028

KB5361 3235 857 KS Type I fatty acid synthase, putative
(Toxoplasma gondii RH )

39/56 CAJ20333

KB6380 2367 688 KS Polyketide synthase type I (Streptomyces aizunesis) 31/49 AAX98185
KB6736 3361 895 KS StiG protein (Stigmatella aurantiaca) 36/51 CAD19091
KB6842 2413 686 KS COG3321: Polyketide synthase modules Nostoc Punctiforme 30/49 zp_00108,796

Fig. 6. Amino acid alignment of “splicer sequences” in PKS fragments unique to K. brevis (blue region indicating the conserved splicing sequence in
the four transcripts).
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[54], brevisamide [51] and phytopigments [55].
There has been no detailed mechanistic study re-
ported for these compounds so far. Tracing the
origin of these PKS genes in eukaryotes using
phylogenetic analysis strongly indicated the possi-
bility of a horizontal gene transfer within unicellular
eukaryotes [56]. A large majority of PKS genes
sharing homology with those identified in cyano-
bacteria suggests the possibility of lateral gene
transfer between the two species.

6. Terpenoids from marine microalgae

6.1. Astaxanthin

Marine fish that are fed on microalgal extract
generally display better skin colors and skin
smoothness compared to those without dietary
microalgal supplement. A close inspection into the
chemical composition of microalgal extract suggests
the presence of terpene that aids in the skin color
improvement. A microalgal astaxanthin feeding trial
was performed to investigate the effects of natural
astaxanthin from Haematococcus pluvialis as feed
additives on growth, pigmenting efficacy and anti-
oxidant capacity in Cichlasoma enrinellurn and Cieh-
lasorna sywspiltun. It is found that supplementation
of dietary astaxanthin could effectively enhance
growth, skin coloration and the antioxidant capacity
of fish [57]. Similar observations were made
regarding the muscle and skin color improvement
among dietary fish, shrimps and other seafood
[58,59].

6.2. Other terpenoids

The supplementation of terpenoids into the feed
stock of fish elevated the body pigmentation and
antioxidation function while no significant
improvement in body weight gain and growth is
observed [60]. Besides the improved skin and mus-
cle color, some fish also displayed better immunity
against virus infection upon appropriate addition of
lipids and terpenes [61e63]. In some other sea ani-
mals (such as seahorse and Moenkhausia sanctaefi-
lomenae), improved egg and semen quality was also
observed [64e66]. Microbial terpene providers
include H. pluvialis, Xanthophyllomyces dendrorhous,
Thraustochytrid sp. etc. [67e69]. Tracing the delivery
of terpenoid compounds from their microbial hosts
to higher trophic predators (such as copepods)
established the evidence that these nutrients can be

transferred, accumulated and metabolized by
higher level predators [67,70]. The efficiency of
terpene transfer varied upon the nutrient dynamics
that are basically conveyed by the type of phyto-
plankton community available in a particular
ecological niche. The enrichment of terpenes from
water to fish scales allowed an easy recovery of
these nutrients for recycled use [71]. Secondary
predators possess diversified conduit efficiencies for
the transfer of terpene into higher trophic level [72].
Different sources of terpenoids also had different
impacts on skin coloration, suggesting that subtle
differences lying within their chemical structure
(and therefore their biological activities) affects the
absorption efficiency of individual terpenes [73]. Co-
supplementation of lipid-solubilized vitamins with
terpenes further improved the efficacy of these
terpene nutrients [74]. Other compounds that
improved skin colour and avoid lipid oxidation also
includes small natural compounds with medium
polarity (such as alpha-tocopherol), high polarity
(such as citric acid) and synthetic pigments
[9,17,28,38,42,56,58,75e78]. Despite of different ste-
reochemistry of synthetic pigments, similar
enhancing effects were observed in skin coloration
and antioxidant capacity.

7. Conclusion

Marine microorganisms can synthesize a wide
range of bioactive compounds with ecological and
nutraceutical significance. These natural com-
pounds include primarily polyketides (such as fatty
acids and microalgae toxins) and terpenoids (such
as carotenoids). Biosynthesis of polyketides and
terpenoids are intercalated. Most of the linear pol-
yketides can be transferred from one biological
species to another via food web. Some of these
compounds (such as polyunsaturated fatty acids)
can even enter into marine mammals at the highest
trophic hierarchy. How these molecules are assem-
bled remains not totally unclear till now. Pre-
liminary studies indicated the presence of
polyketide synthases and fatty acid synthases that
assemble these linear polyketides (mostly from
fourteen to twenty-two carbon atoms). However, in
photosynthetic organisms, most of the synthases
remain uncharacterized due to the lack of precise
genome annotation information and subsequent
biochemical studies. In limited studies, similar
biosynthetic mechanism is found to be shared for
linear carbon chain assemblage among the long-
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carbon chain natural products in marine micro-
algae. For compounds with extremely long carbon
scaffolds (mostly microalgal toxins with up to sixty
carbon atoms), additional synthases are also present
to allow the continued incorporation of carbon chain
building blocks. Similarities in amino acid sequence
and modular organization of the gene clusters for
these microalgal toxins suggest that the lateral gene
transfer occurs between phylogenetically distant
protist strains. Clarifying the process of lateral gene
transfer will explain how different marine protists
evolve similar mechanisms for the production of
these secondary metabolites. Elucidation in the
module organization manner will help predict the
abundance of these polyketides as natural resources
in different marine environments. Terpenoids are
another type of marine microalgal nutrients that are
present in marine protists and marine mammals.
Compared to the studies in polyketides, mecha-
nisms in terpenoids biosynthesis remain further

underexplored. What is still needed is the discovery
of sequence markers that address the hidden un-
usual polyketide (terpenoid) synthases with catalytic
functions remaining to be identified. Purification
and characterization of these unusual synthases will
further aid in the exploration and utilization of
marine microbial resources.
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