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MANIPULATION OF TRANSFER FUNCTION
MATRIX VIA STATE-SPACE APPROACH

Jeng Yih Juang*

Keywords: Linear systems, Multivariable systems, Dynamic control-
lers.

ABSTRACT

Algebraic manipulations of transfer function matrix via state-
space approach will be given without referring to the symbolic
manipulations involving the indeterminate s, for a linear continu-
ous-time system (or, z, for a linear discrete-time system). The
resultant transfer function is closely related to a state-space repre-
sentation, and therefore is advantageous in realization, implemen-
tation, computer simulation and stability analysis. Furthermore,
the design, implementation, and analysis of linear dynamic control-
lers, in the forms of 2-input-1-output and 2D (two degree of
freedoms), are illustrated with numerical examples via the method
proposed.

INTRODUCTION

For a linear dynamic system {A,B,C},ifalinear
state variable feedback (LSVF) law u=Fv - Kx, here
F and K are constant matrices, is imposed on it, the
static-gain feedback system becomes {A - BK, BF,
C}. The original system is said to be stabilizable if
there exists a static gain K such that (A - BK ) can be
stable. And this is always possible if there is no
unstable hidden modes [6] in the system {A, B, C}.
For this purpose, the design is addressed as stabiliza-
tion using LSVF. If a design is required that all the
eigenvalues of (A - BK) be assigned to some pre-
determined locations in the s-plane, the problem is
pole-placement using LSVF (eigenvalue assignment
problem). As is well-known to the control society,
pole-placement design is possible if, and only if,
the pair { A, B} is completely controllable[2,6]. Other
purposes of design using LSVF can be found in
decoupling[2,5] , LQR [7], etc.
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In linear system design, LSVF is a basic disci-
pline and is very important in theoretic discussions
provided that all the state variables can be accessible
(measurable) for feedback usage. It is not, however,
always the case in practically. As is also known([2,6],
if the pair {C, A} is completely observable, one can
build an asymptotic state estimator (observer) in
conjunction with the LSVF law to form an observer-
based- controller (OBC) using only output feedback
such that the /O map for the feedback system is the
same as that of static feedback system. This is what
separation property [2] applies.

In this paper we consider dynamic controllers
that can achieve the design purposes as provided as
by static gain feedback. Basically, theoretical foun-
dation of a dynamic controller is based on OBC,
however we extend this concept to a more generalized
case of 2D (two-degree of freedom) dynamic con-
troller (2DDC). All the algebraic manipulations of
TFM will be presented via state-space approach
without referring to the symbolic processing involv-
ing the indeterminate s, and the resultant TFM is
closely related to a state-space representation. This
is advantageous in realization, implementation, com-
puter simulation and stability analysis. A 2DDC
takes only output as feedback, whereas LSVF static-
gain controller takes full state variables. Let x, u, and
y be the state, input, and output variables respectively
for a linear controlled plant, then a static LSVF law
takes the form u = Fv- Kx, (here v the new control
variable); whereas a 2DDC is described by u = G.(s)v
- Q(8)y, (here, G(s) and Q(s) are proper rational
functions with real coefficients). Closed-loop pole-
assignment is achieved by Q(s), while the choice of
G.(s) assigns the added zeros. In the proposed 2DDC,
it is shown that the added stable zeros are to be
canceled out by the closed-loop poles, then overall
I/0 map will be that of using state feedback. The
design steps for G¢(s) and Q(s) are independently, that
is why 2DDC being addressed.

PRELIMINARIES
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Consider a linear time-invariant (LTI) multi-
variable system {A, B, C, D}:

X=Ax+Bu , (1a)
y = Cx+Du. (1b)

The transfer function matrix (TFM) from u to y is
denoted by,

H,(s)=C(sI-A)'B+D:=| 4 Bl | (3
here, the state vector x € R®, control vector u € R™,
and output vector y € R9. Constant matrices A, B, C,
D are of compatible dimensions. The TFM Hy,(s) €
R#™(s), where the quadruple {A, B, C, D}, satisfying
(2), is arealization of H,,(s). Note that, without loss
of generality, we have D = 0 for a dynamic system,
and call it the triple {A, B, C}. The followings are
some important mathematical preliminaries needed
for the discussions of this paper.

A. Some Operational Definitions [4]

(A1) ‘Let a matrix X be partitioned for some compat-
ible dimensions as follows:

[ Xll XIZ]
Xn Xn

then,

X1 Xqp [A B]= XnA+X,C X B+X,,D 3)
X, Xyl C D XA+ X»CX, B+X,,D| -

(A2) Let an LTI system {A.B,, C,, D,} be cascaded
by another LTI system {A,,B,, C,,D,}, and

A B A, B
orle o] or[& 5]

then the overall TFM for the composite system is,

_| A1 By|| Ay B,
GIGZ‘[CI 01”02 D,

| A, B,C,B,D,
0 A, B (4a)
C, D,C,D, D,

i}

A4, 0 B,
=[B,C, A, BD,|. (4b)
D,C, C, DD,

Note that the resultant TFM (4a) or (4b) may or
may not be irreducible, even if both G, and G, are

minimal. This is because there may be pole-zero
cancellations between these two systems. We also
note that the quadruple {A, B, C, D} is a minimal
realization for the TFM Hyu if, and only if, {A, B} is
completely controllable and {C, A} is completely
observable[2], and A has the minimum dimension.

(A3) Suppose D* is the right (left) inverse of D, then
the right (left) inverse of H,, is,

+_|A-BD'C BD*
H ‘[ -D'C  D* } : (5a)
Therefore, for a sqare TFM G = ‘é ? ], then
v (5b)

(A4) For the LTI system (1), if the following change
of variable is made:

x—->x=Tx
Y2y =Ry .
u—>u =Pu

Then the resultant TFM, from @ to 7 , becomes

H_=EE]
YETIC D

(5 94 2 0]

_|7AT"' TBP

'[RCT‘1 RDP J | ©)

(AS) If a linear state variable feedback (LSVF) law
u=Fv+Kx @

is imposed on the system (1), then the resultant feed-
back system becomes,

A B] 1 0]_[A+BK BF 8)
C D||K F|”|C+DK DF '
B. Irreducibility

A TFM G(s) = C(sI - A)''B is irreducible (mini-
mal) if, and only if, the dimension of matrix A in the
realization {A,B,C} is minimal[2]. Consider a dy-
namic system:

5%} {3 e
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the controllable and observable subsystemis {A, B,
C,}, therefore :

Al A12 Bl A B
0 A, O =[C1 0‘]. 9
c,C, 0 1

The right-hand side of the above equation de-
notes the minimal representation of the TFM. Next,
consider the following dynamic system:

A, 0] [B
{[Azl AZ]’[BZ]’[CI 0 ]} ’
the controllable and observable subsystem is {A,, B,,
C,}, s0

A, 0 B,
A21 A2 B2
0

A, BI]
= . (10)
', o [Cl o

Finally, based on the facts discussed above:

A, 0 Ay B

Ay Ay Ay By

0 0 A, O (11a)

C, 0C 0
A O B

=|Ay Ay BJ (11b)
c, 0 0
A A By

=0 A; O (11¢)
| G Cs 0

_| 41 Bi

e 0]. (11d)

Note that the system (11a) is neither completely
controllable, nor observable, therefore not minimal.
(11b) represents an incompletely observable eq-
uivalence, and (11c) incompletely controllable. Fi-
nally, (11d) is the minimal representation of (11a),
i.e., the system {A; B, C,} is completely con-
trollable and observaf)le, therefore a minimal realiza-

tion. The TEM is irreducible only if its realization

is minimal.
2D DYNAMIC CONTROLLERS

In this section we consider a minimal LTI dy-
namic system {A, B, C}, i.e.,
x=Ax+Bu , (12a)

y = Cx, (12b)

with the following TFM:
p(s)=[é g]=C(sI—A)“‘B . (13)

Assume that all state variables can be used for feed-
back and let an LSVF law be imposed for some
control design purpose, such as pole-placement, sta-
bilization, decoupling, LQR optimal control, etc.,

u=v-Kx, (14)

then the feedback system becomes { A-BK, B, C}, ie.,
the TFM from v toy is

[A‘CBK 5. (15)

A. Observer-Based Controller (OBC)

In practical applications, however, only the
measurable output variable y(t) can be used for feed-
back, then the following full-order observer is made:

#=(A-LC)x+Bu+Ly (16)

here, L is chosen such that (A-LC) can be stable. This
is always possible for {C, A} being detectable and
% € R"is used to estimate the state vector x(t) asymp-
totically, ie., lim % (#)=x( t). Ifitis required that
eigenvalues of (A-LC) be completely specified, then
the existence of L is guaranteed by the fact of {C,A}
being completely observable[6]. By separational
principle[2] the feedback control law (14) is reiter-
ated by the following:

u=v-Kx . an

The observer dynamics (16) along with the
feedback control law (17) constitute a so called OBC,
and it has been shown that [2] the TFM form v to y is
also that of (15). In Fig. 1, the dotted block shows
this OBC configuration.

By simple TFM manipulations, as presented in
the last section of this paper, this OBC is a so called
2-input, 1-output dynamic controller, as shown as in

AlB y

A\

Fig. 1. OBC configuration.
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.................................

v {|ABKLC|B L
K 1 o[ Cl

Fig. 2. 2-input, 1-output dynamic controller.

Fig. 2. This is a good way for realization and imple-
mentation of the controller, and also for computer
simulations.

Proposition 1 The 2-input, 1-output OBC which
achieves the task as the feedback control specified by
(14) is

Qc(s)_:[A—liI}'(—LC B L

7 L)

proof: From (16) and (17), we have

u=v-K(s IF-A+LC)'Bu - K(s I-A+LC)"'Ly;

. u=[A—KLC ? ]‘I(V_[A;{LC {i Jy) (19)
_[4-BK-1c B ]V
f[ATBESLCE Iy by o
_[A-BK-LC B L ”v]:

-K I 0 y

= Qc(s)[;] , qed.

Example 1 Consider an LTI system,

-1 1 2 _
P(s)=l 2 0 —2]=22£ﬁ
1 0 0 sé—s5—-2
One finds K = [4 2] such that A;{ A-BK} = {-1, -2};
and gets L = [8 14]T such that A, {A-LC} = {-3,-4}.
Therefore, the 2-input, 1-output OBC is,

-15-3 2 8
Q. (s)=[-4 4 -2 14
-4 -2 1 0
Corollary 1 The TFM for the closed-loop system is
A-BK B
C o |

proof: Let the state variable vector of OBC be z(t),

from Fig. 2, one gets the following state-space de-
scription for the composite systems:

[§]=[ Iflc A—;ill;l—(-LC [f]*[g]" ,
y=[co]7]
therefore,
A -BK B
Hyv=[ LC A-BK-LC B ]
C 0
{ A -BK B
= 0 A-LC 0
C 0 0
=[A—CBK g ],qed.

Remarks: From the above discussion one knows that
the subsystem é=(A—-LC)e is neither controllable
nor observable, and the canceled poles are those of
the eigenvalues of (A-LC), which are stable.

B. 2DDC(2D Dynamic Controller)

We consider the dynamic controller as shown in
Fig. 3, here G.(s) and H(s) are two dynamic sub-
systems, addressed as the series and feedback com-
pensator respectively, and there is no unstable pole-
zero cancellations between these two sybsystems.
This overcomes the design difficulties as in [3]. Note
that only the output y(t) is used for feedback.

The OBC configuration in Fig. 1 can easily be
converted into the form of 2DDC as shown in Fig. 3.
This is presented as follows,

Proposition 2 Let

T
and,

H(s):[A_KLC L ] 22)
B 3 NE y
— [ecoF——" =TT

H(S) < +

Fig. 3. 2DDC configuration.
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in Fig. 3, then

D.Qw):=GoHe=[ATE K § ].e3
2). The control law is,
u=G(s)[v-H(s)y] (24)
3). The TFM from v to y is that of (15).
proof:
1).Q(s) = G (s)H(s)
A—-BK-LC -BK 0
= 0 A-LC L , by (4a
|k X 0 “ y (4a)
A-BK-LC -BK 0
= 0 A-BK-LC L » by (5)
0 K 0
[A-ECBE L | by (10}, qed
2). This follows directly from (19).
3). Firstly,
=[ A ][A BK-LC B ]
1
A-BK BK B
=| LC A-LC O .
0 0 0
Secondly,
A BK 0 -1
(I+PQ)~'= 0 A-LC-BK L
C 0 1
A BK 0
= -ILC A-LC-BK -L
C 0 I

A-BK BK 0
= 0 A-LC -L
C 0 I
Therefore,

Hy(s) =1+ PQJ''PG,

A-BK BK O 0 0

0 A-LC -LC O 0

=l o 0 A-BK BK B
0 0 LC A-LC O

| ¢ 0 C 0 0

A-BK 0O BK 0 0

0 A-BK 0 BK B

| 0 —Lc A-Lc o 0
0 LC 0 A-LC O

c C 0 0 0

A-BK 0 0

=l 0 A-BK B
C C 0
A-B

= CK g ], qed.

Corollary 2 The closed-loop poles are specified by
the following set of eigenvalues:

{M(A-BK) YU {M(A-LC)}

proof: This follows directly from the proof of (I+
PQ), as in (25).
Definition 1 [ 1]

1. {M(A-BK)} are the set of regular poles,

2. {A(A-LC)} are the set of observer poles.
Definition 2 Q(s) is the pole-placement dynamic con-
troller that places closed-loop poles to the regular
poles and to the observer poles.

Note that the subsystem {(A-LC), -BK, 0} is not
observable, and the canceled poles are in A;(A-LC),
therefore the stable pole-zero cancellation is permis-
sible because L has been chosen such that (A-LC) is
stable. We also see that in Fig. 3, H(s) is stable and
can be chosen strictly proper in order to reject distur-
bance and feedback noise from the output.

Example 2 As the system shown in example 1, we
have

-15-3 2
G.(8)= [A -LC-BK B ]: —4 4 —2}
-4 -2 1
_s247s+12
s2+11s=-72"
-7 1 8
H(s)=[A_KLC L ]=[-12 0 14]
4 2 0
__60s+60
s2+Ts+12°
) -15 -3 8
Q(S):[A—Lg—BK L ]:[—4 4 14]
4 2 0
__ 60s+60
s2+11s=72"°
therefore,
_2(s-1)
H""(s)—sz+3s+2'

CONCLUDING REMARKS

1. Algebraic manipulations of transfer function ma-
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trix via state-space approach has been given with-
out referring to the symbolic manipulations
involving the indeterminate s, for a linear con-
tinuous-time system (or, z, for a linear discrete-
time system). The resultant transfer function is
closely related to a state-space representation, and

_therefore is advantageous in realization, imple-

mentation, computer simulation and stability analy-
sis.

The proposed method is good for the TFM ma-
nipulation to do with the design and implementa-
tion of linear dynamic controller.

. OBChas been extensively studied, and mathemati-

cal equivalence of 2-input, 1-output controller
and 2DDC have been discussed. Stable pole-zero
cancellation is an inherent property in the 2DDC
design.

. By the dynamic controller u = G.(s)v - Q(s)y, Q(s)

is chosen to do pole-placement, and G,(s) can be
chosen to meet other control purpose. This unique
feature is what 2DDC renders.

. In2DDC design H(s) can be chosen strictly proper

and stable (low-pass) so as to reject disturbance
and noise from output. This will be our research
topic in the near future.
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