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PARAMETRICALLY RESONANT SURFACE WAVES
IN A RECTANGULAR BASIN

Wu-Ting Tsai

Keywords: Free-surface wave, Parametric resonance, Perturbation
analysis, Nonlinear wave.

ABSTRACT

We consider the resonant motion of a layer of fluid in a two-
dimensional rectangular basin forced to oscillate vertically. The
equation governing the slowly-varying amplitude is derived using
the multiple-scales method of perturbation analysis. The solution
of the evolution equation is obtained analytieally. For steady
harmonic responses, the present result compares remarkably well
with available experimental measurements and is an improvement
over existing third-order perturbation calculations. For unsteady
(periodic) motions, the periods are computed as a function of
motion amplitudes. The presence of internal resonance is discussed
briefly.

INTRODUCTION

The phenomenon of parametric resonance
arises in a variety of water-wave problems such as
cross waves in a channel, edge waves along a shore-
line, and the transverse instability of progressive
and standing waves. In contrast to forced oscillations,
in which the forcing gives rise to an inhomogeneity
in the governing equation, parametric excitations
appear as coefficients of the governing differential
equations.

The appearance of subharmonic standing waves
in a basin forced to oscillate vertically was first ob-
served by Faraday [1]. His experiments were repeated
and the results reconfirmed by Rayleigh [2,3]. That
parametric resonance is indeed the mechanism for
the generation of such standing waves was first indi-
cated by Benjamin and Ursell [4] who showed that
the response amplitudes are governed by a Mathieu’s
equation. This linearized theory explains the occur-
rence of parametric instability at specific excitation
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frequencies, but predicts unbounded wave ampl-
itudesat resonance and is not able to describe the
actual development of the free surface. Skalak and
Yarymovych [5] and Dodge et al. [6] extended the
linear analysis to higher order for the rectangular
and circular basin respectively. By applying a Stokes’
expansion to the velocity potentialand and the free-
surface elevation, they obtained to third order finite-
amplitude resonant periodic responses. Such direct
perturbations in the response amplitude are however
inferior in that terms of larger order of magnitude may
often be omitted in the resulting equations. The
analysis was improved by Ockendon and Ockendon
[7] who applied multiple-scale technique to obtain
an evolution equation governing the response near
subharmonic resonance frequencies. Unfortunately,
they did not give explicit forms of the evolution
equation for specific geometries, and as a result were
no comparisons to earlier perturbation analyses and
experimental measurements. Recently, Miles [8] used
a Lagrangian formulation and obtained, after averag-
ing, a Hamiltonian system for the response amplitude
including explicit results for the case of a circular
cylinder.

In this paper, the multiple-scales expansion of
Ockendon and Ockendon [7] is worked out for a two-
dimensional rectangular basin of arbitrary depth,
and the evolution equation governing the slowly-
varying amplitude is derived explicitly. The periodic
solution of the evolution equation is then obtained
analytically. The results for the steady (harmonic)
response amplitude compare remarkably well with
the experimental data of Skalak and Yarymovych [5]
and are superior to their perturbation results. Stability
of the solutions around fixed points with or without
the presence of a linear damping is discussed briefly
with conclusions similar to that for the circular tank
of Miles [8]. The possibility of internal resonance
at critical depths is also indicated, but unlike the case
of the circular basin, the first possible two-to-one
internal resonance for this geometry is between the
first symmetric and the third symmetric or ant-
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isymmetric modes which occurs as a result of cubic
rather than quadratic interactions in the evolution
equation.

EVOLUTION EQUATION
Mathematical Formulation

We consider the motion of an ideal, incompress-
ible fluid under a free surface in a two-dimensional
rectangular basin with a horizontal bottom subject
to a vertical oscillation given by —a, cos(w,t). The
resulting fluid motion is assumed to be irrotational
and surface tension is ignored. A coordinate system
fixed with the basin is chosen so that the origin and
x-axis are in the undisturbed free surface and z is
positive upwards. The side walls of the basin are at
x=tL and the bottom at z=—hL. For convenience, we
introduce dimensionless (primed) variables: x’=x/L;
Z'=z/L; ¢’=¢/(a.,0L); n’=n/a, and t'=wt where ¢(x,z,t)
is the velocity potential, n(x,t) the free-surface el-
evation, and @=®,/2 is the frequency of the resonant

response. Dropping the primes hereafter, we have
for the governing equation:
2
FO,50 0, on-hsisen; ~1<x<l,(la)
ox° 9z

where €=a,/2. On the side walls and bottom, the
normal velocity vanishes

99 _ -

o = =0, on x=tl, (1b)
and

99 _ —

% =0, on z=—h. (1¢)

On the free surface, the kinematic and dynamic bound-
ary conditions are

m, My _20_,

at ax ax aZ onz= en(x’t)’ (ld)

and

2 6[(5"” (a¢>1+v2[zv2u+ecos(w>]

on z—en(x,t), (1e)

where N=Q/w,, v=0,/0, u=1/{(x tanh(zh)],and Q=
[(mg/L)tanh(zh)]/?} is the dimensional linear natural
frequency of the first (symmetric) standing wave in
the basin. We consider here only the one-half
subharmonic resonance of this symmetric first mode,
so that v=2, and we write

=1 :
N_2+le, 2

where A=0(1) is the detuning parameter.
Asymptotic Analysis

To obtain an evolution equation for the slowly-
varying amplitude of the surface, we use multiple-
scale analysis and introduce the slow timescale, 7,
which is dependent on amplitude:

T=€t. 3)
The free-surface boundary conditions (Eqs. 1d,e) are
expanded in Taylor series about z=0, and ¢ and 7 are
written in perturbation series:

p=€""po+ p+€2¢y+..., (4a)

n=€2ne+rm+n'"n+.... (4b)
We proceed, in a manner similar to Ockendon and

Ockendon [7], through O(€'?). At each order, n, the
governing equation for ¢, are in the form:

%ﬁa + Q% =0, —h<z<0; 0<x<1,  (5a)
%0, =01, (5b)
aa;?w, =, (5¢)
aa“;n +UM,=G,,  z=0, (5e)

where F, and G, are given by lower-order terms.

At leading order, Fy=G¢=0, and the first-mode
standing wave solution with slowly-varying ampli-
tude, A(7), is given by

; h7
¢0=%A(t)e"‘cos(ﬂx)gj-t—sﬁ)+ac-,
(6a)
Mo=%A(T)e *cos(mx)+C.C, (6b)

where C.C. denotes the complex conjugate of the
preceding term. At the next order, we obtain

Mo ? 3
F=-Gm o+ °?€0’ 7e)
o, 99 000)? . (3¢
Gi==To 552~ % (axo) *(Eg)]' (76)
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At this order, no secularity appears and we have

cos2m(z+h)

37 sinh 27 ]* cC.,

9, = iA%e 2 [ao +a, cos(27x )
(8a)

=A% 2"bycos(2mx)+C.C.+AA*[cy+cic0s(27x)],(8b)
where

=95 (3+ ), ay=3 PU(FI-1),

=L - 2 Lo p2
by=1g WH(1=3m 1), co=g; (1 ),
cz=8—}u(1+n'2;12).

At order €'2, F, and, G, are given by

__ Oy _9ng 3¢y _3m 30y, ,, FPy
==t " ax ox ox T2

99 _ Q@i@ 1 23_3@
+771 aZZ 770 ax ava+2 170 823 ’ (9a)
_ 32¢1_n 92%_1"233% ‘
ot 0030z Mooz 2 oo

L0 30,280 30, 360 P
ox ox dz oz 0" 9x oxoz

Gy = @—770

a9y 90
—noa—zﬁ—4(,u/1+0082t)n0. (9b)
Substituting ¢g, ¢, 7o and 71 into Egs. (9a) and (9b),
and eliminating 7),, we obtain the free-surface bound-

ary condition for ¢,:

2
%ﬁu%‘i&:(w%m*—szx
+TA’A*) e~ cos(mx )+ C. C.

+nonsecular terms+higher modes in

x, (10a)
where
rséi—#(6—5u2n2+16;ﬂn4-9/ﬁn6). (10b)
To avoid secularity in Eq. (10a), we rquire
,U%+2i,uﬂ»A——iA*—iFA2A*=0, (11)

which is the governing equation for the slowly-vary-
ing complex amplitude A(7). If we let A(7)=C(7)
+iD(7), where C and D are real amplitudes, the evo-
lution equation Eq. (11) can be rewritten as

#%_D[(1+2ﬂﬂ)—F(C2+D2)]=O, (12a)

and

u%—C[(l—ZM)+F(C2+D2)]=O. (12b)
Phase-Plane Analysis |

The phase-plane analysis of Eq. (12) has been
given in Ockendon and Ockendon [7] and Miles [8].
For the sake of later discussions, the solution for h=co
and pA=—1, 0, 1 respectively are shown in Fig. 1.
Note that for uA<—1/2, the only critical point is a
stable center at Cy=0, D¢=0. For |uA| <-1/2, C=0, D=0
becomes an unstable saddle point and the stable
points are at Co=0, Do=£[(2uA+1)/I'1"2. The equa-
tions of the two separatrices are

CD-pA(C*+ D))"
a -

C*+D*+2 0.

For uA>1/2, there are thre estable centers: Cy=0, Dy=0
and Cy=0, Dy=%[(2uA+1)/T]1"%; and two unstable
saddle points: Co=+[(2uA-1)/T]1"2, Dy=0. For this
case, the two separatrices are the circles given by
2 1 \2_ 244
C*+ (1)2; ) =
Weakly Damped System

If a weak, linear damping is present in the dy-

2 <
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o o
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Fig. 1. Phase plane solution of the undamped evolution equation (11)
for h=oo, and (a) pA=—1, (b)uA=0, and (c) uA=1.
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namic system (as in Miles [8]), the evolution equation
Eq. (11) is simply

BIA o+ 2 - iax - iTHA* =0,  (13)
where a=0d/€, and § is the ratio of the actual to the
critical damping of the free oscillation of the resonant
mode. In the damped system Eq. (13), the stable
points in the phase-plane become asymptotically
stable spirals, while the unstable saddle points re-
main unchanged. For uA<-6/2, Cy=0, Dy=0 is a
stable spiral point. For |uA]<d/2, Cy=0, Dy=0 be-
comes an unstable saddle point, and Co=%[(2uA+6)
(1-8y/(2N)12, Do=£[(2uA+8)(1+6)/(2N]2, are the
stable spiral points. For pA>6/2, C4=0, Dy=0 and
Co=%[RuA+6)(1-8)/(2N)]'2, Do=2[(2uA+8)(1+6)/
(21", are the three stable spiral points, while
Co=2[(2uA~8)(1+8)/(2N]'2, Do=+[(2uA-8)(1-8)/
(212, are the two unstable saddle points. The
phase-plane diagram for the case =0.5, h=co and
uil=-1,-0, 1 respectively arepresented in Fig. 2 for
comparison.

SOLUTION OF THE EVOLUTION EQUATION

Periodic solutions of the undamped evolution
equation Eq. (11) can be obtained analytically (see
e.g. Struble [9]). Representing the complex ampli-
tude A(7) as

A(7) = C(7) + iD(7) = a(cos Y+ isin 7), (14)
where a and y are functions of . Equation (11) can
now be written as

y%=—2M+Fa2+cos27, (15a)
194 _ 4 6inoy (15b)
art ’

Combining Eqgs. (15a) and ( 15b) and eliminating 7,
we obtain

dy cos2y—2uA+ Ig?
da™ asin2y '

(16)

Equation (16) is an exact integral and upon integra-
tion we have

2a%(cos 2y - 2uA) + I'a*= E, (17)

where E is an integration constant. Equations (15b)
and (17) can be further combined as

B8+ 11— (2ph+ (E-Taby/ (222) P12,

which gives
=24 da’
-T2 > 4 212
[a*—(E/2+2pAa? - Ty /12)7]
(18)

Thus the slow time 7 is expressed as an elliptic inte-

gral of the square of the amplitude a. At any specified

7, a% is given in terms of an elliptic function of 7, and

the phase angle ycan be obtained from Eq. (17).
The period of the modulation, 7, may be ex-

pressed in a more explicit form. For simplicity, we

classify the phase-plane trajectories into three differ-
ent types:

(i) All the trajectories in Figs. (1a) and (1b) which
are outside the separatrix, and the trajectories in
Fig. (1c) which are outside the trajectory with
E=0 (this trajectories is outside the separatrix).
Each of these trajectories has a different positive
integration constant E.

(ii) Trajectories in Figs. (1b) and (1c) which are
inside the upper and lower separatrices forming
two nested sets about the centers Cy=0, Dy=1
[(2uA+1)/I"2. Each pair of trajectories which
are symmetric about the C axis share the same
negative E value.

° @] = ®
< <+
S o
N o
€2 £3
=~ O o
5 [a)
o o
o o
. .
=) o
< <

40 20 00 20 40 .40 20 00 20 40
. €@ cw

4.0

2.0

D(t)
0.0

-2.0

-4.0

40 -20 0.0 2.0 4.0
C(7)

Fig. 2. Phase plane solution of the linearly-damped evolution equation
(13) for 8=0.5, h=co, and (a)uA=—1, (b)uA=—1, and (c) pA=1.

1
l
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(iii) Trajectories in Fig. (1c) which are inside the
inner separatrix and those which are outside the
upper and lower separatrices but inside the E=0
trajectory, forming two nested sets about the
stable center Cy=0, Dy=0. For each trajectory in
the first set with a given negative integration
constant E, there is a trajectory of the other set
sharing the same constant. 'We rewrite Eq. (18)
in the form:

»t:iﬂ dS i} ,
TJ [(s5—=5)(s-%)(s—85)(s—s5) 1"

(19)

where s=a?, and s;, 9, 53, S4 are the zeros of the
denominator in Eq. (18).

For type (i) trajectories, only two of the zeros
are real, which correspond to the intercepts of the
trajectories with the C and D axes according to
Eq. (17). Form Eq. (19), the period for type (i)
trajectories is given by

T=4uf“54 ds
T g (B-s5)(s-a2)[(s-b)+a1}'*’
(20a)

where ay and a,, are respectively the maximum and
minimum of the amplitude, and

2
d=ri o -[Yr-d@ea)]. e
b= ML (d+a2) (200)

Equations (20) can be further reduced to the standard
form of a complete elliptic integral (see e.g. Byrd and
Friedman {10]):

T=gggf'”2 4o _24gK(K)
1% Jo (l—kzsinze)”2 r
(21a)
where
g-m’ ( )
a}—a—(A-BY
ke B ASDT 210)
A=\(&-b ) +at (21d)
B=\(a*-b) +a} , (21e)

and K is the complete elliptic integral of the first
kind (see Abramowitz and Stegun [11]). For type (ii)
modulation, the periods of the upper and lower loops
are equal and given by half times the expression
Eq. (21a).

For type (iii) trajectories, the inner and outer
loops associated with the same constant E have
equal period even though the motions are quite dif-
ferent. From Eq. (19), the periodT can be represented
as

T=4—ﬂ a3 ds ,
@ [(T@y-s)(a%-s)(s—a2)]"?

(22)

where @, and @, are respectively the maximum and
minimum of the outer trajectory, and ay and a,, the
corresponding values for the inner trajectories. Re-
ducing to standard form, Eq. (22) becomes

\ _
T=i“3_’§,(ﬂ, (23a)
where
g= 2 — (23b)
[(Ty-ay)(Th-ai)]
—2 2 a2
k_ (aM am)(aM am) (230)

“(ay-a)(ai-ad)

The preceding results for the period of the
slowly-varying modulations are plotted in Fig. 3 as a
function of the amplitude on the positive D axis for
h=co and puA=-1, 0, 1 respectively. Note that the
periods are discontinuous across the separatrices
and saddle points.

DISCUSSION
Steady Response

For the steady (harmonic) response, the response
amplitude z; is defined as the maximum vertical dis-
tance between the trough and the crest of the free
surface. Thus z; is given by twice the amplitude of
A at the critical points

e8]

—1/2, stable response,
for 4 ;L>{ 1/2, unstable response.

For deep water, I'=n/8, and the values for z, are
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compared to the third-order perturbation results and
experimental data of Skalak and Yarymovych [5] in
Fig. 4, where o=w/{2. The experiments of Skalak
and Yarymovych were conducted in a vertically vi-
brating tank with a 2 inches X 6 inches rectangular
cross section and 18 inches depth. The tank was filled
with tap water to a depth of 12 inches. Measurements
were taken for the second harmonic mode with a
wavelength of 6 inches. The amplitude of the vertical
excitation of the tank was fixed at 0.3/(27) inches.
The comparison between the present result and the
measurements is remarkable close and is better
than that of the analytical results of Skalak and
Yarymovych. The perturbation analysis of Skalak
and Yarymovych was based on the method of Penney
and Price [12] for free standing waves. The major
difference between the present asymptotic analysis
and that of Skalak and Yarymovych is in the assump-
tion of the order of magnitude in performing the
perturbation expansion. For the present analysis,
given a vertical excitation of O(¢€), the leading order
of magnitude of the resonantly excited wave motion is
O(e¢)=€"2. The analysis of Skalak and Yarymovych
is equivalent to assuming an O(¢€) of excited wave
motion in our perturbation analysis. The measured
amplitudes of excited surface motions appeared to
be with order of magnitude lower than that of the
forced excitation. This explains why the present
theoretical results are superior to that of Skalak and

3.0

Period of Slow Modulation (T)

| L

1.0 2.0 3.0 4.0 5.0 6.0

Amplitude on Positive D Axis

Fig. 3. Period of the slowly-varying modulation of the undamped
evolution equation (11) for h=eo and uA=—1(—), pA=0(-~),
and pA=1(—).

Yarymovych in comparing with the experimental
measurements.

Critical Depth h*

From Eq. (10b) we see that I'=0 when the depth
to length ratio h satisfies

6tanh®zh—5tanh*mh+16tanh2h—9=0, 24)
which has a root at wh=mh*=1.022, and I'>(<)0 for
h>(<)h*. Thus the harmonic response will increase/
decrease with increasing detuning uA for depth h
greater/less than A*. In the neighborhood of h*, the
preceding analysis is inadequate, and higher-order
terms in € must be retained. At the critical depth
h=h*, the perturbation analysis above breaks down.
To obtain a uniformly valid description for A near
h*, ¢ and 7 need to be expanded in powers of €4,
and the perturbation analysis is carried out to the
fifth order.

The presence of a similar depth has also been
observed for two-dimensional free standing waves
by Tadjbakhsh and Keller [13] in their third-order
perturbation result. From their equation (35), we
find that the free standing wave frequency coincides
with the linear frequency at a depth given by

2tanhSzh+3tanh*mh+12tanh?mh—9=0, (25)
(=]
he]
= Unstable
2t Saddle Point Stable
. Cenler
©
| \

2

0.50
i

PSS
o

Maximum Surface Displacement (Zx)

0.25

80 0.85 0.90 .95 1.00 .05 110
Response Frequency (0)

<0.00

Fig. 4. Comparisons between the present theory (—) and third-order
perturbation results (—) and experimental measurements (°) of
Skalak and Yarymovych [5] for the harmonic response as a
function of the response frequency o=a/€2.
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which has a solution = 1.058 (this is more accurate
than their wh**= 1.07). For depths greater/less than
h** the standing-wave frequency decreases/increases
with increasing amplitude corresponding to a soften-
ing/hardening spring. (There are no physical relation
between A* and h**, which are critical depths arise
in the perturbation analysis of a two-dimensional
“parametrically-excited” standing wave and a “free-
oscillatory” standing wave respectively. Similar
critical depth would also appear in the asymptotic
analysis of the two-dimensional standing waves
generated by other excitation mechanisms.)

Internal Resonance

As noted by Tadjbakhsh and Keller [13] for
two-dimensional standing waves, and by Mack [14]
for axisymmetric standing waves, an unique solution
does not exist at critical values of the fluid depth
for which the standing wave frequency from linear-
ized theory is an integral multiple of the fundamental
frequency, and the amplitude of a higher mode be-
comes comparable to that of the fundamental mode.

This is also true for waves which are parametrically

excited. Near these particular depths, internal reso-
nance occurs between the parametrically-excited
dominant frequency. For a circular basin, Miles [8]
analyzed the two-to-one (i.e., @,=2®;) internal re-
sonance between the parametrically resonant first
antisymmetric mode and the first axisymmetric
mode. By assuming that the internal resonance is
perfectly tuned, Miles found that every steady-state
response is either trivial or harmonic. Nayfeh [15]
reexamined this problem but relaxed the perfectly-
tuned assumption for internal resonance. For suffi-
ciently large values of detuning, he found Hopf
bifurcations, and hence aperiodic steady-state re-
sponses.

Unlike the resonant waves in a circular tank,
the first possible two-to-one internal resonance in a
two-dimensional rectangular basin is between the
first symmetric and the third symmetric or antisym-
metric mode. Assuming the detuning parameter for
the gth internally resonant mode be

Qo
WZ=1+/1,1€,

where £, is the dimensional linear natural frequency
of the gth mode, and following a similar procedure
as before, we obtain the equations governing the
evolution of the complex amplitudes of the dominant
(first) mode A(7) and that of the gth mode A, (7):

I % + 2iMAA — iA* — iTA%A* —iAAZZ=0, (27a)

dA . . . 2% . 2
21, art 81,Uq)»qu —iA* il ,AZA, — tAquZq(=2 ’(;l;)

where p,=1/[gmtanh(qnh)] and I, X, I, %, are func-
tions of ¢ and A. Thus, for the two-dimensional
rectangular tank, the nonlinear coupling interaction
between two internal resonant modes are cubic,
rather than quadratic as in the case of the circular
basin analyzed by Miles [8] and Nayfeh [15].

CONCLUSION

Parametrically excited surface wave in a two-
dimensional rectangular tank under vertical oscilla-
tion was studied. The evolution equation, governing
the slowly-varying amplitude, was first derived
using the method of multiple scales. Linear stability
analysis around the stationary solutions of the
evolution equation was conducted. The complete
solutions (on the whole phase plane) of the evolution
equation were obtained analytically. For steady
harmonic responses, the present result compares
remarkably well with available experimental mea-
surements (by Skalak and Yarymovych [5]) and is
an improvement over the third-order perturbation
calculations of Skalak and Yarymovych. This is
attributed to better scaling (ordering) of the present
perturbation analysis than that of Skalak and
Yarymovych.

REFERENCES

1. Faraday, M., “On the Forms and States Assumed by
Fluids in Contact with Vibrating Elastic Surfaces,”
Phil. Trans. Roy. Soc. Lond. A, Vol. 121, pp. 319-340
(1831).

2. Rayleigh, Lord, “On Maintained Vibrations,” Phil.
Mag., Vol. 15, pp. 229-235 (1883).

3. Rayleigh, Lord,*“On the Crispations of Fluid Resting
upon a Vibrating Support.” Phil. Mag., Vol. 16, pp.
50-58 (1883).

4. Benjamin, T.B. and Ursell, F., “The Stability of The
Plane Free Surface of a Liquid in Vertical Periodic
Motion,” Proc. Roy. Soc. Lond. A, Vol. 225, pp. 505-
515 (1954).

5. Skalak, R. and Yarymovych, M.I., “Forced Large
Amplitude Surface Waves,” Proc. 4th U.S. Nat.
Cong. Appl. Mech., pp. 1411-1418 (1962).

6. Dodge, F.T., Kana, D.D. and Abramson, N., “Liquid
Surface Oscillations in Longitudinally Excited rigid
Cylindrical Containers,” AIAA J., Vol. 3, pp. 685-695
(1965). '

7. Ockendon, J.B. and Ockendon, H., “Resonant Sur-
face Waves,” J. Fluid Mech., Vol. 59, pp. 397-413



72

8.

9.

10.

11.

12.

13.

14.

15.

Journal of Marine Science and Technology, Vol. 5, No. 1 (1997)

(1973). .

Miles, J.N., “Nonlinear Faraday Resonance,” J. Fluid
Mech., Vol. 146, pp. 285-302 (1984).

Struble, R.A., “Oscillations of a Pendulum Under
Parametric Excitation,”Quart. Appl. Math., Vol. 21,
pp- 121-131 (1963).

Byrd, P.F. and Friedman, M.D., Handbook of Elliptic
Integrals for Physicists and Engineers, Springer-
Verlag, Berlin (1954).

Abramowitz, M. and Stegun, I.A., Handbook of Math-
ematical Functions, Dover, New York (1965).
Penney, W.G. and Price, A.T., “Some Gravity Wave
Problems in the Motion of Perfect Liquids, Part II,
Finite Periodic Stationary Gravity Waves in a Perfect
Liquid,” Phil. Trans. R. Soc. Lond., Vol. A244, pp.
254-268 (1952).

Tadjbakhsh, I. and Keller, J.B., “Standing Surface
Waves of Finite Amplitude,” J. Fluid Mech., Vol. 8,
Pp- 442-451 (1960).

Mack, L.R., “Periodic, Finite-Amplitude, Axisym-
metric Gravity Waves,” J. Geophys. Res., Vol. 67, pp.
829-843 (1962).

Nayfeh, A.H., “Surface Waves in Closed Basins Un-

der Parametric and Internal resonances,” Phys. Fluids,
Vol. 30, pp. 2976-2983 (1987).

EHHR BTG
B & AR A
W%

AXEHBHNEARGZ —BEHKEFZ
BmATE KRR ELGES o # A3 REMES
MEMBEST ABRBZRLT F 52X o FK
TR KRG R E SR FT XA » HRIE R
HZBABETRBEZ B o HHREELFEXZ
RFR - RO TR S M 3E SRS > L0
BRATHREFFZIHE o KM TR THREAZ
NEHR > ARERHZREBRES T ELF RN
I o



	Parametrically Resonant Surface Waves in a Rectangular Basin
	Recommended Citation

	tmp.1633118474.pdf.7986B

