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APPLICATION OF DECOMPOSITION
TECHNIQUE TO LINEAR WAVE MODEL
IDENTIFICATION

Ching-Yaw Tzeng*

Keywords: Linear wave theory, Irregular wave, Wave identification,
Decomposition technique.

ABSTRACT

A decomposition technique is employed in identifying the
coefficients of a Fourier series-based linear wave model. Two
decomposed subproblems are formulated, one in the frequency
domain and one in the direction domain. Less computation time is
required when solving the two subproblems sequentially, compare
to solving the original problem directly. A stretched method that
takes the instantaneous free surface as the reference position in
computing the water particle velocities achieves better agreement
with the experimental data than the standard linear approach where
the reference position is taken at the mean water level.

INTRODUCTION

Linear wave theory is useful in many hydrody-
namic applications and the formulation is of limited
complexity [1]. However, the water particle veloci-
ties, being important to wave loading on offshore
structures and marine vehicles, are not well described
by the linear theory near the surface, especially under
the crests. Stretched method has been introduced to
cope with this problem [2,3], which took the instanta-
neous free surface as the reference point in computing
the water particle velocity rather than using the mean
water level (MWL).

A decomposition technique developed by Miele
et al. [4] was modified to identify the amplitudes of
various wave components of specified frequency and
direction. Both the wave elevation and the water
particle velocity of the two-dimensional irregular
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waves were measured by Norwegian Hydrotechnical
Laboratory (NHL). Only the elevation data were used
in constructing the wave model. The measured veloc-
ity data were used exclusively in comparing with the
computed velocity data. An effective wave absorber
was built to eliminate the reflected waves [5], a one-
direction wave model was considered adequate in
analyzing the experimental wave data.

EXPERIMENTAL ARRANGEMENTS

The experiments were carried out at NHL wave
tank. The tank was 33 m long, 1.02 m wide and 1.8 m
deep (Fig. 1). The wave generator was located at one
end of the tank and a wave absorber developed by the
National Research Council of Canada was deployed at
the other end of the tank. The reflection coefficient
was about 5% over the frequency with most wave
energy [5]. A plastic mat was used to reduce the high
frequency reflections from the absorber and to reduce
the cross waves. Seven wave gauges were placed
along the tank to measure the wave elevations. Water
particle velocity was measured at several different
elevations by a laser Doppler velocimeter (LDV) [6],
which was located at the same station as wave gauge
#1.

EXPERIMENTAL DATA

The wave data were sampled at a rate of 40 HZ
for a duration of 819.2 sec. Every 2nd data point of the
record was used in the FFT. Although the Nyquist
frequency was 10 HZ, a cutoff frequency of 5 HZ was
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Fig. 1. Experimental Arrangements.
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used in the inverse FFT to eliminate possible induced
high frequency waves. The analysis focused on the
irregular waves with 1/1.65 HZ peak frequency, 0.16
m significant wave height, and 1.3 m water depth.
Specifically, three LDV locations were examined :
MWL, 0.1 m below MWL and 0.5 m below MWL.
The mean value of the measured elevation data was
removed before being used to construct the wave
model.

METHEMATICAL FORMULATION
A. Original Problem : Problem P

With the linear wave theory, the elevations of
irregular waves can be written in the following Fou-
rier series form [4]:

77;'(1‘)=§; amncos( V’mnit)+bmn3in( Wmnir)’ (1a)

where 1n:= surface elevation,
n:= number of wave direction, n=1~N,
m:= number of wave frequency, m=1~M,
i:= number of wave gauges, i=1~1,
t:= time,

where

Yimnis=Km(x;c08 0,+y;5in6,)— 0,¢, (1b)
with linear dispersion relationship

O, =k, g*tanh(k,d); )

where @,,:= m™ component frequency,
k. := wave number corresponds to @,
d := water depth,
g := acceleration of gravity,
g, := n*® wave direction,
X;, ¥i i= X, y locations of gauge # i.

Now, define problem P as follows:

given: fj, (¢) (measured elevation data)
find: a,,,, b, that minimize

T 2
1=X[ tA(-m(Par. 3

This is a problem of size 2MN, which could be
expensive if M and N both are large.

B. Decomposed Problem

We can decompose problem P by rewriting (1a)
as follows:

Ni(1)=YY, apmncos(kpx;c08 0, +k,,y ;510 6,— 0,,1)
+b,,,8in(k,x,c08 6, +k,,y;51n160,— @,,t). 4)

Let k,,x;c086,+k,y;5in6,=P,,,;, (5a)
then (4) takes the following form:

?75(5)=ZZ [amncos(Pmni_wmt)+bmnSin(Pmni—'wmt)]
mn
=YY {amnlcOSPp,,;CO8 Wpt+5inP,,,sin@,,t]
mn

+bpy[SinP,,,;c08 0, t—COSP ;810 0, t] }

=33 {(@mnCOSP i+ by SINP,, ) COS Dyt
mn

+(AmpSINP =0 1, COSP ) SIN W, }

=Y [ApniCOSWpt+Bysinw,t], i=1...1 (5b)
m

and

A=Y (ApnCOSP i+ byppSinPy,,), m=1..M
" i=1..I  (6a)

B,,i=Y (amaSINP pyi~b,COSP ), m=1..M
" i=1...I  (6b)

Now, two subproblems can be defined.
C. Frequency Domain: Subproblem Q,

Given : ); (t) for each wave gauge i
find : A,;, B; of all the frequencies that mini-
mize

h= [ U8 ()~ T [ Apyc0s 0yt + Byysin 001 P .
)

We have I porblems here, each with size 2M,
where M is the number of wave frequencies. The FFT
is used in finding the unknowns, A,,;, B,,;. It is well
known that with A,,;, B, being the Fourier coeffi-
cients, the Fourier series expansions appear in Eq. (7)
approximate the time function 7),(z) in the mean
square sense. Here T corresponds to the time internal
of the wave record and it is taken as the period in the
Fourier series expansion.

D. Direction Domain: Subproblem Q,
G‘iven : Ay, By, for each frequency m
find : ay,, by, of all the directions that mini-

mize

JZ=Z [Ami—'E (amnCOSPmni+bmnSianni)]2
i n
+Z [Bmi_zn: (amnSianm—bmnCOSPmni)]2- (8)
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We have M problems here, each with size 2N, where
N is the number of wave directions.

If I > N, then we have a least-square problem.

If I=N, then this reduced to solving a linear
system of equations.

As a result, we have decomposed a problem (P)
of size 2MN into I frequency domain subproblems
(Qy) of size 2M, and M direction domain subproblems
(Qy) of size 2N. It’s clear that the CPU time is greatly
reduced if M and N are large. Specifically, let’s
assume that the number of wave gauges I=10, the
number of wave directions N=10, and the number of
wave frequencies M=10. Also note that in solving
for a linear system of size L by factorization method,
the floating point operations are proportional to L3.
Hence, the computation time required for the decom-
posed problem is approximately 1/50 of the original
problem The equivalence of problem P to the decom-
posed subproblems Q; and Q, follows from the
_ following arguments: “the summed error is mini-
mized as long as each individual error terms is mini-
mized”. This is true as long as each individual error
term is nonnegative. And it is indeed the case, since
~ the individual error term is defined in a squared

form. Moreover, the A,,;, B,,; solved from subproblem
Q, being the Fourier coefficients. Hence, minimiza-
tion of the performance index J; in the mean square
sense is ensured.

VELOCITY COMPUTATION METHODS
- A. Standard Linear Approach

From the linear wave theory, the horizontal and
vertical water particle velocities are given by

Ui(t)=§; [a,,,,,cos( lllmnil‘)"'bmnSin( l/’mnit)] anj9(ga)
and
Wi(t)=§; [amnSin( l/’mnit)—bmncos( l//mnit)]Rmnjs(gb)

where j indicates vertical position dependency of the
LDV, and the depth decay functions are given by

— 0 cosh(k, Z;+k,d) 10

anj_ mCOS n smh(kmd) s ( a)
and v

—w sinh (k,,Z; +k,, d) 10b

Roni= O\~ Simh (k,, d) | (100)

where Z; is the vertcal position of the LDV (measured

from MWL).
For the case here, LDV is located at x=0, y=0; &

09,=0° (incident wave), 6,=180° (reflected wave).
Hence, Eqs. (9) are reduced to a simpler form:

U(Z,1)=2[ ay Sin (@t ) = byy cOS (Dt )1 0,

z
COSIsli(nllclm((km ; ;1 D _ ; [ @y COS( Dt )
=By sin (@pt ) ] Oy, COSISIi(n]IClm((kZ;f))’ (11a)

and

W(Z’t)zé[_aml Sin(wmt)—meCOS(wmt)](Om

i k
by sin (@] 0, SR LZL D) (1 1)

where U(Z, t) is the horizontal water particle velocity
and W(Z, t) is the vertical water particle velocity at
elevation Z at time t.

B. Stretched Approach :

With the nonlinearly stretched linear approach,
we computed velocity components U, W with Eqgs
(11), except that in the depth decay functions Q and R
(Egs. (10)), replace Z with Z’, where Z’ is obtained
from the following equation:

(sinh(k,(Z'+d))
Z=Z”’{ sinrf(kpd) } (12)

where 7 is the elevation computed form Eq. (4), d is
the water depth and k, is the wave number corre-
sponding to @,, the spectral peak frequency.

NUMERICAL RESULTS

As the experimental data indicated small re-
flection coefficient (about 5%) over the frequency
range with significant energy, it was justified to ana-
lyze the laboratory wave data with a one-direction
wave model. Numerical results presented here were
made for three LDV locations: one at MWL (z=0.00
m), one at 0.1 m below the MWL (z=—0.10 m) and
one at 0.5 m below MWL (z=—0.50 m).

A. Employment of Wave Gauge #1

A segment of 6 sec. in the record (48-54 sec.)
was examined. With one-direction/one-gauge model,
the direction domain least-square problem reduced
to a linear system of equations, which could be solved
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exactly. Hence, a perfect match in surface elevation
would be obtained if the inverse FFT included all
frequencies up to the Nyquist frequency (10 HZ). As
a pre-selected 5 HZ cutoff frequency was used, a very
small difference between the measured and computed
surface elevations could be observed (Fig. 2A). The
spectra of the computed elevation were given in
Fig. 2B. As could be seen, the peak frequency was
about 1/1.65 HZ, which was the value used in gener-
ating the irregular waves.

Under the crests, the instability of the standard
linear theory was especially noticeable when the
LDV was located at the MWL (Figs. 3A , 3B). Stretch-
ing improved the quality of prediction for both the
horizontal velocity U and the vertical velocity W
(Figs. 3C, 3D). The superiority of stretching under
the crests still existed when the LDV was located
below the MWL(at z=—0.10m). Specifically, the
standard linear theory overpredicted U (Fig. 4A), and
the stretching predicted quite well (Fig. 4C). The
quality of prediction for W was basically the same
(Figs. 4B, 4D).

As the LDV was located further below the
MWL (at z=—0.5 m), the difference between the
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Fig. 2A. Elevation at Gauge #1.
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3B. Vertical Vel. (Linear); LDV @2z=0.0 m.

3C. Horizontal Vel. (Stretched); LDV @2z=0.0 m.

3D. Vertical Vel. (Stretched); LDV@z=0.0m
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two approaches disappears and the quality of predic-
tion for horizontal velocity U (Figs. 5A, 5C) and
vertical velocity W (Figs. 5B, 5D) were basically the
same.

B. Employment of Other Wave Gauge

Since the LDV was located at the same station
as wave gauge #1, a perfect match in surface elevation
at #1 gauge was very likely to produce a good water
particle velocity prediction, and it was indeed the
case as previously discussed. However, a good veloc-
ity prediction at #1 gauge did not guarantee good
quality of velocity at other locations, since the linear
dispersion relationship might not propogate the
higher-order random waves properly.

With the wave gauge #1 replaced by wave gauge
#3, a perfect surface elevation match at gauge #3 is
still obtained (Fig. 6A); however, the elevation pre-
diction is poor at gauge #1 where the LDV is located
(Fig. 6B).

For LDV location at z=—0.1 m , the predic-

: Time(sec):
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Fig. 6A. Elevation at Gauge #1. 0.8 _
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Fig. TA. Horizontal Vel. (Linear); LDV@z=—0.1 m.
7B. Vertical Vel. (Linear); LDV@2z=—0.1 m.
: 7C. Horizontal Vel. (Stretched); LDV@z=—-0.1 m.
Fig. 6B. Elevation at Gauge #3. 7D. Vertical Vel. (Stretched); LDV@z=—0.1 m
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tion quality of water particle velocities was degraded
for both the linear approach (Figs 7A, 7B) and the
stretched approach (Figs. 7C, 7D), as compared with
the previous case where gauge #1 was used (Figs. 4A-
4D).

CONCLUSIONS

A linear wave model is identified via a decom-
position technique, which transforms the original
least-square problem into two subproblems. Numeri-
cal results indicate that the one-direction (incident)
wave model conditioned with a single wave gauge
(directly above the LDV) provides good velocity
prediction. Stretched approach is better than standard
linear approach in predicting irregular wave particle
velocity near the free surface especially under the
crests. At locations further below the MWL, the dif-
ference in the quality of velocity prediction with
these two approaches disappears. With the proposed
decomposition technique, computation time is less
demanding for the wave model identification prob-
lem.
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