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CONSTRAINED DYNAMIC CONTROLLER DESIGN
FOR SHIP STEERING YAW-CONTROL

Wen-Jer Chang*

Keywords: Robust performance, Variance constraints, Pole assign-
ment, Ship steering yaw-control.

ABSTRACT

Multiple constrained dynamic controller design problems
associated with steering of ship yaw motion are discussed in this
paper. The multiple constraints considered here contain individual
state variance constraints, robust performance (H. norm) con-
straints and regional pole assignment (D-stability) constraints. The
necessary and sufficient conditions for the existence of the
constrained dynamic controller, which achieves the above three
constraints, will be derived. Under achieving these conditions,
the dynamic controllers will be solved by using the well known
singular value decomposition (SVD) techniques and the theory of
generalized inverses. Finally, a numerical simulation is given
to show the usefulness and applicability of the present approach.

INTRODUCTION

In recent years, the problem of controlling sur-
face ships in maneuvering situations has been receiv-
ing more and more attention from the operational
safety and environmental viewpoints [1-10]. For ship
steering, the stochastic disturbances are waves, wind
gusts and obervation errors; and the deterministic
disturbances are current, mean wind and curvature of
the prespecified track. If the ship is modelled as a
linear system, if the stochastic disturbances are sup-
posed to be Gaussian noise, and if the risk to be
minimized is the expection of the sum of a sequence
of quadratic cost functions, then the solution to the
ship yaw-control problem is known to be an adaptive
controller [2-3] and a linear optimal controller [8-10].
However, the controllers of these literatures are
derived to minimize a performance index, which
consider the variance constraints only. Hence, in
this paper we will deal with the multiple constrained
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controller design problem for the ship yaw-control
steering. Besides variance constraints, the robust
performance and pole assignment constraints will be
considered in this paper.

Regardless of what design technique is used,
controllers are always designed based on information
about the dynamic behavior of the process. This
information (i.e., the “model”) can have the form of
a system of coupled partial differential equations or
be simply the process gain and the settling time
experienced by the plant operator. The accuracy of
this information varies but is never perfect. More-
over, the behavior of the plant itself changes with
time and these changes are rarely captured in the
models. It is most desirable that the controller be
insensitive to this kind of model uncertainty, i.e., the
controller should be robust. A suitable norm that
can incorporate both signal gain and robustness to
plant uncertainty is the H., norm. Therefore, the H..
control [11-16] for disturbance attenuation have a
great deal of attention in the linear systems. Further-
more, the dynamics of linear systems is influenced
by the location of its poles. A well-known desired
region for dynamic systems is a disk D centered at
(-, 0) with radius p, where o0, p>0 and a>p
(Fig. 1). The pro-blem of locating all the closed-loop
poles of controlled systems inside a specified disk
D(e,p) is known as “D-stability problem” [17-20].
Considering the above performance requirements,
the multiple constrained controller design problem in
this paper will deal with variance constraints (which
has been considered in [8-10]), robust performance
constraints [11-16] (i.e., H.. norm constraints) and
D-stability constraints [17-20] (i.e., pole assignment
constraints) for ship steering yaw-control, simulta-
neously.

The approach of this paper is based on the upper
bound covariance assignment technique, which has
been developed by the authors in[16,21-22] and [15,
23] for linear continuous-time and discrete-time sto-
chastic systems, respectively. This technique provide
the necessary and sufficient conditions as well as
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controller solutions for assigning the upper bound
covariance matrix, whose diagonal elements satisfies
the individual variance constraints for closed-loop
systems. However, in [15-16, 21-23] the pole assign-
ment constrained design problem has not been
considered. Hence, the purpose of this paper is using
the upper bound covariance assignment technique
to derive a strategy to design an output feedback
dynamic controller such that the closed-loop ship
steering yaw-control systems achieve prespecified
three constraints: individual state variance con-
straints, robust performance constraints and D-stabil-
ity constraints.

DYNAMIC MODEL OF SHIP YAW MOTION

The development of the linearized, state-vari-
able equations of motion for a ship moving in the
horizontal plane presented here is obtained from
Newton’s laws expressing conservation of linear and
angular momentum. It is customary to write the
equations using a coordinate frame fixed to the ship
(see Fig. 2). For a ship like a tanker there is little
coupling between the different modes and the steering
dynamics can therefore be described by considering
the surge, sway and yaw motions separately. The
equations of motion can be written as

m(d_i)r—x(;r2)=x, (1)
m(v+ur+xg)=T, (2)
L + mxg(O+ru)=N, (3)

where m is the mass of the ship with I being its
moment of inertia with respect to the z-axis and xg
being the x-coordinate of the centre of mass. The
projections of the total ship speed on the x- and y-axes
are the surge velocity #(¢f) and the sway velocity v(#).
" The yaw rate is denoted by r(£)=dy(¢)/dt, where yAt)

A Im(2)

©.0) PRe(1)

Fig. 1. Pole Constrained Region D(a,p).

the is the heading angle. Moreover, the right-hand
sides of Egs. (1)-(3) are the hydrodynamic forces and
moments, i.e., X and Y are the components of the
hydrodynamic forces on the x- and y-axes, N is the z-
component of the hydrodynamic moment.

The linearized dynamic equations of motion
Eqgs. (1)-(3) are easily converted to state-space form
by solving for the derivatives ¥(¢) and r(¢). This
gives the following dynamic model for the yaw mo-
tion of the ship:

F (1) _[—1/2; 0 Hr(t)

v ] 1 0 ||w()

K/T, e, (1)

+[ 0 ]8(t)+[e;(t),
=A[;,((tt)) +B5(t)+D[ZE;; . @

where &(¢) is the rudder angles of the ship, and T <0
and K>0 are time constants for the ship yaw motion
[9]. In Eq. (4), the roll motion is neglected without
loss of generality [9]. The e(f) and e,(¢), which
depend on the sea level and wave slope, denote the
forces generated by the wind and wave. These forc-
ing terms can be considered as the sum of constant
and random components. Because of the long time
constants of ships it is reasonable to approximate
the random components by white noise both for
wind- and wave-generated forces. It was shown in [9]
that the forcing terms e;(£) and e,(#) may be generated
as zero-mean white noises by a differential equation
system (see (3.10) in [9]) for the numerical simula-
tions. Note that the system Eq. (4) is unstable since
the time constant T is a negative scalar.

In [3], the LQG (Linear-Quadratic-Gaussian)
control theory has been used to find an optimal regu-
lator such that the following performance function:

T
J=LJ' T L w2(t)+qb2(t)1dt,
T do )

where g is a weighting scalar, is minimized. From [3],

>

N

* Y

Fig. 2. Coordinate System for Ship Steering Control.
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it can be find that the criterion Eq. (5) consists a state
feedback from heading and yaw rate only, i.e., a PD-
regulator. The LQG controllers minimize a linear
quadratic performance index Eq. (5), which lacks
guaranteed variance constraints with respect to
individual system states. Furthermore, the state
variance constraint is the only one considered for
the ship steering control problems in the previous
literature. In the literature [1-10], there has been
still little multiple constrained controller design ap-
proach for the ship steering. Hence, in the following
section we will develop a methodology to find a
dynamic controller which achieve multiple constraints
for the ship yaw motion. These constraints consid-
ered in this paper are individual state variance
constraints, closed-loop transfer function H.. norm
constraints and regional closed-loop pole constraints.

CONTROLLER DESIGN USING UPPER BOUND
COVARIANCE ASSIGNMENT TECHNIQUE

Consider the linearized steering model Eq. (4) of
the ship yaw motion. It is assumed that the output
signals of this system are r(¢) and yA#). Then, the
system output may be written as

r(t)
t)= . 6
y0)=[ 4 ®
In this paper, we use the following dynamic output
feedback controller to drive the unstable system Eq.

4):
% ()=A.x ()+By(t), (7a)
&(t)=Cox (t)+D.y(t), (7b)

where x.(£)e R", and A, B,, C. and D, are constant
matrices with appropriate dimensions. In practice, a
complete set of state variable directly available for
state feedback purpose may not always exist. Conse-
quently, it is worthy of using dynamic output feed-
back controllers with any order from a practical and
engineering viewpoint.

Combining Egs. (4) and (7), the closed-loop
system for ship yaw motion has the following form:

PPN = e (2)
x(t)=Ax(t)+D e;(t) , (8a)
y(t)=C,x(2), (8b)
where
r(t) -1/T, 0 0
x()=s|y)|, A=s| 1 0 0 |,
x, (1) 0 0 0

0
B=[ 0 o |eslpg] oo
0 I c C
ne
(100 1o
¢={0 1 0|=1,,.D=01],
001, 00
¢,=|390].A=A+B6C, (9b)

where I, denote the identity matrix with dimension
nxn. For the closed-loop system Eq. (8), the closed-
loop transfer function H(s) from noise input vector
[e1(2) ex(®)]T to output y(f) may be written as

H(s)=C,(sI-A)"'D. (10)

Moreover, let us define X as the steady state covari-
ance matrix of state vector of the closed-loop system
(8),i.e., X= 11m E[x(t)x(t) ], where E[.] denotes
the expectlon 1 of [.]. Itis well known that this state
covariance matrix satisfies the following Lyapunov
equation:

AX+XAT+DED” =0, (11)

where E denotes the covariance matrix of noise input
vector [e,(2) ex(®)]”.

Definition 1

The closed-loop system Eq. (8) is said to be
D(a,p)-stability if all the eigenvalues A; of state dy-
namic matrix A satisfy

|A—ad<p. (12)
Lemma 1

Consider closed-loop ship steering system (8).
Let G be given and let ¥>0 be a fixed scalar. If there
exists a positive definite matrix X satisfying

AX+XA” + 7 2XRX + DED” + &~ 'AXA”
+ol(2-p)X=0, (13)

where R = C C Then, the closed-loop system Eq.
(8)is D(a, p) stable the norm of closed-loop transfer
function satisfies ||H(s)||..<Yand the state covariance
matrix satisfies X<X.
Proof:

It is assumed that A and p are eigenvalue and
right eigenvector of AT , respectively. Letting and
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putting it into Eq. (13), we have

[a~! (x2+2xa+ &2+ y* - P2 )] p*Xp
=—p* (Y XRX+DED ) p . (14)

Since X >0, and ¥ 2XRX + DED’ >0, from Eq.
(14) we obtain

(x+a)2+y*<p?, (15)

which means that all eigenvalues of A should be
located in a specified disk D(a,p).

Consider Eq. (13), from the Lemma 1 of [24 2]
we may obtain ||H(s)||.<y since DED "+ 'AXA
+o 1 (a?-p?)X>0. Subtracting Eq (11) from Eq.
(13) and using ¥ 2XRX + ¢ 1AXA” + @~ (02 - p?)
X >0, the inequality X < X will be got from the proofs
of Theorem 4.2 of [17] due to the fact that A is stable.

From Lemma 1, we may conclude that the con-
strained dynamic controller design problem for ship
steering yaw motion is to determine the dynamic
controller such that the following performance crite-
ria are satisfied.

<I> Individual variance constraints:
[X]iiso.iz’i=1029 (16)

where [*]; denotes the th diagonal element of matrix
[*] and 67 denote the Root-Mean-Squared (RMS)
constraints for the individual variances of the linear-
ized ship steering system states, i.e., states r(¢) and
w(e) in Eq. (4).

<2> H..norm constraints:
H($)N<7, an
for some prescribed positive constant ¥.
<3> D(o,p)-stability constraints:
A(A)eD(a,p), (18)
where A(*) denotes any eigenvalues of matri;( [*].
Definition 2

Given a desired circular relglon D(a,p) and a
positive constant y. Let X=X >0 be a positive
definite prespecified matrix which meets performance
constraint <1>. Then X is called a D—j-assignable
matrix if there exists a set of matrixes G such that
Eq. (13) has the positive definite solution X .

Theorem 1

A specified posmve definite upper bound cova-
riance matrix X = X" >0 sat1sfy1ng performance con-
straint <1> (i.e. ,[X]"< ?,i=1,2) is D-y- assignable
by some G if and only if

_1. 1y _ 7 o1 -

(o7 24 + c21) XC" (EXE™)

. -1 1 —

CX (24" + 021)- X, 20, (19)

BX,B=0, (20)

where [*]* denotes the Moore-Penrose inverse of ma-
trix (see [25]) and

B=I- BB', (21)

X,,=AX +XA" + ¥ XRX + DED” + &~ 'AXA"
+ol(?-p*)X. (22)

Proof:
It is clear that Eq. (13) may be written as
[0 2BGP + (@ 2K + 021) RET (PPT )" 'p|
[0 2BGP+ (072 + 021) X7 (PPT)" p[
=KK’, (23)

where PPT = CXC” and Ke R #c*2X(%c+2) is defined by

ol moxT

(o 2A+0ﬂI)XC (cxc™)™!
CX (0 2K7 + 021) - X, = KK . (24)

From Eq. (23), it can be found that the right-hand side
of Eq. (24) is positive semidefinite, hence the condi-
tion Eq. (19) will be obtained, immediately. From
Lemma 2.1 of [26], Eq. (23) is equivalent to

o 2BG =KVP~' - (07 2% + 021) XE” (PP) ",
(25)
where V is some orthogonal matrix. By assumption
G satisfying Eq. (25) exists. From the theory of
generalized inverses [27], Eq. (25) has to be solvable
for G, which is guaranteed if and only if

(1-BB")[KVP~! - (0 2K + 021) & (PP*) 1] =0,

(26)
- N P npy -1
(I-BB")KV=(I-BB*) (¢ 24+021) XCT(PP") " 'P

27

M
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Since P is nonsingular, using Lemma 2.1 of [26] and
Eq. (21), Eq. (27) is equivalent to

B[KKT - (o 24 + 021) XE"
(EXET) ' EX (@ 2K + oizl’l)]f;=0. (28)

From Eq. (24), we can find that Eq. (28) is
equivalent to Eq. (20).

" Using Theorem 1 and Definition 2 we know
that if the necessary and sufficient conditions of
Theorem 1 hold for a specified upper bound covari-
ance matrix X, then there exist some matrices G
such that Eq. (13) is satisfied. When Eq. (13) is
satisfied, the performance constraints <1>-<3> will
meet from Lemma 1. That is, Theorem 1 provides
the necessary and sufficient conditions for the exist-
ence of dynamic controllers G which achieve a suit-
able upper bound covariance matrix X such that
the closed-loop ship steering system Eq. (8) satisfies
the multiple performance requirements <1>-<3>. In
the following theorem, the dynamic controller solu-
tions G will be derived when the conditions of Theo-
rem 1 are satisfied.

Theorem 2

If the conditions of Theorem 1 hold for a speci-
fied upper bound covariance matrix , then the dy-
namic controller which achieve this specified is
given by

=+ -1 I10 Tp-1
= 2
G=B"+|c K\{([OUS]VPP

—(A+oD)XCT (PP ' (1-BB)Z. (29
where K is expressed as in Eq. (23), Z € IR (et 1>(7c+2)
is an arbitrary matrix, Uge R"e*20X(c+2-70) jg an
arbitrary orthogonal matrix, r, = Rank ( BK), and Vi
and V, come from the SVD as follows:

BK=0XV/, (30)
B(o7 7 + 1) X (PP)'P=UZVY. (3
Proof:

From the proofs of Theorem 1, it is known that
the given X is D—y-assignable if and only if there
exists a solution G to Eq. (25) for some orthogonal
matrix V satisfying Eq. (27). Using the theory of
generalized inverses [27], the solutions G of Eq. (25)
will be obtained by

G=1§*[a'%KVP-1 —(A+0d) ¢ (pP") 7]

+(I-B'B)Z, (32)

where Z € R("e* DX("c*2) 5 an arbitrary matrix and
V is any orthogonal matrix satisfying Eq. (27). From
Lemma 2.1 of [26], the general solutions V for Eq.
(27) can be expressed as

1]y

where U, is an arbitrary orthogonal matrix and Vi and
V, are defined in Eq. (30) and (31), respectively.

From the above theorems we know that the first
step of designing the multiple constrained dynamic
controllers is to assign a suitable upper bound covari-
ance matrix X, which satisfies the performance
constraints <1>, such that the conditions Eqgs. (19)
and (20) of Theorem 1 are satisfied. If the necessary
and sufficient conditions of Theorem 1 are satisfied,
then the dynamic controller solution G will be ob-
tained from Eq. (29) of Theorem 2. In the following
section, we will use the above upper bound covari-
ance assignment technique to design the constrained
dynamic controllers for the ship steering yaw motion.
A numerical simulation will be also given in the
following section.

CONSTRAINED DYNAMIC CONTROLLER
DESIGN AND SIMULATION FOR SHIP
STEERING YAW MOTION

In this section we will introduce the procedure
of the constrained dynamic controller designing of
ship steering yaw motion. Consider the linearized
dynamic model of ship yaw motion Eq. (4), it is
assumed that the forcing terms e;(f) and e,(f) are
zero-mean white noise processes of intensities & and
I respectively, i.e.,

E[e1(6))=0, E[e(t)e(1)T]=Ed(t-1), (34)
and
E[ey(1)1=0, E[ey(t)ex(1)T]=E£d(t—1). (35)

Then, the covariance matrix E of noise input vector
[e1(®) ex(D]T is

- é‘zé‘#]
E_[ﬁuuz ' (36

From Section III, we know that the first step
of designing the constrained dynamic controllers,
which achieve the multiple performance constraints
<1>-<3>, is to assign a suitable upper bound covari-
ance matrix X such that constraint <1> and conditions
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Egs. (19)-(20) are satisfied. Without loss of general-
ity, in this paper we consider that the ship steering
model Eq. (4) is driven by the first order dynamic
output controllers, i.e., n.=1 in Eq. (7). Then, the
symmetric upper bound covariance matrix X may be
expressed as

X= 37

12 X0 Xy

iuleils
X3 X33 X33

Consider the closed-loop ship steering model
Egs. (8)-(9) and Eq. (21), it is easy to obtain that for
arbitrary K; and T, the elements of B are all zero
except the (2, 2) element. The value of the only one
non-zero element of B is always equivalent to 1 for
arbitrary K; and T, of B. Putting B matrix into
condition Eq. (20), we can conclude that the (2, 2)
element of matrix )—(ap in F:q. (20) must be zero and
the remnant elements of X,, may be arbitrary for
satisfying the condition Eq. (20). Hence, the condi-
tion Eq. (20) will become

_2 —_ e - _
YixL+2% a7 T oA —p) %y,

+7_27§2+/12=0, (38)

where the left-hand side of the Eq. (38) is the (2, 2)
element of matrix X,,. If we assign % |, and ¥ », to
satisfy performance requirement <1>, i.e., ¥ ,; < 0}
and ¥ ,, < 03, then the Eq. (38) will be a second order
equation for the only one unknown variable ¥, .
Solving this second order equation, we may find a
suitable variable ¥ ,, to satisfy condition Eq. (20) for
the assigned values X ;; and ¥ ,,. Moreover, if we
choose appropriate ¥ 55, ¥ |; and X ,; of X, itis easy
to find a suitable positive definite matrix X such
that conditions Eqgs. (19)-(20) are satisfied. The
following simple procedure will provide the steps to
design the multiple constrained dynamic controllers
for the ship steering yaw-control problems.

Step 1: For given constraints <1>-<3> (i.e., 51, G, ¥,
o and p are given), let us assign ¥ ;;and ¥ ,,
to satisfy performance requirement <l1>,
ie,¥;; S0t and ¥,,<03.

Step 2: Solving the second order Eq. (38) to obtain
X .

Step 3: If 1:1121e inequality ¥ ;% ,, — Yfz > 0is not sat-
isfied, then slightly increase either of ¥,
and ¥,, and go to Step 2; otherwise, con-
tinue. Since this inequality is the necessary
condition of X>0.

Step 4: Choosing appropriate X33, X ;3 and X
such that X>0 and condition Eq. (19) is
satisfied.

Step 5: Substituting X into Eq. (24) to solve K.

Step 6: Using SVD technique to find Vy and V, from
Egs. (30) and (31), respectively.

Step 7: At last the dynamic controller G may be
obtained from Eq. (29).

In this paper, a single screw/single rudder ro-ro
ship was selected for the simulation study. The bow
and stern draught is 11m and the displacement is
52010 m>. The metacentric heightis 0.45m. A diesel
engine of 13000 HP delivers the propulsion power.
The ship is fitted with a four-bland propeller with a
diameter of 6.3 m?. The detailed hull data, propeller
data and rudder data of this test ship are given in the
Table 1 of [9].

Consider the linearized dynamic equation of
ship steering yaw motion Eq. (4), the time constants
may be obtained from [9], i.e., T;=—64 s and K,=0.04
1/s. Furthermore, form (3.10) of [9] we may obtain
the forcing input noise terms e;(f) and e,(¢), which
have intensities £=0.25 and u=-0.1, respectively.

Without loss of generality, it is assumed that
the system Eq. (4) is driven by a first order dynamic
output controller. Then, from Eq. (9) we have

_[001525 0 _[~0.00625
A= 0 ] B= [ 0 ] :
_ [o015625 0 0
A = 1 0 0 »
0 0 0
_ [-0000625 0
B=| o 0 39)
0 1

In this simulation, the multiple performance re-
quirements <1>-<3> of this paper will be assumed as
follows:
<1> Individual variance constraints: 63=0.2 and 03=

0.1,
<2> H.. norm constraints: ¥=0.5,
<3>D(a,p)-stability constraints: a=20 and p=18.

From the above variance constraint <1>, we
may assign the diagonal elements of upper bound
covariance matrix X to satisfy this constraint, i.e. we
assign x ;=0.15<0.2 and X ,,=0.02<0.1. Substitut-
ing ¥ ,; and X ,, into Eq. (38) we may obtain ¥ ,,=
—0.0532133. For satisfying condition (19) and the
positive definite property of upper bound covariance
matrix X, we choose X ;=0.02, ¥ ,=-0.01 and
X 43=0.5. Then, the necessary and sufficient con-
ditions Eqgs. (19)-(20) of Theorem 1 are satisfied.
Putting X into Eq. (24) and Egs. (30)-(31), we can
calculate matrices K, Vi and V,, which will be used
to solve the controller solutions G. Using Eq. (29)
of Theorem 2, the controller gain matrix G will be
calculated as
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G_7.553838><103 9.384469x 10° —0.875844x 102
| -0.618455 - 1.341565 -2.00458 |°
(40)

That is, the dynamic output controller Eq. (7) has the
following form:

x, (1)=-2.00458x.(¢)+[-0.618455 —1.341565]y(»),
' 41a)

and

8(1)=—0.875844x10%x,(¢)+[7.553838x103
9.384469x10%]y(?). (41b)
Figure 5 and Fig. 6 respectively present the
responses of yaw rate and heading angle, which were
driven by the zero-mean white noise inputs e,(f) and
e,(t) (see Figs. 3 and 4). From the simulated re-
sponses Figs. 5 and 6, we obtain the variances of
system states as E[r?(£)}=7.97528x107% and E[y*(8)]=
8.637664x1073. It can be found that the performance
constraint <1> is satisfied. Substituting the dynamic
controller Eq. (40) and system parameters Eq. (39)
into Lemma 4 of [12], it is obvious that the H., norm
of closed-loop transfer function satisfy the perfor-
mance requirement <2>. Calculating the eigenvalues
of the closed-loop dynamic state matrix A, we find
that the closed-loop system poles are —2.0046,
-2.3528+j0.5743 and —2.3528—j0.5743. These poles
achieve the performance constraint <3>. From the
above descriptions, it can be found that the dynamic
output controller Eq. (41) drive the linearized ship
steering system Eq. (4) to satisfy the multiple perfor-
mance requirements <1>-<3>, simultaneously.

0.8

0.6

0471

O.2~r{
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Fig. 3. White noise force input e;(¢).
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Fig. 4. White noise force input ex(f).
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Fig. 5. Output response of yaw rate r(t) controlled by dynamic control-
ler (41).
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controller (41).
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For demonstrating the usefulness of the present
approach, we try to use other control technique to
design controllers for achieving the same perfor-
mance constraints <1>-<3>. Here, we will consider
the minimum variance LQG technique. Now, we first
define a minimum variance cost function for the
system model: »

t
JLQG=tan3°E%L[fT(t)Qi(t)+uT(t)liu(t)lt(lz,z)

where ¥ =[r(t) Y(t )]T ,Qand R are semi-positive
definite weighting matrices for states and control
inputs, respectively. Using the minimum variance
LQG method [17, 28], one may obtain a static state
feedback controller

u(t)=—R™'B"PE (t)=-Kipgi (1), (43)

where P is a symmetric positive definite matrix
which satisfy the following Riccati equation:

PA+ATP-PBR 'B'P+(=0. (44)
The cost function considered here is a minimum vari-
ance performance index. For achieving the variance
constraints <1>, we try to design some minimum

variance LQG controllers subject to different weight-
ing matrices. These results will stated as follows.

Case I:

If we choose R=1 and @ =1, wherelz_[()l]

then the static state feedback gain Kjpe=[K; Kl=
[-86.8547 —1] will be obtained by solving Riccati
Eq. (44). From the simulations (Figs. 7 and 8), one
may obtain that E[r%(t)]=3.3792, E[y?*(1)]=3507.6,
IH($)|l.=1601.0273 and the closed-loop poles are
—-0.0193+ j0.0158, —0.0193-0.0158. It is easy to
find that the performance requirements <1>-<3> are
all not satisfied in this case.

Case II:

In Case I, the variances of states are too
large. Hence, we must increase the values of weight-
ing matrix Q to reduce the state variances. If we
choose R=1and Q=2x 10°,, then we have KioG=
[-2579.6249 -1414.2136]. Using this controller to
drive the system model, one may obtain that
E[r*(t)]=0.0116, E[y*(t)]=0.0753 (Figs. 9 and 10),
|[H(s){|~=2.3028 and the closed-loop poles are
-0.7983+j0.4966, —0.7983—j0.4966. The variance
constraints are achieved, however, the H., norm
and pole location constraints are all not satisfied.
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Fig. 7. Output response of yaw rate r(f) controlled by LQG controller
(Case I).
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Fig. 8. Output response of heading angle yAf) controlled by LQG
controller (Case I).

03

02Ff

0.1

200 400 600 800 1000

Fig. 9. Output response of yaw rate r(¢) controlled by LQG controller
(Case IT).
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Case III:

For comparing the LQG controller with the
dynamic controller, we increase the values of weight-
ing matrix Q once again in order to obtain similar
state variance values which have been got by using
dynamic controller Eq. (41). If we choose R=1
and Q=2x 10°L, then we have K1pc=[—15685.634
—1414.1356]. From the simulated response (Figs. 11
and 12), we obtain that E[r?(t)]=0.007492, E[y*(t)]
=0.009395, |H(s)||..=1.4942 and the closed-loop poles
are —8.7814 and —1.0065. The variance constraints
are approach to that obtained by using dynamic con-
troller Eq. (41). However, the H., norm and pole
location constraints are still not achieved.

To summarize the above situations, we provide
a summary table as Table 1.

From the above table, we can find that the results
of Case III is the best one between the above three
LQG control simulations. Hence, let us compare the
results of LQG control simulations (Case III) with
that of dynamic control simulations. The state vari-
ances of these two situations are similar and are
both satisfied constraints <1>. Though, a closed-loop
pole of LQG control (Case III) is satisfied the
constraints <3>, the other one is not. Moreover, the
H., norm constraints <2> are still not achieved in
Case III. Note that the values of weighting matrix
is very large in Case III. Furthermore, the control
gain values of LQG controller (Case III) are larger
than that of dynamic control gain Eq. (40). According
to the same state variance values, dynamic controllers
propose a small control gain as well as simultaneous
satisfactions for individual state variance constr
aints, H, norm constraints and pole placement
constraints. Hence, we may conclude that the dy-
namic controller design method presented in this pa-
per provide a better system performance than that
controlled by the minimum variance LQG technique.

CONCLUSIONS

The multiple constrained dynamic controller
design for ship steering yaw-control problem has
been considered in this paper. For this problem, we
have introduced a methodology to derive the neces-
sary and sufficient conditions for the existence of
the dynamic controllers. Moreover, the controller
solutions are also solved by using the upper bound
covariance assignment technique. It has been shown,
based on a numerical simulation of a simple ship
steering model, that the present approach provides
a set of dynamic controllers such that the individual
state variance constraints, H.. norm constraints and
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Fig. 10. Output response of heading angle yA#) controlled by LQG
controller (Case II).
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Fig. 11. Output response of yaw rate r(¢) controlled by LQG controller
(Case III).

03

02}

0.1f
0 -
-0.1

-03

0 200 400 600 800 1000

Fig. 12. Output response of heading angle y(¢f) controlled by LQG
controller (Case III).
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Table 1. Simulation comparison between different controllers

LQG Controller (Case I)

LQG Controller (Case II)

LQG Controller (Case III) Dynamic Controller

0=1 0=2x10°L 0=2x10°L (present approach)
KLQG=[K 1 K] KLQG=[K| K;] KLQG=[K 1 K]
Control Gain K,=-86.8547 K;=-2579.6249 K,=-15685.6341 Equation (41)
K,=-1 K,=-1414.2136 K,=-14142.1356
E[r¥ ] 3.3792 0.0116 0.0074592 0.00797582
E[y(1)] 3507.6 0.0753 0.0093495 0.008637664
[|H($)|l.. 1601.0273 2.3028 1.4942 0.2075
closed-loop poles -0.0193+j0.0158 -0.7983+j0.4966 -8.7814 -2.0046
-0.0193-j0.0158 -0.7983-j0.4966 -1.0065 -2.3528+j0.5743
-2.3528-j0.5743
Meet Constraint <1> No Yes Yes Yes
Meet Constraint <2> - No No No Yes
Meet Constraint <3> No No No Yes

D(a,p)-stability constraints are satisfied, simulta-
neously. The system considered in this paper is a
nominal one. Hence, it will be worthy to extend the
present approach to the perturbed ship steering sys-
tems in the future.
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