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ON PARAMETRIC POLE-PLACEMENT FOR A
CLASS OF LINEAR SYSTEMS

Jeng Yih Juang*
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ABSTRACT

This paper presents an innovative approach for parametrizing
a class of state-feedback pole-placement controllers through the
minimum number of effective free parameters. The approach is
based on the theory of hypothetical loop-decoypling. Linear and
nonlinear functions of parameter coupling in the feedback gain
matrices are disclosed to the problem of generic parametric pole-
placement for a linear time-invariant controllable system. With the
class depicted by the controllability indices for the hypothetical
control loops, parametrization for state-feedback design can be
achieved. The flexibility in loop pole-assignment for a multi-input
system also affects the choice for the gain matrix. The excellence
of the proposed method is illustrated by several numerical ex-
amples.

INTRODUCTION

In the theory of modern control system design,
pole-placement (also known as pole-assignment, or
eigenvalue assignment) is one of most fundamental
disciplines. In the time-domain for an MIMO control-
lable system, this task is achieved by a linear state
variable feedback (LSVF) law. It is well-known that
the solution to the problem is not unique, and there
exists degree of freedom in the gain matrix to be used
so as to improve other performances of control pur-
poses.

The possible applications can be found to be
stabilization, hypothetical loop-decoupling [1], out-
put decoupling [2], linear quadratic regulator (LQR)
and optimal control, asymptotic observer design, ro-
bust control and deadbeat control [3]. Minimum-time
deadbeat control (MTDC) and minimum-time mini-
mum-gain deadbeat control (MTMGDC) design for a
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reachable linear discrete-time system, in our opinion,
belong to the generic pole-placement problem.

Since 1980, the research topic on parametric
state feedback design for a multi-input linear system
has been receiving great attentions in dealing with
multivariable optimal control in the time-domain, c.f.
Roppenecker [4] and the references cited therein.
Robust pole assignment design utilizing the degrees
of freedom in LSVF was suggested by Kautsky et. al.
[5], Dickman [6] and other authors to follow. Fahmy
and O’Reilly [7], O’Reilly and Fahmy [8] considered
the problem of eigenvalue assignment (EA) with the
framework of parametric eigenstructure assignment.
The non-uniqueness of the set of assignable eigen-
vectors reflects the design degrees of freedom. The
suggested number of classes of EA controllers is
equal to the number of admissible Jordan forms of the
closed-loop systems. They gave the result of mini-
mum parametrization through iterating process of
reducing the number of Jordan blocks as long as
making some block as longest as possible. However,
the prescribed closed-loop eigenvalues are not al-
lowed to include the open-loop eigenvalues, though
this limitation was further extended.

As the work on MTDC topics, Sebakhy and
Abdel-Moneim [9] tackled the problem of shaping the
transient response from optimal control. This opens
the research line on the topic of MTDC parametriza-
tion. Schlegel [10] considered the MTDC problem
based on the fact of a class of controllers that makes
A, similar to m nilpotent Jordan blocks, (m: the num-
ber of inputs) with the largest block of length u, the
controllability index, as the way Kucera [11] did. He
also pointed out that the minimum parametrzation
formula of Sebakhy [9] was incorrect, and gave an
explicit parametrization result through the minimum
number of N, = mn — u(1) - 3u(2) —... — 2m—1)p(m)
effective real parameters for the class of controllers
that solves MTDC, (here, n the number of states,
U(i)’s are controllability indices arranged with u(i) =

H(i+1)).
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Amin [12] also attacked the problem of MTDC
parametrization from EA based on similarity of the
system matrix to nilpotent Jordan blocks. Elabdalla
and Amin [13], and Amin [14] tackled the MTDC
problem based on the decoupling theory of Falb and
Wolovich [2], and get the minimum prarmetrization
formula as the one obtained by Schiegel [10]. Amin
[15] also attacked the problem of minimum-time out-
put deadbeat control (MTODC) based on said
decoupling theory and the properties of invertible
systems, recently.

Our objective, in this paper, is to present an
innovative approach based on hypothetical loop-
decoupling theory for parametrizing a class of state-
feedback pole-placement controllers through the
minimum number of effective free parameters. The
class of control design is depicted by the choice of

_the set of controllability indices under the framework

of the theory. The contribution of the paper is
the explicit linear or nonlinear parametric form for
the gain matrix representing the class of controllers
for a generic pole-placement design. Linear and
nonlinear functions of parameter coupling in the feed-
back gain matrices are disclosed to the problem
of generic parametric pole-placement for a linear
time-invariant controllable system. The flexibility in
loop pole-assignment for a multi-input system also
affects the choice for the gain matrix. Over-param-
etrization for the pole-placement of equal character-
istic polynomial in control loops may result in that
the extra parameters be not effective, this was illus-
trated by examples. Feedback gain matrix parametri-
zation is believed to be helpful in the optimal
control, e.g., robust pole-placement design, where
parameters may further be tuned for other purpose.
This achieves mixed pole-placement and optimal
performance design works.

MOTIVATION EXAMPLES
Naive Method
Consider the following system,
. _[-10 10
k(=[O |x+[§0ucn.
It is required to place closed-loop poles to {-2, -3}

by an LSVF law u(t) = Fv(t) - Kx(t). Let the feedback
gain matrix be

K= ‘C’Z],(a,b,c,d)em.

Therefore, the characteristic equation for the closed-
loop system must be

s+1l+a b

¢ s+1+d[F5¥+(a+d+2)s+(ad+a+d+1-bc)

=5%+55+6,
accordingly we have two constraints as follows:
a+d=3, H
and
ad=2+bc. (2)

It seems that there left for us two degrees of free-
dom in K. Actually, this is not exactly true. For a,
d to be real, the following constraint has to be met,
too:

1
bc< i 3)
Again, one asks if there is only one degree of freedom
left in K still, and if it is also an effective one. This
motivates our research work on pole-placement with
parametric state feedback.
Consider the Frobenius norm of K, along with

|K|2=a%+d%+b?+c?
=(b—c)?+5, by Egs. (1) and (2).

Clearly at b = c, ||K||r takes its minimum value of v5
hence the solution

1
2 )

becomes a normal matrix, and Robust pole-placement
[6] can be achieved.

Hypothetical Loop-decoupling Method [1]

For this controllable system, the controllability
indices [6] are u;=u,=1, the hypothetical outputs are
defined as, 8;()=[1 a]x(#), 6,()=[6 1]1x(z). (two free
parameters: o, 8). Now observing the phase variables
of the outputs as follows, (s := d/dr)

6:1(0=[1 alx(®),

s61(0=[-1 —aJx()+[1 oJu(),

6x(n=[6 1]x(»),

s6,(t)=[-6 -11x(t)+[5 1]u(®); (5)

and consider two cases for loop assignments as
(a) characteristic polynomial T (s) = s+2, Tp(s) = s+3.
Put in
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561+26,=[1 a]x(t)+[1 aju(t):=vq,
50,4+36,=[26 2]1x()+[6 1]u(z):=v,, (6)

The LSVF law for pole-placement is,
u(t):l__lsa[_la—la v(t)
| R i N G NI P

and feedback gain matrix is

1- oa T o
K,= 15—5“ 1—5W ,00£ 1. (8)
2+ 9% .
1-oa 1-o0c

This leads to parameters coupling in nonlinear form.
However, the number of degrees must be less than 2,
for da#1 has to be met. Particularly when we con-
sider the following one-parameter solution for K,:

a=0, K.=[}3]. (%)
5=0, K,=[ 177 (9b)

This leads to linear form for the parametrization for
K,. Accordingly, itis seenthatat a=0or 6=0, ||K,l[F
attains its minimum of v5 too. This also clarify the
result obtained by Eq. (4).

(b) characteristic polynomial m(s) = s+3, 75(s) =s+2.
Following similar hypothetical loop-decoupling pro-
cedures as Eqs (6) and (7), one gets the following
feedback gain matrix:

K,= 15 ZZgal_gsa],(aa;el) (10)

for the second case. It is also seen that, the one-
parameter solution for K, is

a=0, Kb=[_25 9 ] (11a)

_ _[2a
§=0, K,,_[Ol : (11b)
Clearly at a=0 or §=0, ||K,||r attains its minimum of
V5 as ||K,||F does.

Return to Eq. (8), for the case of nonlinear
coupling with two parameters again, consider

IKaI;¥(T_—155)2[(1—25a)2+a2+62+(2_5a)z]
_(o+ Y +5(6a+1)*-208x
(1-6ay ’
if we let o=—0 and Sa=—1, then K,=K, we also obtain

IIK,llr=v5 which is the same result as we obtained
via the one-parameter solutions, Egs. (9) and (11)

Remark 1 The minimum-norm solution for feedback
matrix may be one of the followings:

341
2 %2 [10] [20
+1 3 |'lo2]lo1]
2 2

Based on the above discussions, for this system
to place poles to {-2, -3}, it is our opinion rendering
the following observations,

Observation 1 The minimum-norm solution of feed-
back gain matrix can be that of (4), and this normal
matrix can also achieve robust pole-placement prop-
erty.

Observation 2 The feedback gain matrix K, put in the
linear parametric form of either Eqs (9) or (11), is
equipped with one effective free parameter. K, K,
and K, simultaneouly attain the minimum-norm of
value V5

PRELIMINARY DEFINITIONS
Consider a linear multivariable system {A, B,
¥ zx()=Ax(t)+Bu(?), (12a)
y(O)=Cx(1), (12b)

where z represents the operator d/dt in the continuous-
time system, or time-shifting [i.e., zx(£):=x(t+1)]
in the discrete-time. The state vector x(f)e R”, con-
trol vector u(z)e R*, and output vector y(f)e R", con-
stant matrices A, B, C are of compatible dimensions.
It is assumed that B is of full rank m [no redundant
inputs in Eq. (12)], and the pair {A, B} is completely
controllable with controllability index .

Pole-placement Problem

The considered problem is the following. For
the Eq. (12), find an LSVF law:

u(?) = -Kx(?), (13)

such that the eigenvalues of the closed-loop system
{A-BK, B} is assigned to the pre-determined self-
conjugate set A := {4;, (i=1..n)}. This is the so called
pole-placement problem (the eigenvalue assignment
problem).

Parametric Pole-placement Problem

In our development, we are to find a class of
static controllers, in the form of (13), with feedback
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gain matrix K equipped with minimum number of
effective free parameters. This is addressed herein
as parametric pole-placement problem.

Robust Pole-placement

The robust pole-placement design is achieved
by finding a feedback gain matrix K with minimum
Frobenius norm to achieve pole-placement purpose.

Minimum-time Deadbeat Control (MTDC) Problem

If the desired poles in the pole-placement prob-
lem are all chosen to be at the origin, for a linear
discrete-time system {A, B, C}, the closed-loop sys-
tem matrix A, := A-BK satisfies

A’=0

for some least integer v. This strategy has the prop-
erty of driving all the states to zero in at most v steps,
and remain zero afterwards, after an impulse distur-
bance in the process state. The control strategy is
the so called MTDC [17].

Minimum-gain Minimum-time Deadbeat Control
(MGMTDC) Problem

A minimum Frobenius-norm solution is chosen
for the feedback gain matrix K in order to achieve
MTDC.

Remark 2 All of the above mentioned are basically
addressed as the generic pole-placement problem.

THEORY OF HYPOTHETICAL
LOOP-DECOUPLING

The objective of the present paper is to design
parametric pole-placement via the hypothetical
loop-decoupling approach [1,18]. Theoretical stems
to be needed for the development of the paper are
summarized as followings,

We use compact notations as

B=[b; b, ... bm]:=jr(17wm{bj}, (14a)
also,
€
CZ ’
C=|:|:=. col {¢}. (14b)
. i=l.gq
[

For the Eq (12), with controllability index u, the

following controllability matrix is of full rank:
M*=[B AB ... A*'IB]. (15)

By the second scheme of crate search [19] for the
matrix M*, one gets a set of integers w;, (i=1...m),
with

Hi=max {4}, (16)
and
é#z:n, 17

such that the following matrix, the controllability
basis matrix,

L= k nxn
M._j:?vm{k=0r?%}j_l{Abj }}GER , (18)

is invertible.

Note that the choice of {;} is not unique as
long as n linearly independent vectors, the regular
vectors, are chosen to form the nonsingular matrix
M. The choice of {y;}, though not unique, plays the
key role in the hypothetical loop-decoupling scheme,
however, they have to be constrained by Eqs. (16)-
(18). The class of parametrized static feedback
controllers is also depicted by the set {4} in the

paper.
Hypothetical Output

Hypothetical output was first proposed by
Juang [1] as an innovative method in the LSVF

design for a linear multivariable system. The hypo-
thetical output for Eq. (12) is defined as

6(t)=_ col {6:(1)}=Hx(1). (19)
Here,

H:=i='101m{hi}e R™"{0}, (20)

and h; , plays as the role of observability probe, is a
row n-vector. The purpose of this choice for H is to
make the system {A, B, H} preserve observability
from the hypothetical output 6(¢) under any state
feedback design via the loop-decoupling framework.
The transfer function matrix (7FM) from u to 6 is
all-pole [18], i.e., the TEFM contains no finite zeros.
The choice of H is as follows,

Lemma 1 [1,18] There exists a paticular H such
that
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1 ifi=j,k=t—1,(i,j=1..m)
hA*b;={ 0 ifi=jwhilek<p-1orifi=j (1)
whilek <g;—1.

proof: Claiming
E,:= blockiiiilagm {E;}, (22)

where, E; is the y;-th unit row vector, so that H can
satisfy

HM=E, (23)
therefore,

i~ 1
(<ol {b;}[ row {[b; Ab; .. AY7'b;]}]

= block diag {[0 .. 0 .., 1,1}.

This proves the lemma. q.e.d.
By this lemma, one has

h,A*B=0, if k<1 (24a)

and

hAY~'B=B:=[0.. 1 #..#. (24b)

Here # represents some constant real number,
and B;" a row m-vector. Note that Eq. (24) is the set
of hypothetical output constraints such that every
choice of h; has to meet. Therefore, fori=1..m, each
set of subsystems with hypothetical output 6;(t) and
of ;-th order, is in phase variable form, and is de-
scribed by

6,()=h;x(t),
Zei(t)=hiAX(t),

. ‘Z‘l;i—lei(t)=hiAui—1X(t),
Z#00)=h,A*x(£)+B; u(?). 25)

One immediately has

¥(2)6(t)=ExX(2), (26)
where

¥ (2):=block diag {,_ {2 27)
and

E:=, col . ol {h;A*}}. (28)

i=1l..mk=0. f—1

Lemma 2 [18] 1. EeR™"is nonsmgular
2. B*:=_ col {B}e R™ ™ is non-
s1ngular
Proposition 3 The following statements are true:
1. The system {A, B, H} is observable.
2. The TFM from u to @ is all-pole.
proof: The proof follows directly from lemma 2, and
Egs. (25) and (26). q.e.d.

Generalized Controllable Canonical Form (GCCF)

We now relate the set of hypothetical subsys-
tems as described by Eq. (25) to GCCF[16,19]. De-
fine

7(f)=i=ﬂ2?m{k=cléf .{Yik(t)}},

(2 6:(0) } =¥ (2)0(1),
(29)

= col { .ol
i=l.m " k=1..4;—
and by Eq. (26) one gets
X (1)=Ex(1), (30)

which is the state vector transform (change of state
variables). By lemma 2, a matrix L : col {l.}e
R™*" can be found such that the followmg linear
combination holds:

’_=clotm{hiA“i}=LE. _ 1)
Therefore,
_col {246,(£)-Bju(1)}=LEx(1)
=i=cqum{li}i‘(t), (32a)
i.e.,
_zﬂiO,-(t):li“yT(t)+B,-*u(t). (32b)
Following Egs. (29) and (32), we have

X, (1)=20,(t)=T (1),
2T (1)=220:(1)=%5(1),

2%, (1)=246,()=LX (1)+Bju(1), (33)

for i = 1..m. Clearly, Eq. (33) describes the trans-
formed system in GCCF. This is a nice form for
doing multi-input pole-placement design, as in the
traditional discipline. One immediately obtains the
following result.

Proposition 4 The system {EAZ"!, EB, H} is in
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GCCF.

proof: (omitted).

Remark 3 PVBC (phase variable block Canonical
form) has been suggested by Fahmy and O’Reilly [20]
in doing parametrization of MTDC. It is seen that
GCCEF is actually one kind of this concept.

General Pole-placement Design

We now present the pole-placement design us-
ing state-feedback via hypothetical loop-decoupling
approach. Let

41

75;(2):=z”i+kzoakz",(i=1..m) (34)
be the desired characteristic polynomial for the i-th
control loop whose hypothetical output is 8,(¢), flow-
ing Eq. (25) one has

ol {m(2)6;(t)}=A*x(t)+B*u(r), (35)
here

A*= col {7 (A)}, (36a)
and,

B* =;=c‘lolm {B}}. : (36b)

Setting A*x(z) +B*u(¢) := v(¢), v a new control,
and get

u()=[B*]"v()—[B*]!A*x()
=Fv(H)-Kx(1) (37)

as the LSVF law achieving the determined pole-

placement task. Following Eqs (35) and (37), the -

hypothetical loop-decoupling is depicted by,
n(2)0(0)=vi(?), (i=1..m) (38)

From above discussion, one immédiately has the fol-
lowing theorem: .
Theorem 5 [18] (Generalized Ackermann’s Formula)

A linear time-invariant controllable Eq. (12) can
always be loop-decoupled, with pole-placement as
specified by Eq. (34), by LSVF law Eq. (37) with the
feedback gain matrix:

K*=[B*]"! col {h A%} (39)
here, B* and A* are defined as by Eq. (36).

proof: (omitted).
Remark 4 To obtain stable numerical results, the

computation of h;m;(A) is suggested to proceed as
follows

h,'ﬂ'i(A)={ [((h,-)A+aui_1h,~)A+. . .]A+a1h,~ }A+a0h,-.
(40)

Remark 5 We have n closed-loop poles arranged
into m groups, each defined by m;,(z)=0 for y; poles.
This also offers flexibility in choosing the gain
matrix K.

MTDC Design

MTDC (minimum-time deadbeat control) de-
sign is achieved by setting all closed-loop poles to
the origin (z=0), by Eq. (25) let

zH0(H=h;A ix(1)+B; u(t)=0, (41)

then z#i6,(¢)=0 for all i = 1..m. Hence 6,(¢)=0 for all
2 implies that x(#)=0 and also y(#)=0 for all >u
Since u is the least integer such that the controllabil-
ity matrix M can be of full rank n, so MTDC is
obtained.

The following theorem is ready to state:
Theorem 6 [17] (MTDC Control Design)

For the linear controllable discrete-time Eq. (12),
the MTDC feedback control law is u(f)=—K*x(t),
where

K*=[B*]‘1i=c3;m{hiA“i}. (42)
proof: This follows Eq. (41) directly. q.e.d.
PARAMETRIZATION
Linear Parametrization
Lemma 7 Let

_ ,uj"ﬂi_l .
h,=h;+ );, k}=20 oh; A", (43)
Hi>Hi

here ay’s are free parameters, h;’s are those probes
as determined as in lemma 1, then Fis can also
satisfy the hypothetical output constraints Eq. (24),
ie.,

0 if k<g-1
B’ if k=g—1"

H

h,A'B= { (44)

where 0 denotes a zero row vector.
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proof: (see appendix A)
By these linearly parametrized probes h s
then-A* in theorem 5, [Eq. (39)], is reiterated as

A*= col {T,m(A)}, (36¢)
and the feedback gain matrix is

K =[B*] 'A%, (39a)
here, Kis equipped with parameters coupled in
linear function form.

Corollary 8 The number of free parameters for linear
parametrization is

=1 ZTu- . (45)
proof: By Eq. (43) we have
=13 3 (-, (46)
Hjz

therefore, Eq. (45) follows directly. q.e.d.
Remark 6 Let {u@i), (i=1..m)}={y;, (i=1..m)} such
that p(i)=2u(i+1), then

M,:mm—kZI(Zk—l),u(k). (47)

This is also the result given by Amim et. al [24],
Elabdalla et. al. [13], and Schelegel [10].

Let

A*= col {7 (A)}, (48)

and consider

HM=E:=[E;l, (49a)
where
Ey=, 5o {Ew) (490)
and
h,;AD;. (49¢)

tk]

For some i,j such that p>u; h ;A b, has no
constraint while y,<k<u,~1, and can be any free num-
ber (the free parameter).

Based on the above discussion, by modifying
lemma 1, the generalized probes can be defined as
follows:

Proposition 9 The generalized probes h s can be

chosen such that,

1 ifizj, k=i—1,(i,j=1.m)
ifi=j while k<t;—-1,o0r
if i+, while k<min{, 4 }-1
By (free) if i#j and i;> 1,
while ¢, <k<p;—1
(50)

proof: (omitted).

Remark 7 Linear parametrization for gain matrix
is possible when the matrix B* contains no free pa-
rameters in it. Note that this is sufficient, but not
necessary in general.

Nonlinear Parametrization

We have shown that, via hypothetical loop-
decoupling approach, linear parametrization 1n gain
matrix is possible if the generalized probes h s are
chosen based on proposition 9[Eq. (50)], and the
matrix B;" is constant and invertible. This is always
attainable if we choose N, free parameters [Eq. (45)]
in E [eqn.(49)] or by embeddlng the parameters in
T ;s as defined by lemma 7.

Itis also possible to embed more free parameters
in 'h; along with other hs in which y=u;, see the
motivation example section of this paper. This will in
general result in parameters nonlinearly coupled in
the gain matrix. The fact that free parameters appear
in both B* and A* may result in that the feedback
gain matrix K nonlinearly parametrized. This is
what splendid as disclosed in the paper and is some-
thing new to the control society.

Under our investigation, it is believed that, if
there are p; hypothetical control loops equipped with
the same controllability index number, say /.tl, then
there can be

1)

No(l):=pl(pl—

—, (51)

more free parameters for use in the difinition of h , ]
or E. Putting together of them, let

N0:=ZI',N0(I) (52)
we have the following result:
Proposition 10 The total number of free parameters

in doing nonlinear parametrization for the gain matrix
is

N,=N,+Nj. (53)

proof: (omitted).
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Remark 8 It should be aware that if one also assigns
the same u; poles for these p; control loops (same
loop characteristics), then those extra parameters
become not effective. In this very special case, pa-
rametrization turns out to be linear. We will clarify
this fact by later illustrative examples.

To enforce the above investigation for special
cases, consider a system as follows:

-10 0

100
x=(t)={0-10
0 0 -1

x(t)+[0 O]u(t);
001

we have U;=f=p3=1, and N,=0; p;=3, Np=3, there-
fore N,=3. So we are expecting three free parameters
to be equipped as follows:

1 oo

=0 %:ﬁ:B*
0 1

1
0

The feedback gain matrix used to place poles to {-1,-
2,-3} is found to be

0 -0 o200
K= 0 1 -0y
0 0 2

by Eq. (39), in which parameters seem to be nonlinearly

coupled. However, by setting a=—0;, f=—0,, =003

—20, one has
0ad
K=|01 8},
002

which is also linearly parametrized in terms of the
free parameters: o, 3, 6.

For the case of MTDC design (discrete-time),
the gain matrix becomes
by Eq. (42), and all parameters becomes not effictive.
Therefore N,=N,=0 in this MTDC case. This verifies
the above conjecture (remark 8).

ILLUSTRATIVE EXAMPLES

The results of previous section will be illus-
trated by following examples.

Parametric MTDC Design
Example 1 For the sake of comparison, consider

the discrete-time system used in Amin et. al.[14] and
Elabdalla et. al. [13], for the design of MTDC con-

troller, where

»

ENE
A=[7 1o 1] B=
110 0

OO0

0
1
0
0

OO

hence n=4, m=3, and one can find y=2. We consider
two classes as follows:
class (a): W=2, uy=1, Us=1, so that

1
M=[b, Abylblbs)={ o

-1

OoO~=OC

SO=O

oOoOoO

Because 1~ =1, g—p3=1, we have N, =2 free
parameters to use. Following Eq. (50),

011|010
0 a_L q,(a,ﬂe‘ﬁ)
|1

0 ﬂ_|0
so that,
0 0 0 -
H=EM'=s| 0 _I_0_ <o, ad
0 0 1 1-
110
B*=|010].
001

Following Eq. (42), the class of MTDC law u(?)

=—K ,x(t) is represented by
l-o¢ 2-a 0 0

a -2+0 0 1 .
0 1

B

If we set a=—p{, f=1-p,, (i, P, are free), then
'K , becomes

1+p; 2+p, 0 0
K,=| p1 -2+p; O 1 >
l-p, 1-p, O 1

which is just the result as X ,, given by [14]. The
closed-loop system matrix is

a a 0 0

a_pw |- - 0 O
A=A-BK.=l1_g1-p 0 o
-1 -1 0 O

Itis seen thatAY = A%=0. Letan arbitrary initial
state be X(0)=[a b ¢ d]7, then x(1)=(a+b)[ax —c¢ 1-
B —117, and x(2)=x(1)=0. Therefore, x(k)=0 for all
k=p=2, This verifies that a 2-parameter solution can
accomplish MTDC task.
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Example 2 (minimum effective parameters)

Consider again the system of example 1, we here
use over-parametrization by putting one more free
parameter & in E, [class (a)], as follows:

. 0100
E:=|0 a1 6|, (apB deR),
0B 01
so that
0 0 0 -1
H=EM'=| 0 1 d -0+6
0 0 1 1-pB
"y
= 72
R,

One may show that the probe 7,-' s still satisfy
the hypothetical output constraints as given by Eq.
(44). Following Eq. (42), the LSVF law for MTDC

is represented by

1-a+68 2-0+dB 0 0
K= a-68 -2+a-08 0 1 ,
B B 0 1

setting a—8f=—p; and B=1-p,, then

1+p; 2+p 0
-py —2-p; O
1-p, 1-p, 0

0
K= 1 ,

|
which is a 2-parameter solution, and is just the result
as what we have, also in [20]. Itis then clear that the
minimum number of effective free parameters is 2,

but not more than 2. This clarifies the conjecture
made in remark 8 of the paper.

Parametric Pole-placement Design

Example 3 Consider a linear continuous-time
system {A, B, C} with system matrices A, B given as
in example 1 (also in [14] and [13]). We are to find a
feedback gain matrix K, equipped with several free
parameters, such that the LSVF lawu(t) = v(t)-Kx(t)
can place closed-loop poles to the set A:= {-1, =2,
-3,~4}. There are two control classes for this system:
(a) Wi=2, Ho=H3=1; (b) Mp=2, ny=p3=1. (Note that
fi=[,=1, W;=2is not possible, because the controlla-
bility matrix M, as defined by Eq. (18), is singular for
this class).

We consider class (a) with m(2) = (z+1)(z+2),
m(2) = (z+3), @3(z) = (z+4) as the loop-assignment.

(Note: There are 12 choices of assigning these four
distinct poles into three hypothetical control loops.)
Because 1—Mo=1, u1—3=1, and p3=M,, we suggest 3
free parameters in the following two cases:

(case 1): Let

0100
Ya= 0(115, hence
0801
0 0 0 -1
H,=EM'=| 0 1 6§ -a+d|.
0 0 1 1-p8

Observing the phase variables of hypothetical
outputs respectively as follows:

0,(H=[0 0 0 -1]x(2),

z6,(H=[1 1 0 0]x(2),

2,0:(H=[1 0 0 11x()+[1 1 Olu(z),
6,(®)=[0 1 & —o+d]x(d),

20,(0=[a a-2 0 1+6lx()+[0 1 &lu(?),
6;(H)=[0 0 1 1-Blx(2),

26;(t)=[b b 0 1]x()+[0 O 1]u(?).

By the required loop pole-assignment, set

(2,+32+2)0,(1)=[4 0 0 2]x()+[1 1 OJu(D),
(z+43)0x()=[a o1 38 1+45-30)x(t)

+0 1 8Ju(n), ~
(z+4)8:()=[B B 4 5-4B1x()+[0 O 1]u(r).

Following Eq. (39a), the feedback gain matrix,
equipped with 3 free parameters, is

1107 4 0 0 2
K,=|016 a o+l 36 1+46-3c|,
001 B B 4 5-4p
4-T —-(l1+@) 6§ 1+3@+6(1-B)
= @ 1+ @ § 1-3a@-46(1-p)
B B 4 5-4f

Here, @:=0—6f, 8, B are all free, and we have param-
eters coupling in nonlinear function forms.
(case 2): Otherwise let

0 0
O_a—LIO,hence
0 Ble

. 0 0 0 -1
R

Fb-__

By manipulating hypothetical loop-decoupling
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procedures as in case (a), one gets the feedback
gain matrix (also equipped with three free param-
eters) as follows:

4-« —(l1+ ) 0 143«
K, = o 1+ 0 1-3«x
B B+eE 4 5-48-c¢

Here, ﬁ::ﬁ—ae, o, and e are all free. It is seen
that both K, and K, are equipped with three free
parameters coupling in nonlinear form. It is also
interesting to note that , by setting 6=0 for K, or £=0
for K,, then the feedback gain matrix becomes

4-a —(l+a) 0 1+3c
K= o l+ax 0 1-3¢ |,
B B 4 5-4p

which is a two-parameter solution, and most impor-
tantly, in linear parametric form. This result may
call more valuable applications in optimal control.
Remark 9 We have K, and K}, equipped with 3 free
parameters coupling in nonlinear form. However, it
is no bad using K, equipped with only two effective
free parameters in linear form.

Example 4 (minimum number of effective param-
eters)

Consider again the system of example 2, we are
to place all closed-loop poles to -1. Only the class
that y;=2, y,=p3=1 is considered here. we use over-
parametrization by putting four parameters into E,
ie.,

F:= ,(a,ﬁy‘s,gem)‘

[N N ]
M =

™R -
—_ 0O

Therefore the probe is

0 0 0 -1
H=FEM!'= 0 1 6 -—-oa+6
0 € 1 1-58

k)
:=| h,
ks

Based on hypothetical loop-decoupling ap-
proach, the phase variables of the hypothetical out-
puts are observed respectively as follows:

6:(H=[0 0 0 -1]x(»),

z6i(H=[1 1 0 0]x(»),

226,(H=[1 0 0 1]x()+[1 1 OJu(?),
6,(H)=[0 1 d —a+6)x(2),

28,(O=[ax a2 0 1+6]x(O)+[0 1 Slu(r),
8:()=[0 & 1 1-Blx(®),

20,()=[B B-2¢ 0 1+elx()+[0 & 1]u(r).

Setting, 7,(2)=my+2z+1, My(2)=m5(z)=z+1, fol-
lowing Eq. (39a), the feedback gain matrix becomes

-1

1103 2 o 0
K =016 |¢ a-1 & 1-a+24|,
oe1| B B-¢ 1 2-P+¢

3-ow 3-«@ 0 a-1

=l @ @-1 0 -@&+l

B B 1 2-p

where, @:=0~8f and B:=f-ac are also free. It is

“seen that the number of effective free parameters is

2, but not more than 2, and K is a linear parametric

form for this example. |
Remark 10 We have placed all poles to -1 for this
example, and it is shown that the minimum number of
effective parameters is (U;—,) + (L1—13) = 2. This }
fact has also been shown in example 2, where MTDC
design (place all poles to z=0) for a discrete-time

system (with same system matrices) was given.
CONCLUDING REMARKS

We will make a concluding remark for the sig-
nificant work of this paper.

1. An innovative approach based on hypothetical
loop-decoupling theory[1, 18] for parametrizing
a class of state-feedback pole-placement control-
lers through the minimum number of effective
free parameters is presented. The class of control
design is depicted by the choice of the set of
controllability indices {i;} under the framework
of the theory. 2.

2. The contribution of the paper is the explicit
linear or nonlinear parametric form for the gain
matrix K representing the class of controllers
for a generic pole-placement design.

3. The hypothetical output probes Fi, s, equipped
with effective free parametes, play the key role in
our work. When N, parameters [Eq. (45)] are
introduced in E (or H), then B* is a constant
invertible matrix, and K displays the linear
parametrization. This was illustrated by example
3. If extra parameters are embedded in Fi’ s along
with other h;’s in which =y, then parameters
appear in both B* and A*, this results in that
the gain matrix K become nonlinearly param-
etrized (parameters coupled in nonlinear func-
tions, in the entries of K ). This is what splendid
as disclosed in the paper and is new to the control
society.

4. Over-parametrization for the pole-placement of
equal characteristic polynomial in control loops
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may result in that the extra parameters be not
effective, this was illustrated by example 4, also
in examples 1 and 2 where MTDC design was
given.

5. Feedback gain matrix parametrization is believed
to be helpful in the optimal control, e.g., robust
pole-placement design, where parameters may
further be tuned for other purpose. This achieves
mixed pole-placement and optimal performance
design works.

ACKNOWLEDGEMENT

The author is grateful to the National Science
Counsil, R.0.C., for partial financial support under
contract no. NSC-86-2213-E-019-004.

REFERENCES

1. Juang,J.Y., “Introduction to Loop-Decoupling for the
Design of Linear Multivariable Systems,” Proc. 1988
National Automatic Control Conference, Hsin-chu,
ROC, pp. 1-8 (1988).

2. Falb, P.L. and Wolovich, W.A., “Decoupling in the
Design and Synthesis of Multivariable Control Sys-
tems,” IEEE Trans. Automat. Contr., Vol. AC-12, pp.
651-659 (1967).

3. Kalman, R.E., “On the General Theory of Control
Systems,” Proc. Ist IFAC Congr., London:
Butterworth, Vol. 1, pp. 481-492 (1961).

4. Roppenecker G., “On Parametric State Feedback De-
sign,” Int. J. Contr., Vol. 43, No. 3, pp. 793-804
(1986).

5. Kautsky, J., Nichols, N.K. and Van Dooren, P. “Ro-
bust Pole Assignment in Linear State Feedback,” Int.
J. Control, Vol. 41, pp.1129-1155 (1985).

6. Dickman, A., “On the Robustness of Multivariable
Linear Feedback System in State-space Representa-
tion,” IEEE Trans. Automat. Contr., Vol. AC-32,No.
S, pp. 407-410 (1987).

7. Fahmy,M.M. and O’Reilly, J., “Comment on a Design
of Deadbeat Controllers,” IEEE Trans. Automat.
Contr., Vol. AC-28, No. 1, pp. 125-127 (1983).

8. O’Reilly, J. and Fahmy, M.M., “The Minimum Num-
ber of Degrees of Freedom in State Feedback Design,”
Int. Journal Contr.,Vol.41,No. 3, pp.749-768 (1985).

9. Sebakhy, O.A. and Abdel-Moneim, T.M., “Design of
Optimal Dead-Beat Controllers,” IEEE Trans.
Automat. Contr., Vol. 25, No. 3, pp. 604-606 (1980).

10. Schlegel, M., “Parameterization of the Class of Dead-
beat Controllers,” IEEE Trans. Automat. Contr., Vol.
AC-27, pp. 727-729 (1982).

11. Kucera V., “The Structure Property of Time-Optimal
Discrete-Time Linear Control,”IEEE Trans. Automat.

Contr., Vol. AC-16, pp. 375-377 (1971).

12. Amin, M.H., “Construction and Parametrization of a
Class of Minimum-Time Deadbeat Controllers,” Sys-
tems and Control Letters, Vol. 13, pp. 353-361 (1989).

13. Elabdalla, A.M. and M. H. Amin, “Minimum-Gain
minimum-Time Deadbeat Controllers,” Systems &
Control Letters, Vol. 11, pp. 213-219 (1988).

14. Amin, M.H. and Elabdalla, A.M.,“Parametrization
of a Class of Deadbeat Controllers Via the Theory
of Decoupling,” IEEE Trans. Automat. Contr., Vol.
AC-33, No. 12, pp. 1185-1188 (1988).

15. Amin, M. H., “Parametrization of Minimum-Time
Output Deadbeat Controllers for All Classes of Invert-
ible Systems,” Int. J. Contr., Vol. AC-52, No. 3, pp.
641-653 (1990).

16. Chen,C.T.,Linear System Theory and Design, HR.W.,
N.Y. (1984).

17. Juang, J.Y. and Yu, K.W., “Design of Deadbeat Con-
trol via Hypothetical Loop-decoupling,” Journal of
Art and Science, Vol. 2, National Taiwan Ocean
University, pp. 1-15 (1993).

18. Juang, J.Y., “Multivariable Generalization of
Ackermann’s Formula,” Journal of the Chinese Insti-
tute of Engineers (JCIE), Vol. 15 No. 5, pp. 593-604
(1992).

19. Kailath , T., Lirear systems, Prentice-Hall (1980).

20. Fahmy, M.M. and O’Reilly, J., “Use of the Design
Freedom of Time-Optimal Control,” Systems Control
Letters, Vol. 3, pp. 23-30 (1983).

APPENDIX

A. We have the probes hi’s defined by lemma 1
and Eq. (23), and the constraint Eq. (24) are satisfied.
Let p>u; for some j#i, and let N(j,i)=u;—1;. Consider
k<N(j,i)-1 for

h,;=h;+oh; A%,
then

;A% *B=h; A% B+ qyh; A" 4B,
=0+ ah, AYB (k' <p;-2),

It then follows that, h;A"B=0 for r<u~1, and
therefore

h,;A% 'B=h,A*" "B+ ayh; A" 4B,
=B+ 0o AYB, (k <p—-1),
=B/’

By considering for h in the form of Eq. (43)
with all j’s such that p>u;, following the above dis-
cussion, then Eq. (44) is proved. q.e.d.



12 Journal of Marine Science and Technology, Vol. 5, No. 1 (1997)

B A GARIE R E S BANZATR
* OB &
HieMEFXEHAF AL
wH %

AR BB HT A kAR A A B AR
OB ABIULEZ LSBT c FIREBHHED
Btk o SIHBBTHMAL » AXBE LKL
SR PTSZ H R AR R A BALBRR X o ARBS
BHBEF » BHBERADEHERIESHL
Z o FIRHMOR Bl 6 254G B 45 2 0 T4 B 4618
A R FIEGIRAE o KX AR B4 AR BAL T HIHH
o



	On Parametric Pole-Placement for a Class of Linear Systems
	Recommended Citation

	On Parametric Pole-Placement for a Class of Linear Systems
	Acknowledgements

	tmp.1633118474.pdf.Xmmr6

