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FULL LENGTH ARTICLE

Asymptotic Numerical Solutions for Second-order
Quasilinear Singularly Perturbed Problems

Chein-Shan Liu a, Chih-Wen Chang b,*

a Center of Excellence for Ocean Engineering, Center of Excellence for the Oceans, National Taiwan Ocean University, 202, No.2,
Beining Rd., Keelung, Taiwan
b Department of Mechanical Engineering, National United University, 360302, No. 2, Lienda Rd., Miaoli, Taiwan

Abstract

For a second-order quasilinear singularly perturbed problem under the Dirichlet boundary conditions, we propose a
new asymptotic numerical method, which involves two problems: a reduced problem with a one-side boundary con-
dition and a novel boundary layer correction problem with a two-sided boundary condition. Through the introduction of
two new variables, both problems are transformed to a set of three first-order initial value problems with zero initial
conditions. The RungeeKutta method is then applied to integrate the differential equations and to determine two
unknown terminal values of the new variables until they converge. The modified asymptotic numerical solution satisfies
the Dirichlet boundary conditions. Some examples confirm that the newly proposed method can achieve a better
asymptotic solution to the quasilinear singularly perturbed problem. For most values of the perturbing parameter, the
present method not only preserves the inherent asymptotic property within the boundary layer but also improves the
accuracy within the entire domain.

Keywords: Quasilinear singularly perturbed problem, Asymptotic numerical method, Initial value problem method,
Modified asymptotic solution

1. Introduction

T he singularly perturbed problem (SPP) in-
volves the second-order derivative term being

multiplied by a small parameter whose perturbation
operates over a narrow region, across which the
solution undergoes a rapid change. The thin layer
frequently adjoins the boundaries of a given interval
because a small parameter multiplies the highest
derivative term in the differential equation. These
phenomena are usually referred to as the boundary
layer in fluid mechanics, edge layer in solid me-
chanics, and skin layer in electronics. Standard nu-
merical methods often fail to work for the SPP when
the perturbing parameter is sufficiently small. To
overcome this difficulty, special numerical methods
for the SPP have been developed [1e13].

Various asymptotic approximation methods have
been applied to solve the SPP. Numerical methods
that are effective have been developed based on
asymptotic matching of boundary layer behavior;
this is uniformly valid with respect to the perturbing
parameter [14]. The resulting asymptotic solution
usually only satisfies the boundary condition on the
side of the boundary layer, but it does not precisely
match the boundary condition on the other side.
Therefore, we improve the conventional asymptotic
solution by proposing a modified asymptotic
approximation. Scholars have solved the SPP by
dividing the domain of the problem into nonover-
lapping outer and inner regions with a terminal
point near the boundary layer [15e18]. Within each
region, the governing equation for different types is
given with two boundary conditions attached. We
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provide an example to demonstrate this method and
highlight its drawback.
The decomposition method [19e22] has been

broadly used to determine an asymptotic expansion
of the SPP because of its advantages in asymptotic
analysis for resolving two subproblems. We modi-
fied the original problem into a reduced problem
and a boundary layer correction problem. No
discrepancy concerning the ability of the reduced
problem to determine the outer solution is known;
however, various techniques are available to
construct boundary layer correction problems that
yield inner solutions. In this paper, we decompose
the numerical process into a coupled first-order
outer solution to a second-order inner solution. To
ensure the second-order inner solution satisfies the
derived boundary conditions, we were inspired by
previous works [23e27] to develop a novel initial
value problem method that guarantees that the
boundary conditions are satisfied. Consequently, we
must solve three first-order problems with zero
initial values given.
We arrange the paper as follows. Some mathe-

matical preliminaries that prescribe the basic in-
gredients in the asymptotic analysis for a certain
sample are given in Section 2. In Section 3, we
decompose the SPP to determine an inner solution
and an outer solution to the new proposed bound-
ary layer correction problem. We also introduce a
coordinate transformation of the independent vari-
able, resulting in the second-order SPP in the new
coordinate being less sharp within the boundary
layer. In Section 4, we derive two functions to
automatically preserve the boundary conditions.
The SPP is transformed to initial value problems
(IVPs) for two new variables. An iterative algorithm
is developed to determine the unknown right-end
values of the new variables, and thus, the modified
asymptotic solution can be successfully determined
with a few iterations. Some numerical examples are
solved in Section 5 by using the proposed asymp-
totic numerical algorithm. Finally, conclusions are
drawn in Section 6.

2. Mathematical preliminaries

To demonstrate the basic components of the
asymptotic analysis, we begin with the following
case:

3u
00 ðxÞþu0ðxÞ þ uðxÞ ¼ 0; ð1Þ

uð0Þ¼a; uð1Þ ¼ b; ð2Þ

where 3> 0 is a sufficiently small perturbing
parameter. The exact solution is

ueðxÞ¼ 1
ep2 � ep1

½ðaep2 �bÞep1xþðb�aep1Þep2x�; ð3Þ

where

p1¼�1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 43

p

23
; p2 ¼�1� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 43
p

23
: ð4Þ

The applicable range of 3 is 0< 3< 0:25.
We briefly sketch the conventional matched

asymptotic method for approximating Eqs. (1) and
(2). In the range of x > O(3), we consider a reduced
equation:

u0
oðxÞþuoðxÞ ¼ 0; uoð1Þ ¼ b; ð5Þ

and obtain the outer solution:

uoðxÞ¼be1�x: ð6Þ
To seek the inner solution uiðxÞ, we consider a

stretched coordinate:

z : ¼x
3
; ð7Þ

which changes Eq. (1) to

d2ui
dz2

þdui

dz
þ 3ui ¼ 0: ð8Þ

In the inner region, we fix z and let 3/0, i.e.,
x/0, obtaining

d2ui
dz2

þdui

dz
¼ 0; ð9Þ

which is subjected to the left-end boundary
condition:

uið0Þ¼a: ð10Þ
Consequently, the inner solution is given by

ui¼ cþ ða� cÞe�z; ð11Þ
where c is an integration constant, determined by
the matching principle [28]:

uo
i : ¼ limz/∞ui ¼ limx/0 uo ¼: ui

o; ð12Þ

which leads to c ¼ eb in view of Eqs. (11) and (6).
Hence, the inner solution is given by

ui¼ ebþ ða� ebÞe�z: ð13Þ
Finally, a uniform asymptotic solution denoted

as uaðxÞ is obtained through a composition
technique:
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uaðxÞ¼uo þ ui � ui
o ¼ uo þ ui � uoi
¼ be1�x þ ebþ ða� ebÞe�z � eb

¼ be1�x þ ða� ebÞe�z

¼ be1�x þ ða� ebÞe�x=3:

ð14Þ
We can observe that

uað0Þ¼a;uað1Þ ¼ bþ ða� ebÞe�1=3; ð15Þ
which means that the solution uaðxÞ does not match
the right-end boundary condition in Eq. (2) with an
absolute error of ja � ebje�1=3. When 3 is small, the
error is negligible; however, when 3 is a moderate
value, the error cannot be neglected, which may
induce a large error within the entire domain of the
original asymptotic solution (14).
To improve this method, we propose a new

asymptotic method to solve

u0
oðxÞþuoðxÞ ¼ 0;uoð1Þ ¼ b ð16Þ

3u
00
i ðxÞþu0

iðxÞ ¼ 0;uið0Þ ¼ a� uoð0Þ;uið1Þ ¼ 0; ð17Þ

and

uðxÞ¼uoðxÞ þ uiðxÞ ð18Þ
represents a new asymptotic solution to Eqs. (1) and
(2). Eqs. (16) and (5) are the same, and Eq. (17) is
equivalent to Eq. (9) if Eq. (9) is represented in the
original coordinate x. Instead of considering one
left-end condition by using the matching method to
determine the integration constant c and then
obtaining the composition solution, we directly
subject uiðxÞ to the two boundary conditions in Eq.
(17) and employ the direct sum in Eq. (18) to
determine the new asymptotic solution.
We can derive

uðxÞ¼be1�x þ a� eb
1� e�1=3

�
e�x=3� e�1=3

�
; ð19Þ

which satisfies both boundary conditions in Eq. (2).
By deleting the term e�1=3, Eq. (19) is reduced to Eq.
(14). Because

e�1=3/0; 1� e�1=3/1; when 3/0;

the solution in Eq. (19) tends to uaðxÞ in Eq. (14)
when 3/0.
Given 3 ¼ 0:245, a ¼ 0, and b ¼ 1, Fig. 1 plots ue,

ua, and the present result u in Eq. (19) with respect to
x, where the maximum error (ME) of jue � uaj is
8:96� 10�2 and the ME of jue � uj is 5:02� 10�2. The
present u in Eq. (19) is closer to the exact solution

than that of uaðxÞ in Eq. (14). Table 1 presents a
comparison of the ME1 of jue � uj and the ME2 of
jue � uaj for different values of 3, which are the same
when 3 � 0:05. For 3 � 0:1, ME1 is smaller than ME2.
Eqs. (19) and (14) possess the same asymptotic
property.
The asymptotic inner boundary condition method

proposed by Andargie and Reddy [18] divided the
interval into two subintervals divided by a terminal
point xp ¼ 3zp, where zp is a parameter to specify the
position of the terminal point. For definite, we
consider a ¼ 1 and b ¼ 2 in Eq. (2). In the inner
region, we have

Y
00 ðzÞþY0ðzÞ ¼ �23e1�3z; 0� z� zp; ð20Þ

Yð0Þ¼1; Y0�zp�þY
�
zp
�¼ 2e1�3zp ; ð21Þ

and in the outer region, we have

3y
00 ðxÞþy0ðxÞ ¼ �2e1�x; xp � x� 1; ð22Þ

y
�
xp
�¼Y

�
zp
�
; yð1Þ ¼ 2: ð23Þ

For Eqs. (20)e(23), we can derive the exact so-
lutions of YðzÞ and yðxÞ:

Fig. 1. For a given example, a comparison of the exact solution, uniform
approximation, and present solution.

Table 1. Comparison of ME1 and ME2 of the present and asymptotic
solutions to the exact solution with different 3

3 ME1 ME2

0.24 4:944� 10�2 8:766� 10�2

0.2 6:402� 10�2 8:138� 10�2

0.1 1:095� 10�1 1:097� 10�1

0.05 8:624� 10�2 8:624� 10�2

0.01 2:419� 10�2 2:419� 10�2

0.001 2:674� 10�3 2:674� 10�3

0.0001 2:712� 10�4 2:712� 10�4
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YðzÞ¼ 2
1� 3

e1�3z þ
�
1� 2e

1� 3

�
e�z; ð24Þ

yðxÞ¼ 2
1� 3

e1�x þAe�x=3 � B; ð25Þ

where

A¼ð1� 3ÞY�zp�� 2e1�xp þ 23

ð1� 3Þ½e�xp=3 � e�1=3�
; ð26Þ

B¼ 23
1� 3

þAe�1=3: ð27Þ
In Table 2, we compare the ME1 of jue � uj, the

ME2 of jue � uaj, and the ME3 of jue � Yj in the inner
region and jue � yj in the outer region for different
values of 3, with zp ¼ 1. Composite solutions (24)
and (25) are poor in the outer region, although a
slightly more accurate solution is obtained in the
inner region when 3 � 0:01. Moreover, the com-
posite solutions derived by Andargie and Reddy [18]
are too complex to be extended to the nonlinear
SPP.
The proposed new asymptotic solution (19) not

only preserves the same asymptotic behavior as that
of the asymptotic solution (14) but also enhances the
accuracy of the entire domain. The present method
is easier to use than the asymptotic matching
method and is suitable for the SPP with a moderate
value of the perturbing parameter. Compared with
the method proposed by Andargie and Reddy [18],
the present method is easier to follow and can be
extended to quasilinear SPP directly.

3. Decomposition to inner and outer problems

We now consider a second-order quasilinear
boundary value problem under the Dirichlet
boundary conditions:

3u
00 ðxÞþpðx;uÞu0ðxÞ þ qðx;uÞ ¼ 0; 0<x<1; ð28Þ

uð0Þ¼a; uð1Þ ¼ b: ð29Þ
Suppose that p; q2C½0; 1�. When 0< 3≪1, an

SPP is encountered. The exhibition of boundary

layers at one or both ends of the interval depends on
the properties of p. Under the assumption p> 0, the
boundary layer occurs near the left-end point.
Motivated by the analysis conducted in Section 2,

we make the following approximation for the SPP:

pðx;uoÞu0oðxÞþqðx;uoÞ ¼ 0; uoð1Þ ¼ b; ð30Þ

3u
00
i ðxÞþpðx;uÞu0

iðxÞ ¼ 0; uið0Þ ¼ a� uoð0Þ; uið1Þ ¼ 0;

ð31Þ
where uðxÞ ¼ uoðxÞþ uiðxÞ. We neglect u0oðxÞ in Eq.
(31), which, when compared with u0iðxÞ, is small
within the boundary layer. Eq. (31) is a novel
boundary layer correction problem.
As indicated by Liu [1], Eq. (28) with 0< 3≪1 is

stiff within the boundary layer. To integrate differ-
ential equations (30) and (31), the following trans-
formation between the independent variables x and
t is considered:

xðtÞ¼1� tanh½lð1� tÞ�
tanhl

; xð0Þ¼0; xð1Þ¼1: ð32Þ
It follows from Eqs. (30)e(32) that

_uoðtÞ¼F1ðt;uoÞ :¼�leðtÞqðt;uoÞ
pðt;uoÞ ; uoð1Þ ¼ b; ð33Þ

€uiðtÞ ¼ F2ðt;ui þ uo; _uiÞ

:¼
�
2ltanh½lð1� tÞ� � leðtÞ

e
pðt;ui þ uoÞ

�
_uiðtÞ;

uið0Þ ¼ a� uoð0Þ; uið1Þ ¼ 0;

ð34Þ

where

eðtÞ : ¼1� tanh2½lð1� tÞ�
tanhl

: ð35Þ

4. A novel asymptotic numerical method

In an approach that differs from that encapsulated
by Eqs. (30) and (31), Wang [19] has proposed the
following numerical method:

pðx;vÞdvðxÞ
dx

þqðx;vÞ ¼ 0; vð1Þ ¼ b; ð36Þ

d2wðzÞ
dz2

þpð0;vð0ÞþwðzÞÞdwðzÞ
dz

¼ 0;

wð0Þ ¼ a� vð0Þ; lim
z/∞

wðzÞ ¼ 0; z :¼ x
3
:

ð37Þ

Wang [19] proved that uwðxÞ ¼ vðxÞ þ wðzÞþO(3)
is an asymptotic solution to Eqs. (28) and (29). Wang's
method is less accurate than that evident in Eqs. (30)

Table 2. Comparing ME1 (I), ME2 (I), ME3 (I), ME1 (O), ME2 (O), and
ME3 (O) with different 3 at inner region and outer region

3 0.05 0.01 0.001 0.0001

ME1 (I) 7:186� 10�2 1:736� 10�2 1:798� 10�3 1:804� 10�4

ME2 (I) 7:186� 10�2 1:736� 10�2 1:798� 10�3 1:804� 10�4

ME3 (I) 9:506� 10�2 1:681� 10�2 1:637� 10�3 1:633� 10�4

ME1 (O) 3:988� 10�2 7:470� 10�3 7:369� 10�4 7:359� 10�5

ME2 (O) 3:988� 10�2 7:470� 10�3 7:369� 10�4 7:359� 10�5

ME3 (O) 1:054� 10�1 2:020� 10�2 2:002� 10�3 2:000� 10�4
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and (31). Padmaja and Reddy [29] developed a nu-
merical patching method with Pad�e approximates to
solve the linear SPP according to the above idea. Eqs.
(31) and (37) are different in three aspects: the co-
ordinates x and z, the coefficients pðx; uÞ and pð0;
vð0Þ þ wðzÞÞ, and the right boundary conditions
uið1Þ ¼ 0 and limz/∞wðzÞ ¼ 0.

4.1. Two theorems

When p and q are nonlinear functions of ðx; uÞ,
the analytic asymptotic solution is not easy to
obtain from the exact solutions of Eqs. (30) and
(31). Therefore, we develop a novel numerical
method to acquire the asymptotic numerical solu-
tion. Before deriving a novel iterative method to
solve Eqs. (33) and (34), we derive the following
results.

Theorem 1. For any free function zðtÞ2C½0; 1�, the
function

uoðtÞ¼ zðtÞ �G1ðtÞ ð38Þ
satisfies uoð1Þ ¼ b, where

G1ðtÞ : ¼ et�1½zð1Þ�b�: ð39Þ
Proof. It is obvious that

uoð1Þ¼ zð1Þ �G1ð1Þ ¼ zð1Þ � e1�1½zð1Þ�b�
¼ zð1Þ � ½zð1Þ�b� ¼ b;

hence, we prove that uoðtÞ in Eq. (38) satisfies the
right-end boundary condition in Eq. (33), i.e.,
uoð1Þ ¼ b.,

Theorem 2. For any free function yðtÞ2C½0; 1�, the
function

uiðtÞ¼yðtÞ �G2ðtÞ ð40Þ

satisfies the boundary conditions in Eq. (34), where

G2ðtÞ : ¼ð1� tÞ½yð0Þ�aþuoð0Þ� þ tyð1Þ: ð41Þ
Proof. In Eqs. (40) and (41), we insert t ¼ 0 to

obtain

uið0Þ¼yð0Þ � ½yð0Þ�aþuoð0Þ� ¼ a� uoð0Þ: ð42Þ
In Eqs. (40) and (41), we insert t ¼ 1 to obtain

uið1Þ¼yð1Þ �G2ð1Þ ¼ yð1Þ � yð1Þ ¼ 0: ð43Þ
Thus, we end the Proof.,

4.2. Transforming to the IVP

Here we demonstrate that Theorems 1 and 2 are
useful in the asymptotic numerical solution of the
SPP. In Theorems 1 and 2, we let zðtÞ2C1½0; 1� and
yðtÞ2C2½0; 1�.
The insertion of Eq. (38) for uoðtÞ in Eq. (33) yields

_zðtÞ¼H1ðt; zðtÞ; zð1ÞÞ :¼ _G1ðtÞ þ F1ðt; zðtÞ�G1ðtÞÞ
¼ et�1½zð1Þ�b�

þ F1ðt; zðtÞ�G1ðtÞÞ: ð44Þ
Similarly, the insertion of Eq. (40) for uiðtÞ in Eq.

(34) yields

€yðtÞ¼H2ðt;zðtÞ;yðtÞ; _yðtÞ;zð1Þ;yð1ÞÞ
:¼ F2ðt;zðtÞ�G1ðtÞþyðtÞ�G2ðtÞ; _yðtÞ� _G2Þ;

ð45Þ

where

_G2 :¼a� uoð0Þ � yð0Þ þ yð1Þ ð46Þ

is a constant. As shown in Eqs. (39), (41) and (46),
G1ðtÞ, _G1ðtÞ, G2ðtÞ, and _G2 include two unknown
values, zð1Þ and yð1Þ, when yð0Þ is given and uoð0Þ by
Eq. (38) is given by

uoð0Þ¼ zð0Þ �G1ð0Þ ¼ zð0Þ � e�1½zð1Þ�b�: ð47Þ
At the same time,

_G2¼a� zð0Þ þ e�1½zð1Þ�b� � yð0Þ þ yð1Þ: ð48Þ
Consequently, H1 is a function of zð1Þ, as

denoted in Eq. (44), and H2 is a function of zð1Þ and
yð1Þ, as denoted in Eq. (45).
Suppose that Eqs. (44) and (45) are subjected to

zero initial values:

zð0Þ¼0;yð0Þ ¼ 0; _yð0Þ ¼ 0: ð49Þ
In the IVP of Eqs. (44), (45) and (49), two un-

known values, yð1Þ and zð1Þ, are to be determined.
Let

y1ðtÞ : ¼ zðtÞ;y2ðtÞ :¼ yðtÞ;y3ðtÞ :¼ _yðtÞ; ð50Þ

and it follows from Eqs. (44) and (45) that

_y1ðtÞ¼H1
�
t;y1ðtÞ;y1ð1Þ

�
; _y2ðtÞ ¼ y3ðtÞ;

_y3ðtÞ ¼ H2
�
t;y1ðtÞ;y2ðtÞ;y3ðtÞ;y1ð1Þ;y2ð1Þ

�
; ð51Þ

where y1ð1Þ ¼: c and y2ð1Þ ¼: d are two constants to
be determined. If y1ð1Þ and y2ð1Þ are available, the
differential equations in Eq. (51) are definite and we
can apply the fourth-order RungeeKutta method
(RK4) to obtain y1ðtÞ ¼ zðtÞ and y2ðtÞ ¼ yðtÞ. We can
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obtain uðtÞ from uðtÞ ¼ uoðtÞþ uiðtÞ ¼ y1ðtÞ� G1ðtÞþ
y2ðtÞ� G2ðtÞ. The initial values y1ð0Þ ¼ y2ð0Þ ¼
y3ð0Þ ¼ 0 will be adopted in all numerical examples
given below.
Some numerical techniques for solving the sec-

ond-order SPP are based on the concept of replacing
this problem with IVPs. Different initial value
methods exist in the literature [30e36]. Some
methods consist of replacing the original SPP with
an asymptotically equivalent first-order differential
equation system and solving it as the initial value
problem. Reddy and Chakravarthy [33] factorized
the original problem in three first-order IVPs that
differ from our approaches given in the preceding.

4.3. The iterative algorithm

To acquire the asymptotic numerical solution of u,
the current method is (i) giving c0, d0, e, and N, (ii)
repeating k ¼ 0; 1; 2;… until convergence,
integrating

_y1ðtÞ¼H1

�
t;y1ðtÞ; ck

�
; _y2ðtÞ ¼ y3ðtÞ;

_y3ðtÞ ¼ H2
�
t;y1ðtÞ;y2ðtÞ;y3ðtÞ; ck;dk

�

by using the RK4 with N steps from t ¼ 0 to t ¼ 1,
and taking

ckþ1¼y1ð1Þ;dkþ1 ¼ y2ð1Þ:
If

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðckþ1 � ckÞ2 þ ðdkþ1 � dkÞ2

q
< e

is satisfied, the iterations are terminated and uðtÞ is
given by

uðtÞ¼y1ðtÞ þ y2ðtÞ �G1ðtÞ �G2ðtÞ

¼ y1ðtÞ þ y2ðtÞ � et�1½ck�b� þ ð1� tÞ	aþ e�1½ck�b�

� tdk;

ð52Þ
where ck and dk are the convergent values of the
sequences ck and dk; k ¼ 1; 2;….
In some cases, uoðxÞ in Eq. (30) can be derived

exactly; for such cases, only Eq. (31) and the last two
equations in Eq. (51) are required to determine uiðxÞ,
and thus, only the unknown constant dk must be
determined.

5. Numerical examples

For most SPPs there are no closed-form solutions.
Therefore, we apply the initial value problem
method (IVPM) developed in Ref. [13] to compute

the solutions, which are then used as the referenced
“exact” solutions.

5.1. Example 1

Consider a variable coefficient SPP [37]:

3u
00 ðxÞþ

�
1� x

2

�
u0ðxÞ�1

2
uðxÞ¼0;

uð0Þ¼0;uð1Þ ¼ 1; ð53Þ
whose asymptotic solution is given in Ref. [9]:

uaðxÞ¼ 1
2� x

� 1
2
exp

�
x2=4� x

3

�
: ð54Þ

Therefore,

uað0Þ¼0;uað1Þ ¼ 1� 1
2
exp

��3
43

�
<1; ð55Þ

and Eq. (54) does not exactly satisfy the right
boundary condition.
First, we establish l ¼ 1, c0 ¼ 0, d0 ¼ 0, N ¼

1000, and e ¼ 10�10 and apply the iterative algo-
rithm in Section 4.3 to acquire the asymptotic nu-
merical solution of Eq. (53) with 3 ¼ 0:4, which
converges within 19 iterations, as shown in
Fig. 2(a). In Fig. 2(b), we compare the asymptotic
numerical solution to the asymptotic solution in
Eq. (54), and we observe that improvement is
achieved by using the asymptotic numerical
solution.

5.2. Example 2

Consider a nonlinear SPP [38]:

3u
00 ðxÞþ euðxÞu0ðxÞ �p

2
sin

�px
2

�
e2uðxÞ ¼ 0; 0<x<1;

uð0Þ¼uð1Þ ¼ 0: ð56Þ
We write the uniform approximation provided

by O'Malley [38]:

uaðxÞ¼ � ln
�
cos

px
2
þ1

�
þ ln

2
2� expð � x=ð23ÞÞ: ð57Þ

With 3 ¼ 0:5, l ¼ 0:5, c0 ¼ 0, d0 ¼ 0, N ¼ 1000,
and e ¼ 10�10, the iterative algorithm converges
within 13 iterations, as shown in Fig. 3(a). In Fig. 3(b),
we compare the asymptotic numerical solution to the
solution in Eq. (57) and the IVPM solution, and we
observe that improvement is achieved by using the
asymptotic numerical solution.
In Table 3, we compare ME1 :¼ maxjue �uj and

ME2 :¼ maxjue �uaj for different values of 3, where u
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is the present solution, ue is the exact solution ob-
tained by the IVPM, and ua is the solution given in
Eq. (57). ME1 is smaller than ME2.

5.3. Example 3

Let us consider the steady-state Burgers equation:

3w
00 ðzÞ �wðzÞw0ðzÞ ¼ 0; �1< z<1;

wð � 1Þ ¼ 0; wð1Þ ¼ �1:
ð58Þ

For the purpose of comparison, we write the
uniform approximation provided by O'Malley [38]:

waðzÞ¼ � 1� exp½ � ð1þ zÞ=3�
1þ exp½ � ð1þ zÞ=3�: ð59Þ

Upon letting x ¼ ð1 þ zÞ=2, we have

3w
00 ðxÞ � 2wðxÞw0ðxÞ ¼ 0;

wð0Þ ¼ 0; wð1Þ ¼ �1:
ð60Þ

When we have woðxÞ ¼ � 1, the governing
equation for wiðxÞ is
3w

00
i ðxÞ � 2½wiðxÞ � 1�w0

iðxÞ ¼ 0;

wið0Þ ¼ 1; wið1Þ ¼ 0:
ð61Þ

With l ¼ 0:8, d0 ¼ 0, N ¼ 1000, and e ¼ 10�10,
as shown in Fig. 4(a), the solution to Eq. (60) with 3 ¼
0:8 is determined by the IVPM with 22 iterations,
and the current method reaches convergence with
22 iterations. Fig. 4(b) compares the IVPM solution
to the uniform approximation in Eq. (59), with the

Fig. 2. Example 1 (a) demonstrates the convergence of iterations and (b) compares numerical solutions and a uniform approximation.
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absolute difference being 1:524� 10�1 and that of
the current solution being 2:22� 10�16. The current
solution is much more accurate than the uniform
approximation in Eq. (59).

5.4. Example 4

Consider [36,37]:

3u
00 ðxÞ þ uðxÞu0ðxÞ � uðxÞ ¼ 0;

uð0Þ ¼ �1; uð1Þ ¼ 3:9995:
ð62Þ

We write a uniform approximation provided by
Kevorkian and Cole [37] as

uaðxÞ¼xþ c1tanh½c1ðx= 3þ c2Þ=2�; ð63Þ
where c1 ¼ 2:9995 and c2 ¼ 1=c1ln½ðc1 � 1Þ =ðc1 þ 1Þ�.
We have uoðxÞ ¼ xþ 2:9995, and the governing

equation for uiðxÞ is

Fig. 3. Example 2 (a) demonstrates the convergence of iterations and (b) compares numerical solutions and a uniform approximation.

Table 3. For example 2, a comparison of ME1 and ME2 with different 3

3 0.5 0.4 0.02 0.01

ME1 1:233� 10�1 1:161� 10�1 2:923� 10�2 8:869� 10�2

ME2 2:025� 10�1 1:552� 10�1 4:744� 10�2 1:861� 10�1
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3u
00
i ðxÞ þ ½uiðxÞ þ uoðxÞ�u0iðxÞ ¼ 0;

uið0Þ ¼ �1� uoð0Þ ¼ �3:9995;uið1Þ ¼ 0:
ð64Þ

The current method under l ¼ 2, d0 ¼ 0, N ¼
1000, and e ¼ 10�10 is used to determine the solution
of Eq. (64) with 3 ¼ 0:5, and as shown in Fig. 5(a), it
converges with 14 iterations. Fig. 5(b) compares the
current solution to the uniform approximation in
Eq. (63) and the IVPM solution of Eq. (62), which is
deemed an exact solution. When the maximal ab-
solute difference is 0:363 for uniform approximation
and the IVPM solution, the IVPM solution with the
current solution is 3:661� 10�11. With a large 3 ¼
0:5, the current solution is considerably more ac-
curate than the uniform approximation in Eq. (63).

When Wang's method [19] in Eqs. (36) and (37) is
applied to solve this problem, we determine that
the maximum absolute difference is 0:323, which is
slightly more accurate than the uniform approxi-
mation in Eq. (63). As shown in Fig. 5(b), Wang's
solution is close to the uniform approximation. In
Table 4, we compare ME1 :¼ maxjue � uj, ME2 :¼
maxjue � uaj, and ME3 :¼ maxjue �uwj for different
values of 3, where u is the present solution, ue is the
exact solution obtained by the IVPM, and uw is the
solution obtained by Wang's method. ME2 and
ME3 are the same when 3 � 0:1. In all ranges of
3 � 0:5, ME1 is considerably smaller than ME2 and
ME3.

Fig. 4. Example 3 (a) demonstrates the convergence of iterations and (b) compares numerical solutions and a uniform approximation.
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5.5. Example 5

Consider [39]:

3u
00 ðxÞ þ 2u0ðxÞ þ euðxÞ ¼ 0;

uð0Þ ¼ 0; uð1Þ ¼ 0:
ð65Þ

The boundary layer analysis is applied to this
example, whose uniform approximation is [36]

uaðxÞ¼ ln
2

xþ 1
� ln2e�2x=3: ð66Þ

It does not match the boundary conditions:

uað0Þ¼0; uað1Þ ¼ �e�2=3ln2s0: ð67Þ
Therefore, we have

uoðxÞ¼ ln
2

xþ 1
; ð68Þ

and the governing equation for uiðxÞ is

3u
00
i ðxÞ þ 2u0

iðxÞ ¼ 0;

uið0Þ ¼ �uoð0Þ ¼ �ln2;uið1Þ ¼ 0;
ð69Þ

which has a closed-form solution given by

Fig. 5. Example 4 (a) demonstrates the convergence of iterations and (b) compares numerical solutions and a uniform approximation.

Table 4. Comparing ME1, ME2, and ME3 of the present and asymptotic
solutions to the exact solution with different 3

3 ME1 ME2 ME3

0.5 3:661� 10�11 0.363 0.323
0.1 4:718� 10�11 8:733� 10�2 8:733� 10�2

0.05 1:059� 10�10 4:512� 10�1 4:512� 10�1

0.01 1:798� 10�9 9:278� 10�3 9:278� 10�3
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uðxÞ¼ ln
2

xþ 1
þ e�2=3ln2
1� e�2=3

� ln2
1� e�2=3

e�2x=3: ð70Þ
It is a new asymptotic solution, which satisfies

the boundary conditions with

uð0Þ¼0; uð1Þ ¼ 0: ð71Þ
Since

e�2=3/0 when 3/0;

uðxÞ in Eq. (70) tends to uaðxÞ in Eq. (66), when 3/ 0.
The current method under l ¼ 1:5, d0 ¼ 0, N ¼

1000, and e ¼ 10�10 is used to acquire the solution of
Eq. (69) with 3 ¼ 0:6, and as shown in Fig. 6(a), it
converges with seven iterations. Fig. 6(b) compares
the solution with the uniform approximation in
Eq. (66) and the IVPM solution of Eq. (65). When the

absolute difference is 4:4� 10�2 for the uniform
approximation ua and the IVPM solution, the IVPM
solution with the current solution is 2:3� 10�2. With
a large 3 ¼ 0:6, the current solution is more accurate
than the uniform approximation in Eq. (66).

5.6. Example 6

Example 4 is modified to

3u
00 ðxÞ þ ðxþ a0ÞuðxÞu0ðxÞ � uðxÞ ¼ 0;

uð0Þ ¼ �1; uð1Þ ¼ 3:9995;
ð72Þ

where a0 is a constant. We can derive the outer so-
lution as follows:

Fig. 6. Example 5 (a) demonstrates the convergence of iterations and (b) compares numerical solutions and a uniform approximation.
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uoðxÞ¼3:9995þ ln
xþ a0
1þ a0

; ð73Þ

and the governing equation for uiðxÞ is
3u

00
i ðxÞ þ ðxþ a0Þ½uiðxÞ þ uoðxÞ�u0iðxÞ ¼ 0;

uið0Þ ¼ �1� uoð0Þ ¼ �4:9995� ln
a0

1þ a0
; uið1Þ ¼ 0:

ð74Þ
The current method under a0 ¼ 0:5, 3 ¼ 0:05,

l ¼ 2, d0 ¼ 0, N ¼ 1000, and e ¼ 10�10 is used to
determine the solution of Eq. (74), and as shown in
Fig. 7(a), it converges with 11 iterations. Fig. 7(b)
compares the current solution to the IVPM solution
of Eq. (72), which is deemed an exact solution.

When Wang's method [19] in Eqs. (36) and (37) is
applied to solve this problem, we obtain

ðxþa0ÞvðxÞdvðxÞdx
�vðxÞ ¼ 0; vð1Þ ¼ 3:9995; ð75Þ

d2wðzÞ
dz2

þa0½vð0ÞþwðzÞ�dwðzÞ
dz

¼ 0;

wð0Þ ¼ �1� vð0Þ; lim
z/∞

wðzÞ ¼ 0; z :¼ x
3

ð76Þ

where vðxÞ is the outer solution given in Eq. (73).
When a0/0, Wang's method fails, owing to

d2wðzÞ
dz2

¼0;wð0Þ ¼ �1� vð0Þ; lim
z/∞

wðzÞ ¼ 0; z :¼ x
3
;

Fig. 7. Example 6 (a) demonstrates the convergence of iterations and (b) compares numerical solutions and the solution obtained fromWang's method.
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which leads to an incorrect inner solution.
As shown in Fig. 7(b), Wang's solution to Eqs. (75)

and (76) deviates from the IVPM solution of Eq. (72),
with a maximum absolute difference of 0.399 and a
maximum absolute difference of 3:06� 10�2. for the
current asymptotic solution.

6. Conclusions

Because of the existence of a boundary layer for
the second-order SPP, an asymptotic numerical
solution that can exactly match the boundary
conditions is essential. For the SPP, we have pro-
posed a novel boundary layer correction problem
that can accurately capture the main asymptotic
behavior within the boundary layer and simulta-
neously preserve the given Dirichlet boundary
conditions. Therefore, the new asymptotic solution
is an improvement upon the conventional
asymptotic solution. Resorting to the functions
derived in Theorems 1 and 2, we have exactly
transformed the quasilinear SPP to the IVPs for
two new variables with zero initial conditions. A
newly developed iterative algorithm thus con-
verges to promptly determine the two unknown
right-end values of the new variables and the
singularly perturbed asymptotic solution. Based
on this new concept, we provide a modification to
the conventional asymptotic solution of the SPP
such that the asymptotic numerical solution
exactly satisfies the boundary conditions. We
address the accuracy of the asymptotic numerical
solution, and the applicable range of the perturb-
ing parameter in the modified asymptotic solution
can be extended to a moderate value. More
essentially, the modified asymptotic solution pos-
sesses the same asymptotic behavior as the con-
ventional asymptotic solution.
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