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RESEARCH ARTICLE

Detecting the Feeding Habitat Zone of Albacore Tuna
(Thunnus Alalunga) in the Southern Indian Ocean
using Multisatellite Remote Sensing Data

Sandipan Mondal a, Yang-Chi Lan b, Ming-An Lee a,c,*, Yi-Chen Wang a,
Bambang Semedi d, Wan-Ya Su a

a Department of Environmental Biology and Fisheries Science, National Taiwan Ocean University, Keelung, Taiwan, ROC
b Coastal and Offshore Resources Research Center, Taiwan Fisheries Research Institute, Kaohsiung, Taiwan, ROC
c Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung, Taiwan, ROC
d Fisheries and Marine Science Faculty, Brawijaya University, Malang, East Java, Indonesia

Abstract

Remote sensing is an effective method for identifying potential feeding habitat zones. Spatial and temporal distri-
bution patterns of albacore (ALB) tuna were studied using Taiwan longline fisheries data from 2009 to 2014. A gener-
alized additive model (GAM) was used to compile a fishery database and statistically explore the relationship between
distribution and environmental factors. Sea surface temperature (SST), sea surface chlorophyll-a concentration (SSC),
sea surface salinity (SSS), sea surface height (SSH), mixed layer depth (MLD), and eddy kinetic energy (EKE) were
examined. The results indicated SST as the largest contributor on ALB distribution, followed by SSS and SSC. Catches
per unit effort (CPUE) values indicated that ALB tuna were primarily distributed at 20�E¡110�E and 25�Se40�S. The SST
and SSS ranges for higher ALB abundance were 17e19 �C and 35.1e35.5 psu, respectively. SSC was positively related to
CPUE as a result of ALB tuna habits in the current location during the study period (0.1e0.25 mg m¡3). The predicted
CPUE indicated that the potential feeding habitat zones were 35�Se40�S and 25�Se30�S during March and
AprileAugust, respectively. These findings provide preliminary insight into the key environmental features affecting
the ALB distribution in the southern Indian Ocean.

Keywords: Albacore, Sea surface temperature, Sea color, Generalized additive model, Long-line

1. Introduction

T una is a highly migratory species with very
high economic value. In past decades, albacore

(ALB) tuna alone has accounted for approximately
84% of total temperate tuna catches in the Indian
Ocean; thus, it is one of the primary commercially
targeted species [1]. Furthermore, ALB tuna has
long been the subject of scientific research. The
species is widely distributed in the three major
oceans from 50�N to 40�S, excluding 25�N in the
Indian Ocean [2]. ALBstock in the Indian Ocean has

been primarily exploited by Taiwan, Japan, and
Korea in the last five decades. Large-scale longline
equipment is the main ALB fishing gear used in the
Indian Ocean [3]. Most studies of this species have
concerned stock discrimination, production models,
and age determination, whereas studies on its dis-
tribution and how this distribution is influenced by
various environmental factors have been limited,
considering the fishing history of ALB tuna. The
southern Indian Ocean was the targeted area in the
present study. The global distribution of ALB is
highly regulated by different environmental fac-
tors. Fishermen seek specific water masses when
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targeting any species of tuna. ALB tuna catches are
closely spatially related to sea surface temperature
(SST) [4,5] and chlorophyll [6e8] in the Ocean.
Despite the southern Indian Ocean being a favor-
able place for ALB habitat, information regarding
southern Indian Ocean oceanographic conditions is
insufficient, which hinders the study of ALB tuna
habitats [9]. This problem was overcome with the
advent of remote sensing data. In 1981, the
advanced very-high-resolution radiometer and the
Nimbus-7 coastal zone color scanner were first used
to evaluate the spatial distribution of ALB tuna
catches in the eastern Pacific Ocean [6]. Satellite
remote sensing has subsequently been widely
applied to fisheries oceanography, fisheries man-
agement, and operational fisheries oceanography
using the SST, thermal front, and phytoplankton
pigment concentration of near-surface waters
[6,8e11]. Improvement in remote sensing and
geographic information systems has enabled re-
searchers to overcome the barriers presented by the
temporal and spatial scales. Understanding the
distribution patterns of ALB and the effect of envi-
ronmental factors in the Indian Ocean is paramount
to fostering sustainable exploitation and manage-
ment. Therefore, we explored the spatial and tem-
poral distribution ofALB tuna by using remote
sensing environmental variables. We used sea sur-
face data from the southern Indian Ocean, including
satellite images and fishery data collected by ves-
sels, to comprehensively clarify the environmental
preferences of ALB tuna in the Indian Ocean. These
findings can improve our understanding of the dy-
namics of ALB tuna and benefit sustainable fishing
in the Indian Ocean (Fig. 1).

2. Materials and methods

2.1. Remote sensing data

Seven types of satellite-derived and model-simu-
lated data were used in this study: (a) SST, (b) sea
surface salinity (SSS), (c) eastewest direction cur-
rent (U), (d) northesouth direction current (U), (e)
sea surface height (SSH), (f) mixed layer depth
(MLD), and (g) sea surface chlorophyll-a

concentration as indicator of sea color (SSC). U and
V were used to calculate eddy kinetic energy (EKE).
Data were collected from 20�E to 120�E and 25�S to
50�S because Nikolic et al. (2014) [12] reported that
this location is the feeding ground of ALB tuna
during March to August. The sources of the satel-
lite-derived data are listed in Table 1.
EKE was calculated as EKE ¼ 0.5 (U2 þV2) before

being used in the generalized additive model
(GAM) analysis. Previous studied showed SST, SSC,
SSS, MLD, SSH, EKE and SSH are very important
factors in terms of describing the albacore tuna
distribution. SST and SSC (for feeding) were
described as important factors in previous studies
while small changes in SSS effects the albacore tuna
distribution. As albacore tuna is deep diver, MLD
and SSH are important. EKE became also one of the
important parameter as albacore tuna is a highly
migratory species and eddy can provide feeding
opportunities. Based on these conclusions found in
previous studies authors took current 6 parameters
for the analysis (Comment 2).

2.2. ALB fishery data

Catch and effort data were compiled from a
logbook of Taiwanese long-liners (>100 tonnages) in
the southern Indian Ocean at 25�Se50�S and
20�E�120�E provided by the Overseas Fisheries
Development Council of Taiwan. Catch and effort
data from MarcheAugust 2009 to 2014 were
collected. The data like the number of hooks, fishing
time, area, catch, and fish size (fork length in cm)
were collected. Data were geographically referenced
and averaged to obtain monthly means. The nominal
catches per unit effort (CPUE) was calculated as the
number of individuals captured by 1000 hooks (No.
of catches/103 hooks). Data prediction of ALB tuna
abundance was also performed using the logbook.

CPUEijk¼
X

Cijk

.X
Eijk

where CPUEijk is the nominal CPUE (individuals/
1000 hooks),

P
Cijk and

P
Eijk are the total catch and

Table 1. Sources of the multi-satellite and satellite altimetry data
applied in the model

Data Unit Source Spatial Resolution

SST ºC ERDDAP 1� � 1�

SSC mg m�3 ERDDAP 1� � 1�

SSS psu MOVE-MRI 10 km � 10 km
MLD m HYCOM 1/12� � 1/12�

EKE m2s�2 AVISO 25 km � 25 km
SSH cm AVISO 25 km � 25 km

Fig. 1. Bathymetry of the southern Indian Ocean.
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fishing effort (1000 hooks) in the 1� � 1� grid,
respectively, and i, j, and k represent the month,
longitude, and latitude, respectively.

2.3. Standardization of nominal catch per unit
effort

Nominal CPUE values were suggested as an un-
biased estimation index of abundance to correct for
factors that may affect time-series analysis and
habitat model development [9]. In general, time
(year, month), space (longitude, latitude), and in-
teractions were considered the primary factors
[13,14] for changes in the nominal CPUE. The model
of standardized nominal CPUE was developed
using R (version 2.15.0) software developed by R-
studio, PBC enterprise as follows:

Log (CPUE þ c) ¼ m þ y þ m þ lat þ lon þ Interþ 3

Where 3 ¼ error, c ¼ constant given the value of 10%
of the mean CPUE, m ¼ intercept, y ¼ effect of years
(2009e2014), m ¼ effect of months (MarcheAugust),
lon ¼ effect of longitude, lat ¼ effect of latitude, and
Inter ¼ interaction terms.

2.4. Time-series analysis

Time-series analysis is one of the most valuable
tools for investigating the long-term fluctuations in
standardized nominal CPUE and the relationship
between standardized nominal CPUE and environ-
mental variables. In the present study, a time-series
analysis was performed to examine the catch rates
in different months and determine the effect of
various environmental factors on the catch rates
from 2009 to 2014. To clarify the relationship be-
tween the CPUE and different environmental fac-
tors, a two-tailed Pearson correlation analysis was
performed using SPSS (version 22.0).

2.5. Development of an ALB tuna habitat model

A potential feeding habitats model of ALB tuna in
the southern Indian Ocean was developed using
GAMs. The model was constructed using the mgcv
package of R software (version 2.15.0) [15]. In this
model, environmental factors such as SST, SSS,
SSC, SSH, MLD, and EKE were set as the predictor
variables and the standardized CPUE value was
the response variable. A maximum of six variables
(SST, SSS, SSC, SSH, MLD, and EKE) was used to
construct the functions in GAM. SST has frequently
been used to relate the oceanic environment to tuna
distribution [11]. Therefore, we considered SST the

primary variable for identifying the habitat for ALB
tuna, and different combinations of 2e5 variables
were used as habitat data.
The GAM can be written as follows:

Log (CPUEs þ c) ¼ a0 þ s1 (x1i) þ s2 (x2i) þ s3
(x3i) þ … sn (xni)

where CPUEs is the standardized CPUE of the
longline catch data, sn is a smoothing function of
each model covariate, and xn [15] and a0 are the
model constants. Furthermore, 0.1 fish per 103 hooks
were added to the CPUEs values (c) to account for
the zero catch values in the data.
A total of six variables and 11 models were eval-

uated. The lowest Akaike information criterion
(AIC) was used to select variables for further anal-
ysis. Estimation of ALB tuna relative density in
relation to SST, SSS, SSC, SSH, MLD, and EKE
conditions was then performed across the southern
Indian Ocean using selected GAMs. The GAMs
were then used to perform ALB abundance pre-
dictions and validations from March to August. The
predictions were assessed using the normal distri-
bution based on quantileequantile (QeQ) plots on
R-studio software.

3. Results

3.1. Monthly changes in the environmental
conditions of the feeding ground

The spatial variations of different environmental
factors during the study period were examined.
The southern area of the southern Indian Ocean
(25�Se30�S) was warmer throughout the study
period. The average temperature range (Fig. 2) of
this area was 18.5e28 �C. The area near 25�S and
between 35�E and 50�E had an average SST of
>23 �C. The area between 40�S and 50�S was colder
than other areas throughout the study period.
However, the colder region extended northward
from April and reached 25�S from July to August.
During that time, the SST of the area was
17.5e19 �C. The areas with 17.5e18.5 �C SST
exhibited the highest abundance of ALB tuna from
March to August. Higher salinity (Fig. 3) was
observed in the area between 25�S and 45�S. The
average SSS of this area was >34.5 psu throughout
the study period. Lower SSS was observed in the
northern part of the southern Indian Ocean, ranging
from 33 to 34 psu. The areas with an SSS of more
than 35 psu and less than 34 psu had a lower
abundance of ALB tuna. The SSC of the study area
ranged from 0.11 to 0.55 mg/m3 (Fig. 4), and the
lowest SSC (between 0.04 and 0.1 mg/m3) were

JOURNAL OF MARINE SCIENCE AND TECHNOLOGY 2021;29:795e809 797



Fig. 2. Mean monthly SST from March to August 2009e2014.

Fig. 3. Mean monthly SSS from March to August 2009e2014.

Fig. 4. Mean monthly SSC from March to August 2009e2014.
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Fig. 5. Mean monthly MLD from March to August 2009e2014.

Fig. 6. Mean monthly EKE from March to August 2009e2014.

Fig. 7. Mean monthly SSH from March to August 2009e2014.
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Fig. 9. Graph of the nominal and standardized CPUE from 2009 to 2014 and the monthly means for 2009e2014. Series 1 and series 2 illustrate the
nominal and standardized CPUE/103 hooks.

Fig. 8. Diagram of the (a) fishing effort, (b) number of albacore catches, and (c) all monthly (1e72nd) nominal CPUE of albacore from 2009 to 2014
(Comment 1).
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located at 25�Se30�S and 60�E�100�E. Higher SSC
was observed throughout the year in the northern
part of the southern Indian Ocean (35�Se45�S), with
a range of 0.15e0.3 mg/m3. A notable fluctuation in
SSC was observed at 45�Se50�S and 20�E�120�E. In
June, this area exhibited an SSC of less than
0.01 mg/m3. However, a southward shift of the area
was observed in July, and the area, restricted to
50�S, displayed an SSC of less than 0.01 mg/m3.
Areas with a 0.1e0.2 mg/m3 SSC displayed an
abundance of ALB, and an SSC range of
0.1e0.15 mg/m3 was associated with the highest
CPUEs values. The areas at 40�Se50�S and
80�E�100�E had the highest MLD (Fig. 5) in the
southern Indian Ocean in May. This area extended
both eastward and westward in June, and the area
reached up to 35�S toward the north, 20�E toward

the west, and 120�E toward the east from July to
August. A higher EKE (Fig. 6) was observed at
35�Se45�S and 20�E�80�E. The average EKE of this
area throughout the year was between 0.03 and
0.26 cm2/s2. Furthermore, the SSH was higher in
areas located at 25�Se40�S and 20�E�70�E and
lower in areas at 45�Se50�S at 0 and 0.04 m,
respectively (Fig. 7).

3.2. Standardization of nominal CPUE data

Figure 8 showed the fishing effort, albacore catch
and nominal CPUE every month from 2009 to 2014
(comment 1) The highest and lowest CPUE values
during the study period were observed in April
(13.56 fish/103 hooks) and August (7.86 fish/103

hooks), respectively.
Data standardization ensures that data is inter-

nally consistent and that each data type has the
same content and format. Standardized values are
useful for tracking data that are not easy. to compare
otherwise. Because of the use of six environmental
factors, CPUE values above or below the normal
value could have been obtained in certain parts of
the study area.
Figure 9 illustrates the difference in nominal and

standardized CPUE for each month from 2009 to
2014 and the monthly means of nominal and stan-
dardized CPUE for 2009e2014.
In 2014, Nikolic et al. [12] reported that the present

study area is the feeding ground of ALB tuna from
March to August in the Indian Ocean, and the re-
sults of the standardized CPUE and nominal CPUE
further indicated higher values from March to
August. Therefore, March to August was selected as
the study period.

Table 2. Results of the Pearson correlation coefficient test between
standardized CPUE and different environmental variables

Environmental factors R-values p value

SSC 0.41 <0.01
SSS �0.52 <0.01
SST 0.62 <0.01
MLD �0.62 <0.01
SSH 0.12 <0.01
EKE 0.25 <0.01

Fig. 11. Residual distributions and QeQ plots for diagnostic analysis of
the final GAMs with prediction variables (presented in Table 3) ac-
cording to fishery and remote sensing data.

Fig. 10. Time-series analysis between the CPUE and (a) SST, (b) SSC, (c) SSS, (d) MLD, (e) SSH, and (f) EKE. Orange and Blue indicates stan-
dardized CPUE and environment value, respectively.
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3.3. Time-series analysis

A continuous increasingedecreasing trend in the
CPUE values was observed during the study period.
The relationship between monthly mean CPUE and
the monthly mean values of the environmental
factors is illustrated in Fig. 10.
This variability between CPUE and environmental

factors was explained by the R values of the two-
tailed Pearson correlation (Table 2). The Pearson
correlation coefficient test revealed a significant
correlation between all the environmental factors
and the CPUE (Table 2); SST, SSC, SSH, and EKE
exhibited positive correlations with CPUE, whereas
SSS and MLD exhibited negative correlations with
CPUE. SST showed the highest positive relation
with the SST with a R value of 0.62 followed by SSC
(R ¼ 0.41) and EKE (R ¼ 0.25). This implied SST as

the dominant factor in the present study followed by
SSC and EKE. These results implied that increase in
the values of these factors are directly. related to the
increase of abundance. MLD and SSS showed R
value of �0.62 and �0.52 and concluded that
decrease in these values caused increase in abun-
dance (comment 2)

3.4. GAM analysis

GAM analysis predictions were confirmed using
the normal distribution based on QeQ plots; the
log-spaced residuals of all the environmental factors
were independent and appeared to be normally
distributed (Fig. 11).
All the environmental variables included in the

GAM selection process were significant (p < 0.01).
The cumulative deviance with the lowest AIC value

Table 3. Residual deviance and AIC of the CPUE values of high-spatial-resolution longline catch data explained in GAMs with sequentially added
variables (first to last)

GAMS Deviance explained (%) AIC p value

Model-1 (SST) 18.2 20019.99 <0.01
Model-2 (SST þ SSS) 31.3 18850.24 <0.01
Model-3 (SST þ SSS þ SSC) 40.7 18714.76 <0.01
Model-4 (SST þ SSS þ SSC þ MLD) 44.9 18706.51 <0.01
Model-5 (SST þ SSS þ SSC þ MLD þ EKE) 47.5 18683.01 <0.01
Model-6 (SST þ SSS þ SSC þ MLD þ EKE þ SSH) 47.6 18678.37 <0.01
Model-7(SSS) 16.5 20808.37 <0.01
Model-8(SSC) 13.4 20778.01 <0.01
Model-9 (MLD) 11.4 20756.48 <0.01
Model-10 (EKE) 4.17 21227.23 <0.01
Model-11(SSH) 1.46 21302.04 <0.01

Fig. 12. Modeled effects of SST, SSC, SSS, MLD, EKE, and SSH on CPUE values. Solid lines represent the fitted GAM function, and black-dotted
lines indicate the 95% confidence intervals. The relative densities of the data points are indicated by the rug plot on the x-axis.
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explained by the Model-6 GAM was 47.6 (Table 3).
The relationships between different models and
the CPUE values were examined using R-studio
software and are displayed in Fig. 12. SST had the
largest effect of all the environmental factors
studied, followed by SSS and SSC. These three
factors explained over 40% of the total deviance.
Table 3 showed SST with most deviance explained
(18.2%) supporting the result of Table 2. Sec-
ond and third highest deviance explained were

by SSS and SSC 16.5% and 13.4% respectively
(comment 3)

3.5. Spatial distribution of standardized CPUE in
relation to crucial environmental factors derived
from the GAM analysis

The spatial distributions of standardized CPUE
values during the study period are illustrated in
Fig. 13. From March to August, higher CPUE values
were observed in the areas at 30�Se40�S and
60�E�100�E. The CPUE was highly concentrated
around 35�S. After March, the abundance started
shifting northward, and higher CPUE values were
observed near 30�S by JulyeAugust. During July
and August, the south end of the Madagascar coast
also exhibited high CPUE values. Three environ-
mental factors with higher AIC values were also
included in the standardized CPUE values. Several
factors for SST, SSS, and SSC were included to
further clarify the spatial distribution of standard-
ized CPUE in relation to critical environmental
factors: 16 �C, 17 �C, 18 �C, 19 �C, 20 �C, and 21 �C
isotherm lines; 35.1 psu, 35.2 psu, 35.3 psu, 35.4 psu,
35.5 psu, and 35.6 psu isopleth lines; and 0.15 mg/

Fig. 14. Scatter plot illustrating the relationship between standardized
and predicted CPUE.

Fig. 13. Representation of the standardized mean monthly CPUE from March to August in 2009e2014. Standardized CPUE values with 16 �C, 17 �C,
18 �C, 19 �C, 20 �C, and 21 �C isotherm lines; 35.1 psu, 35.2 psu, 35.3 psu, 35.4 psu, 35.5 psu, and 35.6 psu and 0.15 mg/m3, 0.1 mg/m3, 0.12 mg/m3,
0.14 mg/m3, 0.16 mg/m3, 0.18 mg/m3, and 0.20 mg/m3 isopleth lines from March to August in 2009e2014].
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m3, 0.1 mg/m3, 0.12 mg/m3, 0.14 mg/m3, 0.16 mg/m3,
0.18 mg/m3, and 0.20 mg/m3 isopleth lines. Figure 13
illustrates the relationship between these values and
a higher abundance of ALB tuna during the study
period. The spatial distribution of standardized
CPUE values (Fig. 13) also indicates higher values
near the isotherm and isopleth lines.

3.6. Model validation and the development of an
ALB tuna feeding habitat zone and its relation to
standardized CPUE

Model-6, which displayed the lowest AIC value,
was further used to predict the CPUE (mean) from
March to August from 2009 to 2014. The relation
between the standardized and predicted CPUE for
2009e2014 had previously been statistically
described to validate Model-6. Statistical analysis
(Fig. 14) revealed that the regression (R) value of
the standardized and predicted CPUE was 0.861.
Model-6 was then used to identify the feeding

habitat zones and potential fishing zones (Fig. 15).
A Potential Fishing Zone (PFZ) is a proxy to po-
tential shoals of fish aggregation will benefit the
fishing community to reduce the time and effort
spent in searching the shoals of fish, thus
improving the profitability and hence, the socio-
economic status (comment 3) The maximum pre-
dicted CPUE values were observed at 35�Se40�S
and 25�Se35�S from March to May and June to
August, respectively.

4. Discussion

ALB tuna is a typical temperate and highly
migratory tuna species (similar to the Bluefin and
southern Bluefin species). ALB tuna engages in
extensive seasonal migrations (related to both
feeding and spawning) at all ages. Furthermore, this
species exhibits homing behavior (i.e., adults return
to the area where they were born) within its small
spawning strata [16].

Fig. 15. The mean monthly prediction of feeding habitat zones and their relationship.
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The results of this study indicated that the tem-
poral and spatial distributions of ALB tuna longline
catches were affected by climatic factors in the
southern Indian Ocean. SST was the most accurate
predictor of CPUE in ALB longline fishing, which
indicates a strong relationship between SST and
CPUE. On an ocean scale, SST not only represents
temperature but also corresponds to latitude [17].
Most studies on the Pacific Ocean have reported
lower and upper limits of suitable SSTs for ALB
tuna of 14 �C and 23 �C, respectively, with high
CPUE values occurring between 14 �C and 21 �C
[18]. However, different findings have been ob-
tained for the Indian Ocean, where areas with an
SST of over 24 �C [19] have been reported. The
present study revealed an abundance of ALB tuna
in areas with an SST range of 16e21 �C, with
18e19 �C displaying the highest CPUE. The most
centralized was at 18.5 �C in almost all the study
months. Lee et al. [20] concluded that SST
(17e21 �C) explained the habitat pattern of ALB
tuna predominantly in the southern Indian Ocean
and reported that SST was the primary factor
influencing the geographic distribution of ALB
tuna. Zainuddin et al. [10] reported that the highest
CPUE values in the northwestern North Pacific
Ocean during November were in areas where the
SST ranged from 18.5 to 20.5 �C. They further re-
ported that 20 �C was the centralized CPUE SST.
Lan et al. [9] described areas with an SST range of
16e18.5 �C as the high CPUE zone in the southern
Indian Ocean because 95% of high CPUE values
were recorded in areas of 16e18.5 �C SST during
June to September. Wang et al. [1] reported a
strong association between CPUE and 20e27 �C
SST. Chen et al. [17] determined that ALB tuna
catches in the entire Indian ocean cover a wider
range of SST than do those in other oceans. Studies
have reported that 15e21 �C SST is associated with
higher CPUE, concluding that the equatorial area is
unsuitable for ALB tuna fishing because it has a
higher SST throughout the year and ALB tuna is
primarily the bycatch in this area. The ALB tuna
SST preference has further been reported to vary
depending on the stage of development, with
18.9 �C, 19.1 �C, and 24.9 �C being the optimal
conditions for immature, mature non-spawning,
and mature spawning ALB tunas, respectively. The
present study presents a general overview of ALB
tuna habitat preference in the southern Indian
Ocean during March to August, which was
described as the ALB tuna feeding zone in the In-
dian Ocean by Nikolic et al. [12], possibly for both
mature and immature ALB tuna. The SST results of
the present study differed slightly from those of

other studies, possibly because of the study loca-
tion and period.
The second most influential predictor of ALB

tuna distribution was SSS. The present study
indicated a satisfactory abundance of ALB tuna in
areas with an SSS of 35.1e35.6 psu. Wang et al.
reported that an SSS of 34.5e35.5 psu was optimal
for ALB tuna in the Indian Ocean [1]. Roberts [21]
described a higher catch rate in subtropical water
(45.5%) with >35.4 psu salinity on the coast of New
Zealand, followed by in a subtropical convergence
zone (45.5%) with 34.6e35.4 psu salinity. Novianto
et al. [22] demonstrated a positive and negative
effect of SSS on the catch of ALB tuna with
34.3e34.47 psu and >34.52, respectively, in the
eastern Indian Ocean. These results differ from
those of other studies because of the time period,
fisheries data classification, and environmental
data variables. Chen et al. [17] reported that the
salinity preferences of immature and mature
(spawning) ALB tuna with higher CPUE values
were 35.32 and 35.01 psu salinity, respectively.
Furthermore, the effect of SSS is lower on non-
spawning mature ALB tuna. The results of the
present study may be representative for both
mature and immature ALB tuna because the loca-
tion assessed was an ALB tuna feeding zone, ac-
cording to Nikolic et al. [12]. Furthermore, small
differences in the results compared with those of
previous studies may be explained by differences
in the study period and areas investigated.
Another crucial factor in the distribution of ALB

tuna was SSC. SSC is believed to be a useful factor
for identifying ALB tuna abundance. Studies have
reported that the southern Indian Ocean is the
feeding ground for ALB tuna from March to August.
The present study revealed that areas with an SSC
of 0.1e0.25 mg/m3 exhibited an abundance of ALB
tuna, with the highest CPUE values observed for an
SSC of 0.1e0.15 mg/m3. CPUE was decreased in
areas with an SSC of <0.1 mg/m3 or >0.25 mg/m3.
Wang et al. (2019) indicated that the stronger asso-
ciations between the CPUE and SSC occurred when
the SSC was between 0.1 and 0.2 mg/m3. Chen et al.
[17] reported that higher SSC for the gathering of
immature ALB tuna is an indicator of higher pri-
mary production. They further reported that areas
with a SSC of 0.17 mg/m3 had higher CPUE than
areas with an SSC of 0.09 mg/m3 in the Indian
Ocean. Laurs et al. [6] revealed the role of chloro-
phyll in ALB tuna distribution. According to Arri-
zabalaga et al. [23], ALB tunas favor relatively low
levels of chlorophyll (0.11e0.22 mg/m3), although
the species can tolerate a wide range of chlorophyll
levels. Zainuddun et al. [10] reported that 0.3 mg/m3
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was optimal for the catch in the northwestern Pacific
Ocean, which is slightly higher than the optimal
concentration in the present study area. The present
study offers a general overview of oceanic parame-
ters for ALB tuna in the southern Indian Ocean that
may include both mature and immature ALB tuna
and the differences in the SSC results may be
attributable to differences in the study period and
location.
Other environmental factors, including MLD,

SSH, and EKE, were also significantly correlated
with CPUE values, but the deviance explained by
these factors was lower. Studies have supported the
hypothesis that adult-sized classes can occupy both
shallow and deep habitats [24e26]. The MLD pref-
erences of ALB tuna may differ depending on the
region because of various factors, such as prey type
and temperature. The present study indicated that a
wide range of MLDs are acceptable for ALB tuna,
although higher CPUE values were observed in
areas with an MLD of 60e175 m. Arrizabalaga et al.
[23] concluded that the MLD preference of
temperate tunas is higher than in tropical tunas
(<80 m), and in the case of ALB tuna MLD prefer-
ence, may extend up to 200 m. Williams et al. [27]
used satellite archival tags and reported an MLD
range of 53e173 m, which was attained by ALB tuna
in the south Pacific Ocean. Childers et al. [28]
explained that immature ALB tuna frequently dive
to depths exceeding 200 m during the day and
remain near the surface mixed layer at night in the
North Pacific Ocean. Cosgrove et al. [29] observed
ALB tuna descending up to 450 m in the north
Atlantic, and Lee et al. [20] reported that 60e120 m
MLD was optimal for ALB tuna abundance in the
southern Indian Ocean. These varying results indi-
cate that ALB tuna accept a wide range of MLDs.
Large catches of ALB tuna were observed in areas
with higher EKE (e.g., 0.26 cm2/s2) in the present
study. Zainuddin et al. [10] similarly reported that
areas with higher EKE had a greater concentration
of ALB tuna throughout the year because ALB tuna
is a highly migratory species. Kimura et al. [30]
explained that eddies transport the prey of ALB
tuna, providing them with more feeding opportu-
nities. ALB tuna exhibited peak CPUE in areas with
an SSH of 0.5 m. Lee et al. [20] reported that an SSH
of 0.4e0.6 m was suitable for high ALB tuna
abundance.
The effect of environmental conditions, deduced

using the GAMs, indicated that environmental
variables influence the quantity of ALB tuna caught
vertically. Among all the environmental factors, SST
(18.2%) explained the most variance (Table 2), fol-
lowed by SSS (16.5%) and SSC (13.4%). These three

factors accounted for over 40% of the total deviance
explained. SST explained the most deviance and
had the lowest AIC of all the parameters. As
Daqamseh et al. [31] explained, oceanic parameters
such as SST, SSS, and SSC are the primary factors
determining fish aggregation during the summer
and winter seasons. Figure 12 illustrates the effects
of different environmental factors on CPUE, which
are explained in Table 2. The results revealed that
the maximum CPUE was concentrated near 18 �C
SST, 35.5 psu SSS, and 0.15 mg/m3 SSC. Based on
these findings, predictions for 2009e2014 were per-
formed and 16e21 �C isotherms, 35.1e35.6 psu, and
0.1e0.15 mg/m3 isopleths lines were drawn to
identify the exact environmental preferences of ALB
tuna (Fig. 13) and explain a maximal amount of
CPUE deviation (Fig. 12). Zainuddin and Saitoh
(2004) [32] reported that a higher abundance of ALB
tuna could be observed in waters with an SST of
18e20 �C. Wang et al. [1] reported that an SSS of
34.5e35.5 psu was an influential factor for the ALB
habitat in the Indian Ocean. According to Arriza-
balaga et al. [23], ALB tuna favor relatively low
levels of SSC (0.11e0.22 mg/m3). The spatial distri-
bution of ALB tuna indicated an abundance of the
species in the areas at 35�Se40�S, at 30�Se35�S, and
near 30�S in March to May, June to July, and August,
respectively (Fig. 13). The maximum CPUE was
centralized near 30�S. These areas had SST, SSS,
and SSC ranges of 16e21 �C, 35.1e35.6 psu, and
0.1e0.15 mg/m3, respectively, throughout the study
period. These results indicate that SST, SSS, and
SSC are the key factors explaining the abundance of
ALB tuna in certain areas during the study period.
The current results accord with previous findings.
Chen et al. [17] reported that 25�Se45�S was an area
with high CPUE and an SST of 15e21 �C. They
further reported that the location was a high pri-
mary production area that attracts and feeds schools
of ALB tuna. Lan et al. [9] reported a higher CPUE
near 30�S in the southern Indian Ocean from June to
September, when the SST range was 16e18.5 �C.
Wang et al. [1] reported that an SSS of 34.5e35.5 psu
was optimal for ALB tuna habitats in the Indian
Ocean in the area between 20�S and 40�S, where
CPUE was the highest. Longitudinally, higher ALB
tuna abundance was observed between 60�E and
100�E from March to May, 60�E�100�E and
35�E�40�E from June to July, and between 50�E and
55�E in August. Agulhas leakage causes the outflow
of the Indian Ocean water to the Atlantic Ocean and
vice versa [33]. A higher CPUE may be observed on
the east coast of South Africa because of the
migration of South Atlantic Ocean ALB tuna to the
South Indian Ocean through Agulhas leakage.
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Beardsley [34] discussed interoceanic ALB tuna
migration and indicated that unknown numbers of
ALB tuna may migrate from the South Atlantic
Ocean to the South Indian Ocean despite ALB tuna
environmental frontiers being absent in South Af-
rican waters. More fishing may explain the higher
CPUE zones between 35�E�40�E and 50�E�55�E in
JuneeJuly and August, respectively. These results
suggest the presence of two types of fishing
grounds, consisting of a coastal fishing ground at
30�Se40�S and 20�E�40�E (south of Madagascar)
and a deep-sea fishing ground at 30�Se40�S and
60�E�100�E. Furthermore, Wang et al. [1] reported
two types of fishing grounds for ALB tuna in
the Indian Ocean, consisting of the upwelling coast
of Madagascar and an area at 20�Se40�S and
60�E�100�E, which supports the current results.
Changes in SST may be the most important reason
for changes in latitudinal and longitudinal spatial
distributions. Studies have also reported changes in
the movement of ALB tuna in different latitudes and
longitudes if the SST exceeds the species thermal
tolerance in the Indian Ocean [33]. Moreover, re-
searchers have indicated that tropical ALB tunas
remain in shallower, warmer water at night and
deeper, cooler water during the day. These results
indicate that ALB tuna favor a vertical distribution.
Figure 15 displays the predicted CPUE values from
March to August; the maximum predicted CPUE
value occurred at 35�Se40�S and 25�Se35�S in
MarcheMay and JuneeAugust, respectively. In
MarcheMay, the zone with a higher prediction
value had limited coverage. However, it began
shifting northward in June and reached 25�S by the
end of August. The predicted results were highly
correlated with a range of crucial environmental
factors, including SST, SSS, and SSC. Longitudi-
nally, a higher ALB tuna prediction was also
observed at 100�E�120�E, but the standardized
CPUE did not exhibit any spatial distribution,
possibly because of suitable environmental factors
and no effort made by the tuna to migrate.
Other factors may also have a critical effect on the

seasonal spatial distribution of ALB tuna in the In-
dian Ocean. Availability of prey can be considered a
vital factor. Some studies have reported preliminary
findings on this subject. Glaser [35] quantified the
abundance of juvenile ALB tuna in the California
current system based on the predation rate on
northern anchovy and concluded that ALB tuna may
remove nearly 1% to slightly over 17% of anchovy
recruitment biomass annually. The lunar phase may
also be a crucial factor in ALB tuna abundance. For
example, Akyol and Ceyhan [36] discussed the effect
of the lunar phase on the CPUE of Turkish ALB tuna

gillnet fisheries and concluded that dark periods
(114.4 ± 21.9) had a higher mean CPUE than did
light periods (66.8 ± 8.7). Our study on the fishery
oceanography of ALB tuna in the southern Indian
Ocean provided valuable insight into the different
factors affecting the catch rate of ALB tuna. Future
studies should investigate the habitat hotspots of
ALB tuna. A habitat hotspot is a region with a higher
abundance of a given species. Furthermore, the ef-
fects of prey availability and the lunar phase
on the Indian Ocean ALB tuna warrant further
investigation. The associations of oceanic hotspots
with hydrographic frontal zones, features, and eddy
fields strongly influence the distribution pattern and
formation of tuna abundance [32]. Increased
knowledge regarding habitat hotspots would
improve habitat protection and tuna fishery man-
agement. Enhancing the understanding of the
spatial dynamics, connectivity, and relevant envi-
ronmental factors for ALB tuna are key to improving
species management [37]. Large-scale tagging and
sampling programs at appropriate locations and
periods are crucial for each ocean basin that covers
the major fishery stocks because they can help to
clarify the distribution and spatial dynamics of ALB
tuna and the effects of different environmental fac-
tors on the stocks, which are difficult to determine
because of the varying distribution of ALB tuna
throughout water columns [12].

5. Conclusions

The present study provides information on some
key environmental factors that spatially and tempo-
rally affect the habitat of ALB tuna in the southern
Indian Ocean. The catch rate and distribution of ALB
tuna were highly correlated with the variability of the
oceanographic conditions in the southern Indian
Ocean. Statistical analysis revealed that standardized
CPUE was positively correlated with SST, SSC, EKE,
and SSH but negatively correlated with SSS and
MLD. Among all of the environmental factors stud-
ied, SST explained the most deviation, followed by
SSS and SSC. These three factors explained over 40%
of the total deviance. ALB tunas were mainly
distributed between 20�E to 110�E and 25�S to 40�S.
Regions with an SST of 18.5 �C, SSS of 35.5 psu, and
SSC of 0.15 mg/m3 displayed the maximum central-
ized abundance. Model-6, which had the lowest AIC
value, was used to predict the CPUE in 2015. The
predicted CPUE revealed that the potential fishing
zone was 35�Se40�S and 25�Se35�S during March
and April to August, respectively. Further research
will be conducted on the effect of different oceanic
fonts on the abundance, to construct a habitat
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suitability model to clarify ALB tuna abundance in
the present study area over the same study period.
Our study of the fishery oceanography of ALB

tuna in the southern Indian Ocean provides valu-
able insight into the different factors affecting the
catch rate of ALB tuna. Aside from minor discrep-
ancies, our results regarding the oceanographic
conditions favored by ALB tuna are generally
consistent with those of other studies. Comprehen-
sive knowledge regarding the distribution pattern of
ALB tuna is necessary for the sustainable use of
natural and unique resources.
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