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RESEARCH ARTICLE

Unbaited Light-Emitting Diode Traps Performance
for Catching Orange Mud Crabs
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Adnan Amin-Safwan c, Wei-Yu Lee a

a Department of Environmental Biology Fisheries Science, National Taiwan Ocean University, 2 Pei-Ning Rd., Keelung, 20224, Taiwan,
Republic of China
b Center of Excellence for Oceans, National Taiwan Ocean University, 2 Pei-Ning Rd., Keelung, 20224, Taiwan
c Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu,
21030, Kuala Nerus, Terengganu, Malaysia

Abstract

Mud crabs (Scylla spp.) are a vital fishery resource and targeted for a valuable source of income for coastal commu-
nities throughout the Indo-Pacific region. Baited traps are a considerable expense in crustacean fishing. Hence, the
present study was performed to investigate the catchability of Scylla olivacea in response to light-emitting diodes (LEDs)
in captivity and field conditions. We used a new experimental setup in the captivity condition that revealed most S.
olivacea were attracted to green, blue, and white LED lights and no attractive effect by red LED lights similar to the
controls. Field studies have shown that the catch per unit of effort (CPUE) of S. olivacea and other organisms, including
bycatch species, is significantly higher when conventional mackerel and chicken head baits are used. However, unbaited
traps equipped with green LED lights produced low CPUE of S. olivacea. Moreover, baited trap with chicken head,
mackerel and green LED caught 4.52%, 7.28% and 2.18% more CPUE of S. olivacea compare to empty trap, respectively.
Besides, both the mackerel and chicken head treatments resulted in the higher average CPUE of S. olivacea than did the
green LED treatments; 0.66, 0.38 and 0.13 per trap. No significant differences were detected in the average carapace width
of S. olivacea across all treatments. Our findings demonstrated that mud crabs can be captured using artificial lights, like
other aquatic species but further in-depth studies and specific modifications to improve the performance of LED lights
are warranted.

Keywords: Light preference, Crab vision, Mangrove, LED light

1. Introduction

M ud crabs (Scylla spp.) are some of the most
highly valued crustacean species in the

commercial fisheries and aquaculture industries in
Australia and subtropical and tropical Asia, partic-
ularly southeast Asia [1,2]. Mud crabs are euryha-
line species, mainly found near intertidal mangrove
forests and along river banks [2,3]. High demand
and economic value of mud crab is due to its
appealing taste and rapid growth [3,4].

Scylla olivacea, commonly known as the orange
mud crab (Herbst 1796), is an important commercial
species [5] that is distributed throughout the South
China Sea, Indian Ocean, and western Pacific Ocean
[2]. S. olivacea, Scylla paramamosain, and Scylla tran-
quebarica are the most common mud-crab species
caught in the waters of Malaysian mangrove forests
[2]. Small-scale coastal fishing communities
throughout the Indo-Pacific region depend on mud
crab fishing as a primary source of income [1,2].
Mud crab fishing involves various methods (e.g.,
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hand fishing) and gear [6], including gillnets, trawls,
and traps, in shallow waters [7]. However, to our
knowledge, fishermen most commonly use traps
with fresh bait. Fishermen leave the traps in the
water for several hours, overnight, or even for
several days or longer (personal observation and
communication).
Fresh bait is a considerable expense related to the

fishing of crustaceans such as mud crab and can
account for up to 50% of total operating costs [8,9].
Most fishermen use high-quality baitdfish of the
same quality as those people consume daily [10,11].
To our knowledge, no studies of natural bait pref-
erences for mud crab trap fishing have been con-
ducted. However, several experiments have
indicated that using mackerel, Scomber spp. enables
the catching of more portunids than using other
types of bait [10]. Furthermore, research has been
conducted on byproducts of various animal in-
dustries, such as agricultural waste and the heads,
viscera, blood, bones, and skin of fish and livestock,
to develop formulated crab bait [10,12]. In Malaysia,
crab traps are typically baited with bigeyes (Pria-
canthus spp.) [13], catfish (Arius spp.) [14], chicken
heads [15], mackerel (personal observation and
communication), and other bony fish [16].
The high operating costs of using fresh bait are

primarily attributable to the fact that it can only be
used once. In Malaysia, mackerel is harvested and
sold locally for human consumption, it usually costs
~RM10-15 (USD2.40e3.60) per kg (i.e., depending
on the season, monsoon seasons higher price).
Other poultry by-products such as chicken heads do
not have any cost but limited, due to use in agri-
culture as livestock feed (personal observation and
communication). Therefore, more durable and
cheaper alternatives, such as the use of light to
attract crabs, might be introduced to reduce these
costs. The application of light as a method for
attracting fish has ranged from basic flares to purse
seines, squid jigging, light stickeholding devices, lift
nets, and drop nets [17e19].
In other fishing methods, including traps [20,21],

pots [22], trawls [23,24], long lines [25,26], and gill
nets [27,28], light is used as a stimulus to improve
the catchability of target species and reduce bycatch.
With the advancement of engineering technology,
light-emitting diodes (LEDs) are increasingly used
in the fishing industry because they conserve more
energy, are more effective in improving catchability,
and have better chromatic performance than other
types of lighting [17e22]. To our knowledge, the
only published study related to mud crabs was on
the vertical movement of Scylla serrata (i.e., mud
crab megalopae) larvae toward the light [29].

However, that study did not test any crab fishing
equipment to capture mud crabs.
The high economic value and market demand for

mud crabs [16] as well as the high operating costs of
crab fishing have increased the demand for research
on new alternatives to attract mud crabs into traps.
Moreover, with the development of fishing tech-
nologies such as the use of LEDs, exceptional con-
tributions to the fishery sector have been made to
reduce harvesting costs and exert less strain on the
environment. However, preferences for light as an
aggregating device to attract orange mud crabs have
not been examined. In the present study, we
determined the behavior and commercial catch-
ability of S. olivacea in response to LED lights under
captivity and field conditions. For the captivity ex-
periments, which were conducted in a controlled
tank environment, we created conditions that
allowed S. olivacea to choose to approach or move
away from LED lights of different colors. Five field
trials were then performed to compare the catch-
ability of S. olivacea between the control baited trap
(i.e., using mackerel and chicken heads as natural
bait) and the use of LED lights with unbaited traps.

2. Material and methods

2.1. LED lights

Waterproof, flashing LED light bulbs (60 mm long
and 19 mm wide) were used for both the captivity
and field experiments, were purchased locally
(Fig. 2a). Each LED light was powered by a non-
rechargeable disposable CR927 battery with a
longevity of more than 100 consecutive hours and
cost from RM6.00e8.00 (USD1.40e1.90) per piece.
We evaluated the distribution of spectral wave-
lengths emitted from each LED light using a Fluo-
roMax® spectrofluorometer with wavelength
selection provided by a Czerny-Turner grating
monochromator. Luminescence was detected by an
Emission: R928P photon counting PMT
(185e850 nm) and reference photodiode for moni-
toring lamp output. Lights of four colors, namely
blue, green, red, and white with peak wavelengths
of 458, 526, 630, and 460 nm, respectively (Fig. 1).

2.2. Mud crabs

S. olivacea were captured from the Setiu Wetlands,
located in northeast Terengganu, Malaysia, in June
2017 by using a baited rectangular collapsible trap
deployed at the mangroves at a depth of 3e5 m. The
S. olivacea were measured for carapace width (CW)
and held under continuous aeration in two
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rectangular holding tanks (with a length, width, and
height of 5, 1, and 1m) containing water with salinity
approaching 20 ppt. The mud crabs were separated
according to sex (male and female) in different
holding tanks. To mimic the natural habitat of mud
crabs, sand was placed at the bottom of each tank,
and shelters were constructed from cylindrical
polyvinyl chloride pipes. The crabs were fed with
chopped mackerel (10% of body weight) once a day
and were quarantined for two days without feed
before the start of the captivity experiments.

2.3. Captivity experiment setup

The captivity experiment setup consisted of an
enclosed 10-ton fiberglass tank with a length, width,
and height of 4, 2, and 2 m, respectively (Fig. 2). The
interior walls of the tanks were light blue. The water
was 1.5 m deep, and black agricultural nets covered
most of the light penetration at the top of the tanks
(Fig. 2b, d). The water salinity was maintained at
20 ppt, and continuous aeration was ensured
(Fig. 2c). The experiment was conducted during
night time in an enclosed area and the tanks con-
tained no odors or food sources. To determine the
crabs’ locations when the lights were placed in the
center of the tanks, we divided the bottom of the
tanks into two areas: near light (NL) and far from
light (FL; Fig. 2I, II). The NL area had a length,
width, and height of 0.6, 0.3, and 0.25 m, respec-
tively, the same dimensions as those of the
collapsible crab traps often used by local fishermen.
A 100% fluorocarbon fishing line linked the LED
lights to one end of the middle of the crab trap
structure in the NL area. The light was submerged
in the tank using a vertical lever that reached the
base of the tank.

2.4. Captivity experiment data collection

A total of 120 untrained mud crabs, divided into
two groups of 60 males and 60 females, were
examined. Five treatmentsdone control (without
LED lights) and four with LED lights of different
colorsdwere employed. The control treatment was
performed before the LED treatments to ensure that
crab movements were randomized in the experi-
mental tanks (Table 1). To prevent the crabs from
being tested twice for each color, the crabs were
separated into two standby tanks of the same size
and with the same setup with experiment tanks after
each trial.
The 120 mud crabs were divided into 12 sub-

groups of 10 (5 males and 5 females). Each trial
began with the random transfer a group of five
crabs, starting with the males, from the holding
tanks to the experimental tanks. The crabs were
given 30 min of acclimation, and then the LED light
colors were randomly selected and the lights were
lowered into the center of the experimental tanks,
each of which was completely covered with a black
nylon net to prevent bias toward other stimuli. After
1 h, the crab locations were recorded as either NL or
FL. All five crabs were transferred to the standby
tanks after data were recorded. This process was
repeated until all the crabs had been tested. The
average number of crabs in the NL area for each
group and treatment was calculated as follows:

Average number of crabs in the NL area

¼ S number of crabs in the NL areas
S number of subgroups

ð1Þ

where the average number of crabs in the FL
calculated with a similar formula.

Fig. 1. Fluorescence of LED lights. Peak wavelengths were 458 nm for blue LED lights, 526 nm for green LED lights, 630 nm for red LED lights, and
460 nm for white LED lights.
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Fig. 2. The captivity experiment tank. (a) The waterproof flashing LED lights; (b) the black agriculture nets; (c) tank aeration; (d) tank water level; (I)
the NL area; (II) the FL area.

Table 1. Summary of S. olivacea responses to the different treatments in the captivity experiments.

Treatments Total numbers
of crabs

Number
of crabs at NL

Average number of
crabs at NL (crab/trial)

Number
of crabs at FL

Average number
of crab at FL (crab/trial)

p-value

Male
Green 60 41 3.417 19 1.583 <0.001
Red 60 10 0.833 50 4.167 <0.001
Blue 60 39 3.250 21 1.750 0.002
White 60 33 2.750 27 2.250 0.275
Control 60 7 0.583 53 4.417 <0.001

Female
Green 60 37 3.083 23 1.917 0.027
Red 60 14 1.166 46 3.833 0.002
Blue 60 33 2.750 27 2.250 0.274
White 60 34 2.833 26 2.167 0.136
Control 60 10 0.833 40 4.167 <0.001

Fig. 3. (a) Field experiment location in the mangrove estuary area of the Setiu Wetlands; (b) the crab fisherman guide aboard a fiberglass boat; (c)
collapsible traps used in the field experiments.

JOURNAL OF MARINE SCIENCE AND TECHNOLOGY 2022;30:48e62 51



2.5. Field experiments

Field experiments were conducted between
August 9 and 22, 2017 in the mangrove estuary of
Setiu Wetlands (Fig. 3a) aboard a 6-m fiberglass boat
with a 15-horsepower engine andunder the guidance
of a local crab fisherman, respectively (Fig. 3b). The
sampling site was divided into two areas; an estuary
areadan area that does not have a mangrove tree,
near to river estuary, and a mangrove areadan area
that consists of mangrove and nipa tree (Fig. 3a). The
water depth at the sampling site ranged from 1.5 to
3 m depending on the tide. Collapsible traps
composed of an iron rod frame (0.6, 0.3, and 0.25 m in
length, width, and height, respectively) and 5-cm
mesh green knotted polyethylene were used (Fig. 3c).
Each trap had two slit openings consisting of two
netting panels forming a horizontal V shape. The
animals expanded these openings when entering the
trap. Four experimental treatments were investi-
gated: a trap baited with 100 g of mackerel (trap 1), a
trap baited with approximately 70e100 g of the
chickenhead (trap 2), anunbaited trap equippedwith
a green LED light (green light trap), and without any
bait or LED light (empty trap) (Fig. 4a). The bait was
tied to thewire between the doors, and the greenLED
light was tied to the top of the trap using a cable to
prevent it from becoming stuck in the sand andmud.
On every fishing trip, all traps was set up at 4 pm

and left overnight for 12 h in accordance with con-
ventional fishing practices. Moon phases during the
study were obtained from www.timeanddate.com
(full moon; 100% illuminated, new moon; 0% illu-
minated, first-quarter moon; 50% illuminated, and

third-quarter moon; 50% illuminated). However, no
first-quarter moon phases were recorded during the
study periods and have been remove from the
analysis. Each trap was tied up with rope and floa-
ted to assist in tracking its location. The four trap
treatments were randomly assigned, and the dis-
tance between each trap at the sampling location
was approximately 20 m (Fig. 4b). On each fishing
trial, the 72 numbered replicate traps were con-
ducted (baited trap 1: 24 replicates; baited trap 2: 24
replicates; green light trap: 12 replicates; empty trap:
12 replicates). A total of 360 trap hauls (120, 120, 60,
and 60 for baited trap 1, baited trap 2, green LED
light trap, and empty trap) were successfully made
over five fishing trials, with the same route and trap
location used each time. All captures were counted
except for those of Mollusca, which were released.
The species, sex, and CW of the crabs were
measured and recorded (Table 3). The catch per unit
effort (CPUE) was defined as the number of each
species captured per trap haul. For each species, sex,
and treatment, the average CPUE was calculated as
follows:

Fig. 4. (a) The four treatments in the field experiments; (b) random assignment of the treatments. The distance between each trap at the sampling
location was approximately 20 m.

Table 2. Model output from GLMM: Number of crabs at NL or FL
versus treatments and sex, relative to control treatment and female crab.

(a) Parameter Estimate Std. Error Z value P-value

(Intercept) �1.81836 0.2777 �6.548 <0.001
Treatments
Blue LED 2.20711 0.3213 6.868 <0.001
White LED 2.03603 0.3199 6.365 <0.001
Green LED 2.42070 0.3243 7.464 <0.001
Red LED 0.41523 0.3473 1.196 0.232

Sex
Male 0.03348 0.1830 0.183 0.855
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Average CPUE¼ SCatch number for each species
STrap number for every treatment

ð2Þ

2.6. Statistical analysis

For the captivity and field experiments, we used
three Generalized Linear Mixed Models (GLMMs)
[30] to assess the effect of different treatments on the
S. olivacea movement, how bait type affected the
number of S. olivacea caught per trial, and the
carapace width of S. olivacea caught across bait
types. We ran GLMM's using the glmmTMB pack-
age [31] and used the tidyverse package [32] to
conduct data manipulation and visualization.
In our first model, a binomial GLMMs was

employed (Eq. (3)). We modeled the locations of S.
olivacea either NL or FL as the response variable,
with fixed effects are treatments (control, blue
LED, white LED, green LED, red LED), and sex
(male and female). We incorporated the random
effects of trials (i.e. first trials of the field
experiment ¼ 1) to account for the temporal de-
pendency structure of the data. Our first model is
presented (Eq. (3)), where crablocationij is the jth
observation in captivity trials i. The crablocationij is
modeled as

mij ¼ b0 + Treatmentij + Sexij + Trialsi (3)

For our second model, we used a Poisson GLMMs
(Eq. (4)). We modeled the number of S. olivacea

caught per trap as the response variable, with fixed
effects are bait type (mackerel, chicken head, green
LED), sampling site (estuary area, mangrove area),
and moon phase (full moon, new moon, third-
quarter moon). We incorporated the random effects
of fishing trials (i.e. first fishing trials of the field
experiment ¼ 1) and trap numbers used for every
fishing trials to account for the temporal dependency
structure of the data. In second model, both male
and female S. olivacea catch were combined as a total
catch. Our second model is presented (Eq. (4)),
where totalcatchij is the jth observation in sampling
trials i. The totalcatchij is modeled as

mij ¼ b0 + Baitij + Moonij + Siteij + Trialsi
+ TrapNumberi (4)

In our last model (a Gaussian GLMMs), CW (mm)
was the response variable, and fixed effects are bait
type, sampling site, moon phase and sex (male, fe-
male), with sampling trials as random effects. Our
last model is presented (Eq. (5)), where total car-
apacewidthijk is the kth observation in the jth trap,
which is nested within the ith trials. The car-
apacewidthijk is modeled as

mij ¼ b0 + Baitij + Siteij + Moonij + Sexij + Trialsi (5)

The statistical significance of all fixed terms for the
field experiment was calculated using chi-squared
tests to determine if categorical variables have a
significant correlation between them. GLMMs
models were tested for outliers, homogeneity,

Table 3. Number of swimming crabs and bycatch organisms caught using the mackerel, chicken head, green LED, and empty trap treatments in Setiu
Wetlands.

Treatment Mackerel Chicken Head Green LED Empty Trap

Price RM10.00/kg No value RM6.00/pcs No value
No. of trap hauls 120 120 60 60
Mean soaking time (hour) 12 12 12 12

Scylla olivacea
Total no. caught a 79 45 8 e

Total weight (kg) a 10.89 5.42 0.96 e

Mean carapace width (mm) b 90.35 86.57 86.35 e

Sex ratio (F:M) a 1:2.6 1:1.14 1:3 e
Bycatch no.
Scylla Paramamosain b 9 10 1 e

Scylla tranquebarica c 2 4 e e

Portunus pelagicus c 11 4 e e
Thalamita crenata a 56 66 5 e

Menippe mercenaria b 38 34 6 e

Epinephelus coioides c 14 8 e e
Scatophagus argus c 2 e e e

Lutjanus rivulatus c 2 e e e

Total catcha 213 171 20 0
a Indicates where a significant between-treatment difference was observed.
b Indicates where no significant between-treatment difference was observed.
c Indicates where term not applicable for analysis.

JOURNAL OF MARINE SCIENCE AND TECHNOLOGY 2022;30:48e62 53



normality, collinearity, interactions, and indepen-
dence (for each model) according to the method in
supplementary data by [11]. We conducted GLMMs
analysis for data preparation, and visualization
using R Statistical Software 3.6 [33].

3. Results

3.1. Captivity experiments

Figure 5 showed the average number of crabs in
the captivity experiments that moved toward the NL
or FL area. In the control, most crabs were recorded
in the FL area (Table 1, Fig. 5), and significant dif-
ferences between crabs in the NL and FL areas were
observed. The number of crabs in the NL area was
highest for the green, blue and white LED treatment
but not differed significantly between these three
treatments (Table 1). For green LED light, no sig-
nificant sex differences were noted with males and
females (3.417 and 3.083 per trial, respectively; Table
1). In the blue and white LED treatments, more
crabs were observed in the NL area than in the FL
area. In the blue LED treatment, this difference was
only significant for the males. In the white LED
treatment, no significant sex differences were noted
(Table 1). The red LED treatment had no attractive
effect; similar to the controls, all crabs, both male
and female remained in the FL area (Table 1, Fig. 5).
Chi-square analysis showed that the type of

treatments greatly influenced the locations of S.
olivacea (P < 0.05) in the captivity experiment,
whereas the sex did not show significant differences
between the five treatments (P > 0.05). For GLMMs,

significant differences were noted in relation to
different LED lights with control treatment (which
we treated as “control” as this experiment not
consist any LED light), for which blue, white and
green LED had a positive significant with the
number of S. olivacea to NL area compare to red
LED and control treatment (Table 2, Fig. 6). Male S.
olivacea had a positive significant with the treat-
ments but does not differ from the female S. olivacea
(Table 2).

3.2. Field experiments

In total, 360 trap hauls were successfully
completed after a mean soaking time of 12 h (Table
3). The bait price (in Ringgit Malaysia per kg) was
based on the local prices and discussions with local
fisherman in the Setiu Wetlands area except for
chicken head that got free at a local chicken farm
due to poultry byproducts waste. Table 3 presents
the differences in catch composition, namely those
in catch number, total weight (in kg), mean carapace
width (in mm), and sex ratio (female: male) for the
mackerel, chicken head, green LED and empty trap
treatments, as well as the number of species
bycaught in each treatment and trap. However, zero
catch of any organisms for the empty trap treatment
during the 5-day field experiment. A total of 404 S.
olivacea and bycatch organisms were caught over
the 5-day experiment (Table 3).
Significant differences in the catch number of S.

olivacea between the baited trap treatments and the
green LED treatments were observed (P < 0.05;
Table 3). The mackerel-baited traps caught the

Fig. 5. Boxplots of average number of male and female S. olivacea in the captivity experiments that moved toward the near light and far from light
area.
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highest numbers of S. olivacea, with a total weight of
10.89 kg crabs and a mean of carapace width of
90.35 mm, accounted for 59.8% of the total S. olivacea
catch (Table 3). Across the entire field experiment,
65.9% of crabs were male and 34.1% were female of
S. olivacea caught. Significant differences in the total
catch were noted among all three treatments

(P < 0.001). Both the mackerel and chicken head
treatments resulted in the capture of higher
numbers of organisms than did the green LED
treatments (213, 171, and 20, respectively).
There were eight bycatch species recorded in the

present study. In total, we found 20 Scylla Para-
mamosain, six S. tranquebarica, 15 Portunus pelagicus,

Fig. 6. The relationship between each treatment and the number of S. olivacea to NL area during captivity experiment. The value in the treatments
represents the peak wavelengths for blue LED: 458 nm, white LED: 460 nm, green LED: 526 nm, and red LED: 630 nm. The dashed vertical gray line
indicates the optimal range of light wavelength for S. olivacea.
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127 Thalamita crenata, 78 Menippe mercenaria, 22
Epinephelus coioides, two Scatophagus argus, and two
Lutjanus rivulatus. The CPUE values for T. crenata
and M. mercenaria were also higher when the bai-
ted traps were used. The green LED treatment also
attracted these two-crab species, but at very low
numbers compared to the baited traps (Table 3).
Significant differences were observed for T. crenata

between the baited trap and green LED treatments
(P < 0.05), but none were noted for M. mercenaria
(P > 0.05). By contrast, no between-treatment dif-
ferences between the other bycatch species were
observed (P > 0.05).
Chi-square analysis showed that the type of bait

greatly influenced the CPUE of S. olivacea (P < 0.05),
whereas the phase of the moon and the location of
sampling did not show significant differences be-
tween the three treatments (P > 0.05). For GLMMs,
significant differences were noted in relation to traps
baited with empty trap (which we treated as “con-
trol” as this trap not consist any bait or LED light), for
which baited with chicken head, mackerel and green
LED caught 4.52%, 7.28% and 2.18%more CPUE of S.
olivacea compare to empty trap, respectively (Table
4a, Fig. 7). Besides, both the mackerel and chicken
head treatments resulted in the higher average
CPUE of S. olivacea than did the green LED treat-
ments; 0.66, 0.38 and 0.13 per trap (Fig. 8). The new
moon and full moon phases produced higher CPUE
of S. olivacea than the third-quarter moon but were
not significantly different (Table 4a, Fig. 7). Mangrove
area catches higher S. olivacea but does not differ
from the estuary area (Table 4a, Fig. 7).
For the carapace size, chi-square analysis showed

that the sampling site had significant differences in
CW (P < 0.05), but the bait type, moon phase and sex
did not have a significant effect on the CW of S. oli-
vacea caught (P > 0.05). Mackerel and chicken traps
caught on average 24.50 mm and 1.21 mm wider of S.
olivacea than those baited with green LED, respec-
tively (Table 4b, Fig. 9). No significant change in body
size was observed in all three-treatment traps and

Table 4. Model output from GLMM: (a) total catch versus bait type,
moon phases and sampling site, relative to empty trap, full moon phases
and estuary area; (b) model output from GLMM of carapace width
versus bait type, sampling site, moon phase and sex, relative to green
LED, estuary area, full moon and female crab.

(a) Parameter Estimate Std. Error Z value P-value

(Intercept) �2.36147 0.45066 �5.240 <0.001
Bait

Chicken Head 1.50864 0.43288 3.485 <0.001
Green LED 0.78119 0.49480 1.579 0.114
Mackerel 1.98515 0.42451 4.676 <0.001

Moon
New Moon 0.07569 0.23950 0.316 0.752
Third Quarter �0.11744 0.20449 �0.574 0.566

Site
Mangrove 0.19400 0.16254 1.194 0.233

(b)

(Intercept) 86.4000 4.3208 19.997 <0.001
Bait

Chicken Head 0.6484 3.4800 0.186 0.8522
Mackerel 3.4192 3.3445 1.022 0.3066

Site
Mangrove �3.2148 1.5646 �2.055 <0.05

Moon
New Moon 3.3370 2.7545 1.212 0.2257
Third Quarter 1.4743 2.3657 0.623 0.5332

Sex
Male 0.2268 1.8438 0.123 0.9021

Fig. 7. Visualization of parameter estimates from GLMM's comparing S. olivacea catch versus bait type, moon phase and sampling site. The
comparisons are relative to traps baited with empty trap (vertical solid black bar which we treated as “control”) in full moon and estuary area. The
solid vertical bar indicates no statistically significant effect of that covariate level on the response variable.
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different moon phase. However, crabs caught in the
estuary were larger than in the mangrove area and
show a significance among the sampling site (Table
4b, Fig. 9). The largest average CW recorded in the
estuary was baited by green LED, yet recorded the
smallest average CW in the mangrove area (Fig. 10).
In contrast, there were no sex differences between
the CW (Table 4b, Fig. 9).

4. Discussion

There are two major limitations in this study that
could be addressed in future research. First, the

study on crab's behavior in captivity experiment.
Mud crab is known as one of the high cannibalism
species among them [34]. In the natural habitat,
mud crabs will try to enter or approach the traps
even if there are mud crabs or other organisms in
them due to the strong natural bait attraction. In our
captivity experiment, we decided to select groups of
five crabs for each trial to observe the mud crab
attraction to the LED light even in the high-density
area. However, in the future, the treatment of indi-
vidual single reactions of crab against differences
treatment (i.e. different LED light colors) should be
performed. This is to observe either the behavior of

Fig. 8. Boxplots showing the average CPUE of S. olivacea for different baited trap treatments during the field experiment.

Fig. 9. Visualization of parameter estimates from GLMM's comparing S. olivacea carapace width versus bait type, sampling site, moon phase and sex.
The comparisons are relative to traps baited with green LED (vertical solid black bar which we treated as “control”) in estuary area, full moon and
female. The solid vertical bar indicates no statistically significant effect of that covariate level on the response variable.
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crab responses to treatment is not affected in the
presence of other crabs. Besides, a control treatment
with LED light switched off should be performed to
know whether or not the presence of the plastic LED
or battery had some effect on the movement of
crabs.
Second, the limitations of the study on baits per-

formance to improve catchability of crabs. In the
present study, we found that the differences of
CPUE with the use of three different treatments had
significant differences. This supports that the hy-
pothesis of using different baits to catch target
species is not a problem. However, these results
indicate that bait selection is very important. Given
the relatively small sample size and the study con-
ducted in a short time, we did not conclude that
mackerel maximized CPUE and the size of the crabs
caught. This unbalanced experiment increases the
likelihood of type II errors and leads to a loss of
statistical power in general. Instead, other LED light
color (i.e., blue light, white light, red light) should
also test as one of the treatments and the combi-
nation between natural baits with artificial baits (i.e.,
mackerel combined with green LED light in a trap)
to observe the catchability of target species should
be done for future study.

4.1. Captivity experiments

The captivity experiments indicate that S. olivacea
can be attracted using artificial lights as other
aquatic species are [17e19,21,22]. In the present
study, S. olivacea responded differently to different
LED light colors, and the results suggest that crab
behavior, in general, depended on exposure to
lights of different colors and wavelengths. These
findings were consistent with those of Nguyen et al.
[20] and Kawamura et al. [35].
This response to various wavelengths of light may

vary depending on the eye anatomy, the biology of
each crab species, and potentially the density of the
crab as well. The receptors in almost all crustacean
compound eyes belong to two anatomically distinct
classes: seven retinal cells comprising the main
rhabdom and a single eighth cell representing a
smaller, typically distal portion [36,37]. Many of the
eighth cells contain comparatively short-wave-
length, ultraviolet-sensitive, or violet-sensitive vi-
sual pigments and the seven retinal cells typically
contain visual pigments more sensitive to the
blueegreen regions of the spectrum [37]. Crusta-
ceans such as certain crabs, Uca mjoebergi, and Cal-
linectes sapidusare dichromatic or, like cephalopods,
Sepia sp., are color blind, with a single spectral
range of approximately 500 nm [38]. The giant mud

crab S. serrata has a peak visual sensitivity in the
blueegreen wavelengths of 450e500 nm [39] and a
single type of photoreceptor [40].
According to a study by Forward et al. [41], the

overall visual pigment absorbance of 27 benthic
crustacean species in semiterrestrial, estuarine, and
coastal environments ranges from 483 to 516 nm.
Cronin and Forward [42] in their study on five
Portunidae species distributed across estuarine and
coastal environments, reported that four species,
namely Arenaeus cribrarius, Callinectes sapidus, C.
Ornatus, and Ovalipes stephensoni, have similar visual
pigment systems, with a peak of approximately
500 nm. Horch et al. [43] indicated a median
absorbance between 473 and 515 nm in all crab
species, with that of semiterrestrial crabs being be-
tween 487 and 508 nm. In the present study, the S.
olivacea responded well to the green, blue, and
white LEDs and poorly to the red LEDs is consistent
with the fact that the main rhabdom in crabs has a
maximum spectral sensitivity between 450 nm and
550 nm (Fig. 6). Besides, during the control treat-
ment, our results showed that crab randomly moved
in the experiments tank, and a few numbers of crabs
were recorded in the NL area. Moreover, our
finding discovers that S. olivacea was not attracted to
red light is consistent with the result in the control
treatment and those of previous studies that crus-
taceans only respond to particular wavelengths of
light [20,21,37,42,43]. Taken together, these findings
indicate that the visual system of S. olivacea is more
sensitive to shorter wavelengths of light and less so
to longer wavelengths.

4.2. Field experiments

The catchability performance of collapsible traps
highly depends on factors such as the prey
numbers; season; type of bait; the size, shape,
entrance location, and levels of saturation of the
traps; soaking duration; and oceanographic condi-
tions [44,45]. Field studies have demonstrated that
significantly higher CPUE values of S. olivacea and
other organisms, including bycatch species, are ob-
tained when mackerel and chicken head baits are
used. However, unbaited green LED traps also
attract S. olivacea, T. crenata, and M. mercenaria but at
very low numbers compared to baited traps. Marine
animals rely more on olfaction than vision when
searching for food [46]. Besides, chemical cues are a
more common mode of attraction than vision in
aquatic environments because of attraction distance,
light availability, and turbidity [47].
Nguyen et al. [20] found that unbaited traps

equipped with LED lights caught equivalent
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numbers of snow crabs to conventional baited traps,
with soaking time and water depth explaining some
of the CPUE variations. The use of LED lights to
replace the conventional baiting method is not new
and is promising and readily applicable to the
fishing industry. For example, with the introduction
of underwater lighteequipped fishing equipment,
the CPUE values of large-scale fish traps and snow
crab traps have increased by 200% and 77%,
respectively [20,22]. Besides, Nguyen et al. [48]
discover that luminescent netting increases the ef-
ficiency of the snow crab traps by 21.6% higher catch
per unit effort of legal-sized crab than control traps,
which provides economic and environmental ben-
efits to the fisherman.
We hypothesized that light allows crabs to

approach and detect trap entrances and specifics
within them. Specifically, we hypothesized that LED
light lacks the ability to attract crabs to approach the
trap compared to natural baits that have an odor as
well as produce enough amino acids to attract S.
olivacea over a wide range. Archdale and Nakamura
[49], have shown that, in the bioassay experiments,
blue swimming crab P. pelagicus react to different
amino acid and can detect minor changes in the
chemical composition such as galactose and glucose
in the water surrounding them. Besides, swimming
crabs such as S. olivacea are scavengers that rely
heavily on their chemoreceptive sense for locating
their food.
LED light clearly has a significant disadvantage in

that is not able to move in a wide radius compared
to the smell of natural bait that is able to move ac-
cording to the movement and change of water

current. Estuaries are characterized by high con-
centrations of total suspended solids as well as high
turbidity and fluctuations in salinity [50]. The
elevated turbidity of estuarine waters at high tide
may also explain why crabs are not more responsive
to LED traps.
The results of our study show, during the use of

LED light as a treatment bait, CPUE of S. olivacea
showed a slight increase when carried out during
the new moon and third quarter moon, however,
the catch was lower when carried out on the full
moon, but did not show a significant difference
between these three moon phases. Some study also
approves that, moon illumination are affected
catches through an influence on the behavior and
movements of fishes [51]. In addition, both water
depthdbetween 0.5 and 3 m, depending on tide
conditions [52]dand moonlight effects (moon
phase) in the Setiu Wetlands may affect the output
of LED lights that give the negative impacts on the
catches of S. olivacea during the study.

4.3. Carapace size and sex differences in trap
attraction

Scylla spp. populations are commonly associated
with mangroves and can serve as useful indicators
for mangrove habitat conditions [53]. Hill et al. [54]
have described habitat use by several stages of life
Scylla spp. in Australia, with mud crab species more
concentrated in mangrove habitats. In the present
study, the mangrove area catches higher S. olivacea
but does not differ from the estuary area. Although
the natural environment between the estuary and

Fig. 10. Boxplots showing the average carapace width of S. olivacea for different baited trap treatments at the different sampling site during the field
experiment.
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the mangrove area can be seen with the naked eye
(i.e. the mangrove area covers more mangrove
trees), the difference in terms of an environmental
factor (i.e., salinity and water depth) is not very
significant among them. Mostapa and Weston [55]
reported that the same sampling location in our
study recorded a high mean salinity value in the
range of 27e30 ppt, indicating the main influence of
seawater in this area which may not cause signifi-
cant differences between catches of S. olivacea in
Setiu Wetlands.
Regarding crab size, no significant effect of bait

treatment on CW was detected. However, the field
experiments showed that the baited traps caught
more S. olivacea than did the green LED traps. Be-
sides, the estuary area caught a bigger CW compare
to the mangrove area. Larger juveniles and adult S.
serrata reported migrating into mangroves habitat
for shelter and foraging, whereas adult female mud
crabs migrate towards offshore regions with oceanic
conditions during the spawning season [56]. Also,
Walton et al. [53] mention that larger S. para-
mamosain were caught offshore (mean CW:
125.0 mm) where females accounted for 60% of the
catch compare to the mangrove area. In the present
study, the field experiments showed no significant
sex difference in CW of S. olivacea catch. Besides, no
sex differences were observed for the movement of
S. olivacea toward the light in captivity; however,
significant between-treatment differences were
noted. The results suggest that the visual receptor
systems of all adult S. olivacea are similar. These
results show a close relationship between estuary
areas and specific niches in mangrove habitats, with
the main population found living far from the
mouth of the river i.e. areas with mangrove trees,
while larger CW sizes inhabit the estuary area.

4.4. Future alternative baits

The present findings can inform conservation
measures through the use of LED lamps as lures for
mud crabs. However, the higher cost of LED lights
with a lower number of catches per trap compared
to natural baits may be one of the disadvantages of
these artificial baits (Fig. 11). Meanwhile, in another
perspective, the LED light advantage in this exper-
iment is that they can be used repeatedly for up to
100 consecutive hours compared to natural baits
that cannot be used after a single use. Although
detailed economic analysis is not yet complete, our
rough calculations show that LED light investment
will result in high variable cost in short term for the
fisherman, but over time it will recoup investment,
and at that point they will profit due to the LED light
can reusable. Two studies by Nguyen et al. [20,21]
reported improved crustacean catchability with the
use of artificial light rather than fresh bait. More-
over, artificial light use can reduce the consumption
of fish food as bait. This benefit is particularly
relevant because of the growing demand and sub-
stantial rise in prices of bait also used for human
consumption, such as squid, mackerel, and herring,
over the past decade [57]. Meanwhile, other by-
products such as chicken heads should be consid-
ered to become alternative baits. However, the
quantity of poultry by-product is usually limited
because it is also used in the field of aquaculture as
livestock feed [58]. Besides catchability, several
other factors such as availability, storage logistics,
and pricing need to be considered for the success of
new bait in commercial trap fisheries [8]. Other so-
lutions such as reducing the amount of natural bait
needed by adding compounds consisting of wheat
starch, garlic, and brown sugar, were found to

Fig. 11. The comparison between the average bait cost per trap with the average S. olivacea catch per trap for different baited trap treatments during
the field experiment. The top of the box and circle indicate the standard error.
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attract swimming crabs, as suggested by Archdale
and Kawamura [12].
In conclusion, in the present study, LED lights

attracted the orange mud crab S. olivacea but at very
low numbers compared to natural baits. The
captivity experiments revealed that green, blue, and
white LED lights attracted the crabs more than did
the red LED lights. In the field experiments, con-
ventional baits (mackerel and chicken heads) ach-
ieved higher CPUE values for S. olivacea compared
with the green LED lights. However, the perfor-
mance of the LED lights may have been consider-
ably affected by environmental factors such as the
moon phase. Although the CPUE values of S. oli-
vacea in the present study obtained using LED traps
were lower than those achieved using baited traps,
further in-depth studies, and specific modifications
to improve the performance of LED lights are war-
ranted. We recommend assessing the results for the
capture of both crabs and non-target species to
determine the effect of baited traps equipped with
LED lights on crab catchability. Furthermore, in
such studies, LED lights should be tested for a va-
riety of colors, longer soaking duration, longevity,
combination with baited trap, impact to the envi-
ronment, and economic benefits.
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