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ABSTRACT

This work analyzes non-Darcy flow and heat transfer in a vertical
slot filled with a porous matrix.  The left and right vertical boundaries
of the porous system are maintained at higher and lower temperatures,
respectively.  The horizontal boundaries are assumed to be imperme-
able and insulated.  The vertical boundaries are either completely
impermeable, where free convection is induced, or partially perme-
able in a way to simulate the wall leakage in the building materials,
where both air infiltration and free convection exist.  The non-Darcy
model, which includes the Brinkman and Forchheimer extensions
along with the convection terms, is employed to describe the flow in
the porous medium.  A control-volume-based finite difference scheme
is developed to solve the pertinent governing equations along with the
boundary conditions.  The influence of the locations of the wall
leakage is investigated in detail by examining several representative
cases.  The significance of the non-Darcian effects is shown clearly by
comparing the results based on the non-Darcy model with that based
on the Darcy model.  The enhancement for the heat loss across the
porous insulation due to infiltration was found to be case dependent
for both Darcy and non-Darcy flows.

INTRODUCTION

Flow, heat and mass transfer in porous media has
been studied extensively.  This is due to the increasing
need in understanding the complicated transport pro-
cess for application of diverse fields which include
geothermal engineering, building insulation, energy
conservation, solid matrix heat exchangers, oil
extraction, underground disposal of nuclear waste
materials, and many more.

In modeling the flow in porous media, Darcy’s law
is one of the most popular models.  However, it is
generally recognized that Darcy’s model is valid under
the condition that the order of magnitude of the pore

Reynolds number should be less than one.  For fluid
flow of high velocity and/or porous materials of large
pore radius, Forchheimer’s modification is suggested
by adding the quadratic inertia term to the original
Darcy’s model. In addition, Brinkman modification
accounting for the boundary friction for viscous fluid
flowing through porous medium of high permeability
was found to be necessary, as pointed out in Ref. [1].  In
Ref. [2], a generalized model for describing the flow in
porous media was proposed to account for the inertia,
the boundary friction and the convective terms.  As the
permeability of the porous matrix increases, this gener-
alized model approaches the Navier-Stokes equation for
pure fluid flow asymptotically.

Building insulation technology is one of the engi-
neering applications related to flow, heat and mass
transfer in porous media.  References [3, 4] are the
pioneering works, which studied both effects of natural
convection and infiltration across a vertical porous
insulation.  It was found in [3, 4] that air infiltration
through the wall leakage plays the dominant role in heat
transfer.  Lauriat and Mesguich [5] investigated both
natural convection and radiation effects in a vertical
enclosure partially filled with a porous insulation.
Darcy’s law was envoked in [3-5] for modeling the fluid
flow through the porous matrix.  Later, Sathe et al. [6]
studied natural convection in enclosures containing an
insulation with a permeable fluid-porous interface.
Brinkman-extended Darcy equation was employed to
account for no-slip condition at the wall and the interface.
An interesting result was found in [6] which shows that
for certain values of the controlling parameters, the heat
transfer across the enclosure can be minimized by fill-
ing the enclosure only partially with a porous insulation
rather than filling it entirely.

Based on the above brief review on the literature
regarding building insulation technology, non-Darcy
forced and free convection through a vertical slot filled
with a porous insulation has not been researched.  This
constitutes the motive of the present study.  All the non-
Darcy terms mentioned above, namely, the Forchheimer,
the Brinkman, and the convective terms, are included in
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the present work.  Four representative opening loca-
tions are selected for examining the infiltration effects.
The difference between the present results based on the
non-Darcy model and those based on the original Darcy
model including the results from [3] is demonstrated
and discussed.

MATHEMATICAL FORMULATION

Governing Equations

The present study is formulated in transient two-
dimensional natural and forced convection in porous
medium.  However, the results presented in this work
will be based on steady state cases for the sake of
simplicity.  The common assumptions made in this
paper include constant-property fluid, Boussinesq ap-
proximation for the buoyancy terms, homogeneous and
isotropic porous structure, and local thermal equilibrium.
The dimensionless governing equations accounting for
the Forchheimer, Brinkman and the convective effects,
after invoking the above assumptions, assume the form
as follows

   ∇ • V = 0, (1)

   Da
λPr

1
ε

∂ V
∂t

+ 1
ε2

(V • ∇ )V = – ∇ P + Ra* θ j – V

   – Fs
λPr

V V + Da∇ 2 V , (2)

   σ ∂θ
∂t

+ (V • ∇ )θ = ∇ 2θ. (3)

The non-dimensional variables in the above equations
are defined as

   
V = V

*
L

αm
, P = P*K

αmµf
, θ =

T – T c

∆T
,

   
(x, y) =

(x *, y *)
L

, t =
αmt *

L 2
. (4)

It is noted that in equations (1)-(3), Da is the Darcy
number, Pr the Prandtl number, Ra* Darcy-Rayleigh
number, ε porosity, σ the heat capacity ratio, λ  the ratio
of the thermal conductivity of the fluid and the thermal
conductivity of the porous material, and Fs  the
Forchheimer constant.  In the present work, typical
values are chosen for computation: λ = 1, ε = 0.4, σ = 1
and Pr = 1.  It should be mentioned that the value of σ
does not affect the steady-state results.  As for Fs, an
empirical equation from [1] is adopted as follows

  Fs = 0.55 Da . (5)

Boundary Conditions

The schematic diagram of the present problem is
shown in Fig. 1.  The left and the right boundaries of the
slot are either impermeable or partially permeable.  The
left boundary is kept at a higher temperature whereas
the right boundary is kept at a lower temperature.  The
top and bot tom boundaries  are  insulated and
impermeable.  Such configuration can qualitatively
simulate the crack or holes in the building insulation.
The boundary conditions in dimensionless form are
written as

u = v = 0,    ∂θ
∂y

= 0 for 0 ≤ x ≤ 1, y = 0, A (6a)

u = v = 0, θ = θh = 1 for x = 0, 0 ≤ y ≤ A, (6b)

u = v = 0, θ = θc = 0 for x = 1, 0 ≤ y ≤ A. (6c)

The above boundary conditions for the x-component

Fig. 1.  Schematic diagram of the present problem.
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velocity are based on impermeable boundaries.  For the
cases of partially permeable boundaries, the boundary
conditions for the x-component velocity for the perme-
able portion of the wall should be modified as

u = uw on the permeable portion at 0 ≤ y ≤ A.  (7)

In equation (7), uw denotes the dimensionless infil-
tration velocity, which is defined by uw = uw*/αm, where
uw* denotes the dimensional infiltration velocity.  The
fluid flowing into the porous system is assumed to be at
the dimensionless temperature θh (=1) while the fluid
flowing out at θc (= 0).  The fluid velocity at the exit is
assumed to be the same as the infiltration velocity due
to conservation of mass.  The locations of the openings
are shown in Fig. 1 for representing four typical cases.
It should be mentioned that these cases have been
studied in Burns et al. [3] and Burns and Tien [4], which
are based on the original Darcy flow model.  The
opening area is set as one eighth of the total area of the
vertical boundary.

Initial Condition and Calculation for the Overall Nusselt
Number

The initial condition for u, v and θ are given by

u = v = 0, θ = θc = 0 for t = 0. (8)

The overall Nusselt number at the hot boundary is
calculated numerically via the following equation

   
Nu = 1

A 0

A
(uθ – ∂θ

∂x
)
x = 0

dy . (9)

In the above equation, the contribution to the Nusselt
number due to infiltration has been included.

METHOD OF SOLUTION

A control-volume-based finite-difference scheme
developed by Patankar [7] is employed to solve the
governing equations along with the boundary condi-
tions and the initial condition.  The resultant algebraic
equations are solved by using a line-by-line iterative
method associated with the relaxation parameters.  A
non-uniform staggered grid system as used in Manol
and Lage [8] is adopted, where the mesh size close to the
wall is small and then gradually increases to the core
region.  Such a grid system has been proved to have the
advantage of saving computational time and maintain-
ing satisfactory accuracy.  The convergence criteria in
iteration are stated below

   φnew – φold

φold
< Tol, (10)

where φnew and φold denote one of the main variables u,
v and θ and the subscripts ‘new’ and ‘old’ denote the
values corresponding to the new iteration and old
iteration, respectively.  The value for the tolerance Tol
is set as 10–6.  Since the present work is based on the
transient formulation, the numerical computation con-
tinues until the relative difference between the overall
Nusselt numbers for two consecutive time steps is less
than 10–5; that is, the steady state is assumed to have
been achieved.

RESULTS AND DISCUSSION

Results for a Fundamental Case and a Comparison

The objective of the present work is to study the
non-Darcy convective flow across the porous insulation.
Several checks have been made in order to verify the
accuracy of the numerical results.  First, for the classical
case of impermeable vertical boundaries and aspect
ratio of one, the present results based on both Darcy and
non-Darcy flow models are presented in Table 1, in
comparison with the results of Lauriat and Prasad [9]
which is based on the non-Darcy model.  It can be seen
clearly that the agreement between the present results
based on the non-Darcy model and the results of Lauriat
and Prasad [9] is good for low Darcy-Rayleigh numbers,
and acceptable for high Darcy-Rayleigh numbers.  Simi-
lar trend was found for the thermal and fluid fields.  As
expected, the Nusselt number predicted by the original
Darcy flow model is higher than that based on the non-
Darcy flow model.  The difference for the Nusselt
numbers between the Darcy and non-Darcy models
increases as the Darcy-Rayleigh number increases.
Moreover, for the same Darcy-Rayleigh number, larger
Darcy numbers yield larger difference in the Nusselt
numbers between the Darcy and non-Darcy models than
smaller Darcy numbers.

Results based on the Main Configurations

Next, attention is turned to the main configura-
tions of the present study.  As mentioned in the section
of “Introduction”, four representative configurations
corresponding to different locations of wall openings
are considered in the present work.  For the remaining
part of this section, the aspect ratio is fixed and chosen
as 10.  The dimensional infiltration velocity uw is taken
as 5 except in Fig. 6 where uw is taken as 15.  The
fundamental case of completely impermeable bound-
aries is also considered for the sake of comparison.
Before presenting the results based on the main
configurations, the dependence of accuracy on grids is
examined.  By refining the mesh size from 4 × 40 to 8 ×
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80 and then to 16 × 160, it was found that the difference
for the results of the Nusselt number based on the grid
of 8 × 80 and that based on the grid of 16 × 160 is quite
small.  The numerical results hereinafter are based on
the grid of 8 × 80 to save the computational time and
maintain reasonable accuracy.

Next, the present results based on the original
Darcy flow model for the overall Nusselt number are
compared with that from Burns et al. [3] for uw = 5 and
Ra* = 100, as shown in Table 2.  It can be seen again that
good agreement is achieved.  It is also noted that the
enhancement of heat transfer due to infiltration is obvi-
ously case-dependent.  For example, case B renders the
Nusselt number only slightly higher than that for the
case of completely impermeable boundaries.  This is
because in case B, the direction of flow due to infiltra-
tion is opposite to the buoyancy–induced flow.  For
illustration, the streamlines and isotherms based on the
Darcy flow model are depicted in Fig. 2, where Fig. 2

(a)-(c) correspond to, respectively, the case of com-
pletely impermeable boundaries, case B, and case C.
The streamlines and isotherms for cases A and D are not
shown in Figs. 2-6 for brevity.  It can be seen from Fig.
2 that the flow field for each case is quantitatively and
qualitatively different from each other due to different
opening locations. Although the thermal fields for these
cases look similar, the difference among them is still
visible due to the influence of the flow fields.  It should
be pointed out that in most cases such as A, B, and D, the
overall Nusselt number, as shown in Table 2, is not
simply equal to the Nusselt number due to pure natural
convection (1.656) plus the contribution due to infiltra-
tion (0.625), except for case C, which satisfies the
equality approximately.

The effect of the buoyancy force is examined by
increasing The Darcy-Rayleigh number from 100 to
500, which is about the higher end encountered in the
application of building insulation technology.  Fig. 3 is

Table 1. A comparison for the overall Nusselt numbers from the present study based on both the Darcy and the non-Darcy flow models
with that from Lauriat and Prasad [9], which is based on the non-Darcy flow model, for A = 1, λ = 1 and ε = 0.4.

Models Ra* Da Lauriat & Prased Present study

non-Darcy Darcy

Forchheimer 100 1.00E-06 3.07 3.074 3.099
1000 1.00E-06 12.8 13.01 13.53
5000 1.00E-06 26.15 26.09 35.64
5000 1.00E-04 17.2 16.8 35.64

Brinkman 100 1.00E-06 3.06 3.082 3.099
1000 1.00E-06 13.22 13.25 13.53
5000 1.00E-06 31.5 32.1 35.64
5000 1.00E-04 20.85 19.85 35.64

Forchheimer, Brink- 10000 1.00E-08 44.3 45.4 51.97
man & conv. terms 10000 1.00E-04 18.4 17.89 51.97

Table 2. Overall Nusselt numbers from the present study based on both the Darcy and the non-Darcy flow models for A = 10, λ = 1,
ε = 0.4, uw = 5, 15, and Da = 10–5, 10–6.  Also shown are the results from Burns et al. [3], which is based on the Darcy flow model.

uw Ra* Da models Impermeable Case A Case B Case C Case D

5 100 N/A Burns et al. 1.7 1.97 1.75 2.25 1.98
5 100 N/A Darcy 1.656 2.021 1.796 2.25 1.985
5 100 1.00E-06 non-Darcy 1.642 1.992 1.772 2.217 1.958
5 100 1.00E-05 non-Darcy 1.614 1.962 1.748 2.189 1.931
5 500 N/A Darcy 3.804 4.217 3.943 4.371 4.083
5 500 1.00E-06 non-Darcy 3.642 4.048 3.776 4.211 3.924
5 500 1.00E-05 non-Darcy 3.396 3.793 3.525 3.969 3.681

15 100 N/A Darcy 1.656 2.781 2.483 3.474 2.712
15 100 1.00E-06 non-Darcy 1.642 2.766 2.468 3.459 2.699
15 500 N/A Darcy 3.804 5.006 4.218 5.559 4.651
15 500 1.00E-06 non-Darcy 3.642 4.82 4.053 5.406 4.492
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based on the Darcy model and Ra* = 500.  By observing
Table 2 and also comparing Fig. 3 with Fig. 2, it can be
found that an increase in the Darcy-Rayleigh number
enhances the fluid and the thermal fields and an increase
in Nusselt number for all cases.  Again, the Nusselt
numbers for most cases are not simply equal to the
Nusselt number due to natural convection (3.804) plus
the contribution due to infiltration (0.625), except for
case C.

As for the non-Darcian effect, it can be better
examined from two viewpoints.  First, it is expected that
for the low Darcy-Rayleigh numbers, such as Ra* = 100,
the difference for the flow and thermal fields and the
Nusselt number between the Darcy and non-Darcy mod-
els is negligible as shown in Table 2.  However, as the
Darcy-Rayleigh number increases, the non-Darcian ef-
fect increases accordingly.  It should be mentioned that

Fig. 2. Streamlines and isotherms based on the Darcy flow model, A = 10,
Ra* = 100, uw = 5, (a) impermeable boundaries, (b) case B, and (c)
case C.

Fig. 3. Streamlines and isotherms based on the Darcy flow model, A = 10,
Ra* = 500, uw = 5, (a) impermeable boundaries, (b) case B, and (c)
case C.

Fig. 4. Streamlines and isotherms based on the non-Darcy flow model, A
= 10, λ = 1, ε = 0.4, Ra* = 500, Da = 10–6, uw = 5, (a) impermeable
boundaries, (b) case B, and (c) case C.

Fig. 5. Streamlines and isotherms based on the non-Darcy flow model, A
= 10, λ = 1, ε = 0.4, Ra* = 500, Da = 10–5, uw = 5, (a) impermeable
boundaries, (b) case B, and (c) case C.
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Fig. 6. Streamlines and isotherms based on the non-Darcy flow model, A
= 10, λ = 1, ε = 0.4, Ra* = 500, Da = 10–6, uw = 15, (a) impermeable
boundaries, (b) case B, and (c) case C.

the non-Darcy model in Table 2 includes the Brinkman,
Forchheimer, and convection terms.  Through the com-
parison between Fig. 4, which is based on the non-Darcy
model, Ra* = 500, Da = 10–6, and Fig. 3, which is based
on Darcy model with the same Ra*, it can be seen that the
non-Darcy flow fields are weaker than the Darcy flow
fields.  Moreover, under the condition of the same
Darcy-Rayleigh number, the non-Darcian effect is more
prominent for higher Darcy numbers as shown in Fig. 5,
which is based on the non-Darcy model with Ra* = 500
while Da = 10–5.  By comparing Fig. 5 with Fig. 4, it can
be seen the fluid fields predicted for Da = 10–5 is weaker
than that predicted for Da = 10–6 for all cases.  This is
because for the same Darcy-Rayleigh number Ra*, higher
Darcy number Da means smaller fluid Rayleigh number
Ra and hence weaker buoyancy force is generated.  The
results of the Nusselt number in Table 2 also clearly
show the trend.  It is noted that the magnitudes of the
Nusselt numbers based on the non-Darcy model for
these four cases are in the same order as that based on
the Darcy flow model. Finally, the effect of infiltration
velocity is examined by increasing the dimensionless
infiltration velocity from 5 to 15, while Ra* and Da are
fixed.  Figure 6 shows the results of the streamlines and
isotherms based on the non-Darcy model for uw = 15,
Ra* = 500 and Da =  10–6.  By comparing Fig. 6 with Fig.
4, it can be seen that an increase in the infiltration
velocity not only enhances the flow field but also alters
the thermal field.  As expected, the Nusselt number
increases as the infiltration velocity increases, as shown
in Table 2.  It is noted that the variation of the infiltra-

tion velocity does not cause any change for the case of
completely impermeable boundaries.  Also, the increase
in the Nusselt number due to the increase in the infiltra-
tion velocity is found to be case dependent; in the order
of the magnitude of increase, these are case C (1.195),
case A (0.772), case D (0.568) and case B (0.277).  It is
noted that the above increments in the Nusselt number,
say for case C (1.195), are obtained by taking the
Nusselt number for each case for uw = 15, Ra* = 500 and
Da = 10–6, which is 5.406 for case C, minus the Nusselt
number for the same case for uw = 5, which is 4.211.  It
should be mentioned that the influence of the infiltra-
tion velocity on the overall Nusselt number is similar
for the Darcy flow.  One more thing should be pointed
out that the problem studied in this work can be re-
garded as a problem of infiltration (forced convection)
and free convection.  A dimensionless parameter char-
acterizing the problem of mixed convection is defined
by Gr/Re2 or Ra*/Re2, where Gr is the Grashof number
defined as Gr = Ra*/Pr.  If the length of the slot L is
given by 0.1 m, then the dimensional infiltration veloc-
ity uw

* can be found to have the values of 1.4 × 10–3 m/
s and 4.2 × 10–3 m/s for uw = 5 and 15, respectively.  This
in turn gives the value of Ra*/Re2 ranging from 0.14 to
6.25 approximately.  Within such range, both effects of
infiltration (forced convection) and free convection are
important.  This fact also helps us explain the reason
why for most cases the overall Nusselt number is not
directly equal to the Nusselt number due to infiltration
plus that due to natural convection.

CONCLUSIONS

This paper investigates non-Darcy flow and heat
transfer in a porous matrix accounting for both infiltra-
tion and free convection effects.  The non-Darcy flow
model includes Brinkman, Forchheimer and convection
terms.  The flow field and heat transfer based on Darcy
model is also examined for comparison.  The non-
Darcian effect was found to be negligible for low Darcy-
Rayleigh numbers while they become more pronounced
for medium and large Darcy-Rayleigh numbers.  For the
same Darcy-Rayleigh number, the flow field and heat
transfer is depressed as the Darcy number increases.
Depending on the locations of the wall openings, the
overall Nusselt number is not simply equal to the Nusselt
number due to infiltration plus that due to free
convection.  The increase in the Nusselt number due to
the increase in the infiltration velocity is case dependent.

NOMENCLATURE

A aspect ratio, H/L
b inertia constant [m]
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c specific heat [J/kg-K]
Da Darcy number, K/L2

Fs Forchheimer constant, b/L
 j unit vector in the positive y-direction

H height of the slot [m]
K permeability [m2]
k

m
thermal conductivity [W/m-K]

L length of the slot [m]
 Nu overall Nusselt number, defined in equation (9)

P pressure
Pr Prandtl number of the fluid
Ra Rayleigh number of the fluid, gβL3∆T/νfα f

Ra* Darcy-Rayleigh number, gβKL∆T/νfαm = λDaRa
t dimensionless time
T Temperature [K]
∆T temperature difference, Th – Tc [K]
u dimensionless velocity in x-direction
uw dimensionless infiltration velocity at the openings
v dimensionless velocity in y-direction

  V dimensionless velocity vector
x, y dimensionless coordinates

Greek Symbols

α f thermal diffusivity of the fluid [m2/s]
αm thermal diffusivity of the porous medium, km(ρc)f

[m2/s]
ε porosity
λ thermal conductivity ratio, kf/km

µ dynamic viscosity of the fluid [kg/m-s]
ν kinematic viscosity of the fluid [m2/s]
θ dimensionless temperature
ρ density [kg/m3]
σ heat capacity ratio, [ε(ρc)f + (1 – ε)(ρc)s]/(ρc)f

Subscripts

c cold boundary
f fluid
h hot boundary
m fluid saturated porous medium
s solid

Superscripts

* dimensional quantities
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