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ON THE RIGID-IDEALLY PLASTIC DEFORMATION
OF CANTILEVER BEAM SUBJECTED TO TIP
IMPACT

Ming-Te Liang*, Bon-Jofei Lee** and Sen-Shyang Yang**

Keywords: Rigid-plastic, Elastic-plastic, Plastic Hinge.

ABSTRACT

This paper presents to study the resemblance and discrepancy
between the rigid-plastic and elastic-plastic deformation of cantile-
ver beams subjected to tip impact. For this, the theory of Ting’s
analysis [3] and calculation parameter obtained from Parkes [1]
and Symonds and Fleming [4] are used for numerical computation.
These results obtained from rigid-plastic deformation are com-
pared with those results calculated by Reid and Gui [8] who used
the non-linear finite-element code ABAQUS for presenting the
numerical solution of the elastic-plastic deformation of cantilever
beams. No matter what rigid-plastic or elastic-plastic deformation,
the kink phenomena of the plastic hinge arrest mechanism is
all happen. The more the ratio of kinetic energy to fully plastic
moment, the more kink phenomena. However, in the case of
relationship between distance from root of cantilever and time,
the position and time of plastic hinge happen in rigid-plastic
deformation is difficult to predict while is easy for elastic-plastic
deformation.

INTRODUCTION

A classical problem of rigid-plastic structural
dynamics was solved by Parkes [1]. This problem is
to find the deformations of a cantilever beam carrying
a mass at its tip which is subjected to a short pulse
loading. The rigid-plastic theorem for a considerable
body has been developed based on the neglect of
elastic strain component, the idealization of perfectly
plastic behavior (absence of strain hardening or
strain rate sensitivity), and the assumption of linear
field equations ignoring effects of geometry changes.
In the Parkes problem, the axial elongation is ne-
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glected. Bodner and Symonds [2] used a different
approach which is considered a strain rate dependent
yield stress into the governing equations to study the
Parkes problem.

Parkes considered a cantilever beam of uniform
cross section with a mass G attached at its end sub-
jected to a transverse impact velocity V, at the tip
mass (see Fig.1. (a)). The length and mass of the beam
is respectively L and mL. The maximum elastic
energy of bending which can be absorbed in the beam
is M? L/ 2EI in which E is the Young’s modulus, Mo
is the yield moment of the beam, and I is the moment
of inertia of the cross section. One considers a class
of impacts in which the input kinetic energy G‘{,2 /2 1is
much larger than the maximum elastic energy which
the beam can absorb. In the other words, the energy
ratio,

1 ~2 2EI
R=3G% 1 (1)
is assumed to be much larger than one. Therefore,
the material can be regarded as rigid, ideally plastic
such that no deformation occurs when the bending
moment at a cross section is smaller than the yield
moment M, and indefinite deformation can occur
when it exceeds M.

Ting[3] has formulated the rigid-ideally plastic
large deformation analysis and has shown that one
must employ numerical techniques to solve the
equations. Symonds and Fleming [4] revisited the
Parkes problem and analyzed the behavior of a steel
beam shown schematically in Fig.1(a) of length
L=356mm, width b=16.3mm, and depth h=4.5mm
carrying a tip mass G=0.336Kg under a variety of
impulsive loads. These dimensions correspond to
test E4 reported in [2]. The test conditions were
defined in terms of the energy ratio R given by Eq.(1).
Values of R ranging from 2 to 14.8 were considered,
these corresponding to values of V, ranging from 4.7
to 12.9 ms’!. Symonds and Fleming produced exact
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elastic, ideally plastic solutions using the finite-ele-
ment Code ABAQUS [5]. In these, the material was
assumed to be strain-rate independent and the result
could be compared directly with the Parkes analysis
and the results of the simplified elastic-plastic (SEP)
method [6,7].

In[4] bending moment distribution at various
times were expressed for the case R=2. It was denoted
that those corresponding to early times provided
little resemblance to the bending moment distribu-
tion corresponding to the traveling plastic hinge
phase of the Parkes solution as shown in Fig. 1(b). In
fact these moment distributions nowhere gotten the
magnitude of the fully plastic moment M, within the
span of the beam. At later times the exact solution
did indicate an obvious modal type of moment dis-
tribution with a plastic hinge at the root of the canti-
lever as assumed in the second phase of the SEP
method. In addition the distribution of plastic work
throughout the beams for R=2~14.8 at various times
shown significant difference from the predictions
of the Parkes solution which are shown in Fig. 1(c)
and (d). This result in the additional discrepancy
that the plastic work dissipated in the interior of the
beam in the exact solution is significantly less than
that predicted by the rigid-plastic theory. This dis-
crepancy increased as R increased over the range
revealed in [4].

Reid and Gui[8] used ABAQUS programme to

M,, m=pbh
Cantilever beam | o M=P

wilh tip mass 1 G
A

- (a)Geomelry and initial condition
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(c)plastic work distribution during travelling hinge phase

identify the major role played by elastic deformation
in affecting the distribution of plastic deformation
in an impulsively loaded cantilever beam carrying .
a tip mass. The finite element calculations have
shown that for an elstic-perfectly plastic cantilever
initially a region of maximum bending moment
(plastic hinge) propagates from the tip in a manner
which is well described by the model formulated
by Parkes. However, the effect of the reflection of
the proceeding elastic bending wave train is to arrest
the progress of this region causing the hinge to oscil-
late for a short time about the center of the beam. The
arrest of the traveling hinge is triggered by the forma-
tion of a reversed (negative) hinge at the root of the
cantilever and means that the root rotation phase
can be delayed. In addition, the occurrence of the
kink often evident in beams and bars subjected to
tip impact is well explained by the hinge arrest mecha-
nism. When strain-rate effects are considered, it
would appear that the elastic waves play essentially
the same role as in the elastic-plastic case. The
viscoplastic effects redistribute the deformation
somewhat and in particular create a more diffuse
plastic zone near the root of the cantilever and reduce
the severity of the kink with the beam.

In this paper, one takes into account the geo-
metrical effects on large deformation of a rigidly,
ideally plastic cantilever beam suggested by Ting [3].
The main purpose of this work uses the Ting theory
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(d)plastic work distribution during root rotation phase.

Fig. 1. Parks’ cantilever ploblem.
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[3] to reexamine the discrepancies between the
Symonds-Fleming [4] and Parkes [1] solution in order
to compare the results obtained by the ABAQUS
programme [8].

THEORERETICAL REVIEW
Ting’s Analysis

Figure 2(a) shows a typical state of deformation
at any time t in which a plastic hinge appears at a
distance ¢! from the tip,where { is the position of
the plastic hinge and is the function of time ¢z, / is an
arbitrary length which can be chosen equal to L. In
_ Ting’s analysis[3], one will choose I=G/m, and the
length of the beam in nondimensional notation is
=L/l=mL/G (Fig. 2(b)). For convenience, the follow-
ing nondimensional quantities will be used in the
analysis:

_mL _mMoT _G‘{)z
s—G,t— GZV’a—2Mo‘ )

If { is a one-to-one function of t, one can take £ as an
independent variable instead of t. Hence, the slope
angle 6(x,{) at x (see Fig. 2(b)) when the plastic hinge
at {is

4
G(x,C)=L k(E)dE, 3)

\

O
o

plastic hinge

(a)Deformation during travelling plastic hinge

plastic higne

w

(b)Nondimensional deformation during travelling plastic hinge

Fig. 2. Ting’s analysis for the Parkes Cantilever beam.

where K(x) is the nondimensional curvature of the
cantilever beam at x. Based on rigid ideally plastic
theory, the deformation in the cantilever beam at any
instant occurs merely at the plastic hinge. Therefore

K(x)=0 x>,
k(x)=constant. @

If one defines
C .
U(x,C)=f cos 0(& &) dE,
4
W(x,C)=fx sin 0(& ¢)dé. )

Then, the first moment of the deformed portion of the
beam about the W, U- axes and the second moment
about plastic hinge are, respectively (Fig. 2(b)),

3
11(€)=f0 U(x,6)dx+U(0,6), (62)
! _
I2<g)=f0 W (x,{)de+ W (0,6). (6b)

¢
()= [ TV (x, )+ W2(x, §)lax
+[U*(0,6)+W?(0,6)]. - (60)

The equations of conservation of linear and an-
gular momentum are, respectively,

20= (L K ()} (0), (72)
1= L (A K(DIL(D), (7b)

where the term in square brackets is essentially the
angular velocity of the deformed portion of the
cantilever beam about the plastic hinge. The energy
equation furnishes

[xmas G r Oy L= ®

Substituted Eq.(7a) to Eq.(8), one obtains

L)
I (&~

Directly differentiating Eq. (6) with the aid of Egs. (3)
and (5), one gets

fK( yde+ al5) 9)

L R(D=1+E-K (L),
Srh(H=K(OHLD), (10)
gglo(s“)ﬂll(m.

Equation (9), with the aid of Eq.(10), is reduced to be
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(1+OHK(H-H(E)
F(§)+20,(9)K(E)

Therefore, the set of Egs. (3), (5), (6) and (11) furnish
the solution for K(&) and also for I;({), I({), and
Iy({). The motion of the cantilever beam is a rigid-
body rotation about the root when the plastic hinge
gets to the root {=s. Let 6, presents the angle due to
this rotation. After that the input kinetic energy o
amounts to the energy absorbed in the plastic defor-
mation of the cantilever beam when the deformation
is finished, one has

K({)=2a (11

J;K(x)dx+9s=a. (12a)
Substituting Eq. (3) into Eq. (12a), one yields
6(0,5)+6,=0r. (12b)
Comparing Eq.(12b) to Eq.(9), one gets
Iy(s)
Os =al .
) 4

When the plastic hinge reaches the root {=s, the
right-hand side of Eq. (13) is equivalent to the kinetic
energy of the cantilever beam. Because /o(s) never
grows to be zero for s#0, the kinetic energy of the
cantilever beam never vanishes before the plastic
hinge gets to the root. The final deformation 64(x)
of cantilever beam with Eq.(12b) is

O{x)= 0+ 6(x,s)
=0+ &0,5)-6(0,x)
=0—6(0,x).

(14a)

Comparing Eq. (9) with Eq. (14a) with the aid of Eq.
(13), one obtains

L(s)
I (s)
Equation (14b) means that the final slope angle at
any point x is equal to the nondimensional kinetic
energy in the cantilever beam when the plastic
hinge reaches the section at x. This result is derived
from consideration only of work and energy. The
final slope angle 6/0) at the tip and is

ef(x)=gs|—s=x=a (14b)

2
0/ (x)= =5t (15)
04x) and 640) are independent of the length s of the
cantilever beam. In other words,for a given tip mass
and a cantilever beam cross section, the final slope
angle at any cross section is independent of the total
length of the beam.

In order to find the time t as a function of {, one
eliminates the term in square brackets in Eq. (7b)
from Eq. (7a), and has

z(C)=C—f‘l’—§§—;. (16)

Equation (16) with the aid of Eq. (7b), the time ¢,
required in the rigid-body rotation of the cantilever
beam about the root after the plastic hinge reaches
the root is

_his) _§ (s)
t="2g (§)}| . ,l(s) (17

The total time #; for the complete deformation is

t=tot1(s)=s. (18)

It is worthy to point out that the quantities K(s), 64x),
6, t,, and t are all expressed in terms of I, I, and ;.

. PARKES’ SOLUTION

In Parkes’ solution, the displacements are as-
sumed to be small. Then Eq. (6) becomes

o= [fas =Gt
5({)=0, (19)
()= f ave b

Substituting Eq. (19) into Eq. (11), after replacing {
by x, provides
40 x+4
K(x)=%F——"3. 20
(=3 Gvzy 29
Notice that Parkes’ assumption is equivalent to as-
suming

d*y
K(x)s—?zf, (21)
and
d
6 (x)=-1, 22)

where yAx) is the final vertical displacement of sec-
tion x . Thus, Egs. (13) and (14b) become, respec-
tively,

dyy 400 s+3
=D _da_s+3 2
dxl_,os” 3 (s+2) (232)
and
gf(x)__ﬂ 40 x+3 (23b)

=3 (xa2)
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and the solution for yyis

yr (0) =4 Log (£22)+ 35877y 1- @4

Equation (16) gives

¢

It should be noticed that these agree with results
obtained by Parkes [1].

RESULTS AND DISCUSSION

All the numerical solutions presented were
derived using the Ting analysis [3] and Parkes
solution[3]. The formulation of the problem was
essentially the same as that used in [4]. The param-
eters used in the calculation for the two strain-rate
independent examples are given in Table 1.

Example 1: Case R=14.8 from [4]

The parameters defining th1s problem are given
in Table 1. Since 040)= a=GW /2M , it is of particu-
lar interest when o exceeds n/2. For a cantilever
beam with rectangular cross section of width b and
height h, the relationship between o and R is

GW | 2EI al2E h
R= (o, myL= %30, L° 26)

where 0,=M,h/3I is the yield stress. If one takes
2E/ 0,=500 (which is the case for most steels and
aluminum alloys) one has

=R L
=300k 27N

Table 1. Computation parameters

Example 1 Example 2

Parameters Symonds and Fleming Parkes
R=14.8 B=21.96

E(Nmm?) 2.069x10° 2.069x10°
0,(Nmm-2) 200 344
M,(Nm) 16.5 24.8
p(kgm?) 7850 7493
L(mm) 355.6 304.8
b(mm) 16.3 6.6
h(mm) 4.5 6.6
Gkg) 0.336 0.0023
V,(ms1) 12.9 251.5
B=pLbh/2G 0.305 21.96
K, (J) 27.9 137.4
R=2K,EI/M? LM 14.8 51.7
No. of elements 28 24

for 10 <R <20and 10 <L/h <100,0.2 <a<4. With
this range of @, 840) can exceed p. Using Eq. (14b)
and the principle of superpositions, one gets the
relationship between deformation and distance from
root as shown in Fig. 3 shows four sketches for
the deformations of the cantilever beam with a=p/2,
a=p, a=2p, a=3p, respectively. Fig. 3 indicates that
the distribution of plastic work corresponding to
the Ting analysis against reflects the effect of the
arrest of the traveling hinge around the center of the
cantilever and this is further evidenced by the local-
ized kink in the final slope of the deformed cantilever
beam. Hall et al. [9] have evidenced the qualitative
characteristics of kink for an aluminum cantilever
beam follow impact at tip by a bullet. The bending
moment distribution can be obtained the same
method as Fig. 3. Fig. 4 shows that the existence of a
maximum bending moment of M, at the tail of the
distributed region.The main feature of this phenom-
ena is that the position of plastic hinge moves along
the cantilever beam as this progresses. Hence, the
various positions of the plastic hinge provides in
Fig. 5 which is obtained from Eq. (17). Fig. 5 means

2.00

energy

] 0 - =R/
0.00- ‘ﬁf . el
*\ ;‘ —¥— om=3n
» B o™ i %

2 &N
8 -2.00 O *
< i 3" k%
& .« ¥
a R x B
-4.00-]
*j
-6.00

400 200 000 200 400 600
Distance from the root X

Fig. 3. Final shape of deformed Cantilever, distribution for Example 1
deformation complete.
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Fig. 4. Bending moment Example 1, after all plastic.
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that the rigid-plastic moment distribution full plas-
ticity is only achieved over small regions of the
cantilever beam except for the very short time which
precedes the formation of the final, positive root
hinge.

Example 2: Parkes bullet impact

As an example of high-velocity, low projectile
mass impact consider test C24 described in [1]. The
calculation parameters defining this problem are
given in Table 1 [8].

Let a=3p in Eq.(23b), one gets the relationship
between deformation and distance from the root as
shown in Fig. 6. The kink phenomena can not be
shown in Fig. 6. This is quite different from the
deformation of an elastic- plastic cantilever beam as
shown in Fig. 9 in Ref [8]. In order to evidence the
maximum bending moment of M, at the tail of the
disturbed region, one uses a=3p in Egs. (17b) and

(23b) to get the result as shown in Fig. 7. It should
be noticed that the results of Ting’s analysis is of
difference with Parkes’ solution which is neglected
the axial elongation. The position of the plastic
hinge given by the Parkes theory is

mV, 72
t=—"—ﬂ—, 28

where m=pbh is the mass per unit length of the beam
and Z(x) is the distance of plastic hinge from the tip.
Using Eq. (25) or(28), the progress of the plastic
hinge is shown in Fig. 8. If Fig. 8 is compared with
Fig. 7 in Ref[8], then one knows that the Parkes
analysis shows good agreement with the elastic-plas-
tic solution until the arrest of the plastic hinge follow-
ing the formation of the reversed hinge at the root.
Hence, the degree of agreement between the kinemat-
ics of the internal hinge, as provided by the rigid-
plastic solution and the elastic-plastic solution is quit
striking, the major difference being the dwell in the
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Fig. 5. Position and extent of plastic region (M=M,) for Example 1

ploted as-a function of time.
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Fig. 8. Position of plastic hinge for Example 2 (Parkes’ solution) as a
function of time.
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progress of the traveling plastic hinge which leads to
the root rotation just the different time pointed by
Reid and Gui [8].

Example 3: Influence of strain-rate sensitivity in Example
2.

For the sake of illustrating the effect of strain-
rate sensitivity in this problem, Example 2 was re-
solved using Ting’s analysis. The power-law rela-
tionship employed in this analysis in taken to have
the form:

.1
0'=60[1+(J5)5], (29)

in which is the static yield stress is yield stress (in
general a function of strain rate) & is strain rate, D
is constant and p is exponent. This was achieved
by using Eq. (29) in the material considered repre-
sentative for steel. The main features of the numerical
results are shown in Fig. 9. Fig. 9 displays that the
distribution of plastic work has been modified by
the influence of strain-rate effects. This implies that
the curvature changes in the tip region for the strain-
rate independent case are considerably less in the
strain-rate dependent case.

CONCLUSIONS

The numerical calculations mentioned above
are focused on identifying the major role played
by large deformation in affecting the distribution of
rigid-plastic deformation in an impulsively loaded
cantilever beam carrying a tip mass.

The numerical calculations have shown that for
a rigid-ideally plastic cantilever beam initially a re-
gion of maximum bending moment (plastic hinge)
propagates from the tip in a way which is well

0.001

-0.104

Small deformations,
_0.20+ | for Parkes’ solution
with different strain
-ratc !
—e G,=344%10%%6
—4— 0,=276%10%*6

Displacement

0.304
0.00 020 040 060 080 1.00
Distance from the root X

Fig.9. Deformation for parkes’ solution compared using modification
with before modifing.

evidenced by the model formulated by Parkes [1].
However, the results obtained from a rigid-ideally
plastic cantilever beam have some resemblance and
different from those obtained from an elastic-
perfectly plastic cantilever. No matter what rigid-
plastic or elastic-plastic deformation, the kink
phenomena of the plastic hinge arrest mechanism is
all happen. The more the ratio of kinetic energy to
fully plastic moment, the more kink phenomena.
However, in the case of relationship between dis-
tance from root of cantilever and time, the position
and time of plastic hinge happen in rigid-plastic de-
formation is difficult to predict whereas is easy for
elastic-plastic deformation.
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