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ABSTRACT

One of the major reasons of using parallel computer systems is
that they have the potential for improving performance and resource
sharing.  To achieve this, an efficient way must be provided to
broadcast a message or messages from a node to every other nodes in
the system.  However, the efficiency of transferring messages in a
system is determined by the architecture of the underlying intercon-
nection network of the system.  In this paper, we consider the systems
based on binary directed de Bruijn networks and define two shortest
path spanning trees: the upward-0 spanning tree and the downward-0
spanning tree, to meet various message transfer requirements.  To
demonstrate the usage of these spanning trees, an application to the
load-balancing problem is considered.  The resulting time complexity
is O(log2 N + Σ∀∆ i ≠ 0 ∆

i
), where N is the number of nodes and ∆

i
 is the

total transfer time for the load difference of each node i, for all 1 ≤ i
≤ N, on the binary directed de Bruijn networks.

INTRODUCTION

Direct networks have been extensively used in
highly parallel computer systems.  One of these is the
hypercube network, whose properties have been exten-
sively studied in the literature [4].  The hypercube
network belongs to the kinds of unbounded-degree
networks.  Recently, the researches have been moti-
vated to the bounded-degree networks[8, 9].

One of the most popular bounded-degree networks
is the de Bruijn network that is based on the de Bruijn
graph [4, 6, 8, 11].  The attractive properties of a d-ary
directed or undirected de Bruijn graphs with N nodes are
that each node is of degree 2d and there are Nd edges.

For simplicity and practical considerations, in this paper,
we only consider the binary directed de Bruijn networks.

One major reason to use parallel computer systems
is that they have the potential for improving perfor-
mance and resource sharing[3].  For the latter, an effi-
cient way must be provided to broadcast a message or
messages from a node to every other nodes in the
system.  Two shortest path spanning trees: the upward-
0 spanning tree and the downward-0 spanning tree, are
defined in this paper to fulfill this requirement.

To demonstrate the usage of these spanning trees,
an application to solving the load-balancing problem on
the binary directed de Bruijn networks is discussed.
The load-balancing problem usually raises from paral-
lel computer systems since it is possible for some pro-
cessors to be heavily loaded while others to be lightly
loaded or even idle.  To maximize the performance of
such systems, it is necessary to keep every processor
busy while some tasks are waiting for service in the
systems.  Two distinct strategies have been proposed [7,
10, 12, 13] for this purpose.  Load-balancing algorithms
explore the possibility of equalizing the workload among
the processors while load-sharing algorithms simply
attempt to assure that no processor is idle while some
tasks are waiting for service.

In general, load-balancing algorithms require many
more resources from the systems than do load-sharing
algorithms [2].  Therefore, the extra resource require-
ment may outweigh the potential benefits of load bal-
ancing if we do not have a good enough load-balancing
algorithm.

Load balancing can be viewed as a search for
appropriate pairings among processors that are heavily
loaded and those that are lightly loaded [1].  Three
issues are intimately related to load balancing.  They
are: load difference evaluation, that is, to classify the
processors as overloaded, balanced, and underloaded,
mapping between overloaded and underloaded
processors, and the redistribution of the load among the
processors.  Of course, the communication overhead,
which depends on the communication mechanisms sup-
ported by the underlying parallel computer system,



Journal of Marine Science and Technology, Vol. 7, No. 2 (1999)118

associated with load transfers must be minimized.  In
this paper, we assume that the basic workload unit is a
task and that all tasks are independent, that is, they can
be assigned independently to any processor and obtain
the same result.

Based on the proposed shortest path spanning trees,
the resulting time complexity for the load-balancing
algorithm is O(log2 N + Σ∀∆ i = 0 ∆i), where N is the
number of nodes and ∆i is the total transfer time for the
load difference of each node i, for all 1 ≤ i ≤ N, on the
binary directed de Bruijn network.

The rest of the paper is organized as follows.
Section 2 reviews and establishes some useful features
of the binary directed de Bruijn networks that will be
used throughout the paper.  In this section, we also
define two spanning trees.  Section 3 describes how to
apply the spanning trees to the load-balancing problem
for the systems based on the binary directed de Bruijn
networks.  Section 4 proves the correctness and ana-
lyzes the performance of the load-balancing algorithm.
The paper is then concluded in Section 5.

BINARY DIRECTED DE BRUIJN NETWORKS

In this section, we define the k-dimensional binary
directed de Bruijn graph and network, routing schemes,
downward and upward spanning trees, and derive some
important properties of these spanning trees.  These
properties will be used in the load-balancing algorithm
to be introduced in the next section.

Basic Definitions and Routing Schemes

In what follows, we define the k-dimensional bi-
nary directed de Bruijn network and its routing schemes.

Definition 1  A binary k-dimensional directed de Bruijn
graph, denoted as DDB(k), consisting of 2k nodes and 2k

+ 1 directed edges, is defined as: DDB(k) = (Vk,Ek),
where Vk = {0, 1, 2 …, 2k – 1} and Ek = {<S, T>|T = 2S mod
2k, for all S, T ∈  Vk} ∪  {<S, T>|T = (2S mod 2k) + 1, for
all S, T ∈  Vk}.
Let X = xkxk – 1 … x1, where xi ∈  {0, 1}, be a node on a
DDB(k), then it is connected to two other nodes: xk – 1 xk

– 2 … x10 and xk – 1xk – 2 … x11, which are called left-child
node and right-child node, respectively.  The edges
connected to node xk – 1 xk – 2 … x10 and xk – 1xk – 2 … x11
are called 0 channel and 1 channel, respectively.  An
example of a DDB(3) graph along with the depictions of
its 0 and 1 channels is shown in Fig. 1.  The 0 channels
are shown in plain lines while the 1 channels in bold
lines.

The parallel computer system based on the DDB
(k) is called a de Bruijn network and denoted by the

DDB(k) network on which the nodes are composed of
processors and the edges are the communication links
between processors.

The definition of the DDB(k) network shows that
the address relationship between a node and its two
child nodes is a shift operation.  Therefore, we define
two shift operations: ShiftLeft and ShiftRight, as follows.
Let node X = xkxk – 1 … x1 be an arbitrary node on a DDB
(k) network and b ∈  {0, 1}.  Then

ShiftLeft (xkxk – 1 … x1, b) = xk – 1xk – 2 … x1b

ShiftRight (xkxk – 1 … x1, b) = bxkxk – 1 … x2

It is easy to show that two parent nodes, P0 and P1, of a
node X on a DDB(k), have node addresses: P0 = ShiftRight
(X, 0) and P1 = ShiftRight (X, 1), respectively.  In
addition, two child nodes, Y0 and Y1, of node X, have the
node addresses: Y0 = ShiftLeft (X,0) and Y1 = ShiftLeft
(X, 1), respectively.

The following lemma finds a routing path between
any two nodes on a DDB(k) network.

Lemma1  Let X = (xkxk – 1 … x1) and Y = (ykyk – 1 … y1)
be any two nodes on a DDB(k) network, then P = {Xk, Xk

– 1, …, X1} is a path between these two nodes, where Xi

= ShiftLeft (Xi + 1, yi), for all 1 ≤ i ≤ k and Xk + 1 = X.  For
convenience, we usually represent P as xkxk – 1 … x1ykyk

– 1 … y1, where each node on the path is composed of a
k-bit window from left to right.
Since the number of shifts is equal to k, the path length
of P is always k = log2N, where N is the number of nodes
of the DDB(k) network, and therefore we usually call
this as the length-k path.  The routing method based on
this is called the length-k routing scheme.  The follow-
ing lemma will establish the foundation for another
routing method called the optimal routing scheme [5].

Lemma 2  Let X = (xkxk – 1 … x1) and Y = (ykyk – 1 … y1)

Fig. 1.  An example of 3-dimensional binary directed de Bruijn graph.
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be any two nodes on a DDB(k) network and P = {Xk – c,
Xk – c – 1, …, X1} be a path on the network, where Xi =
ShiftLeft (Xi + 1, yi), for all 1 ≤ i ≤ k – c, and Xk – c + 1 =
X. c is defined as
c = max {s|0 ≤ s ≤ k, xsxs – 1 … x1 = ykyk – 1 … yk – s + 1}
then P is the shortest path between X and Y with length
k – c.  For notational simplicity, we usually represent P
as xkxk – 1 … x1yk – cyk – c – 1 … y1.

Upward-0 and Upward-1 Spanning trees

The following defines the upward-0 and upward-1
spanning trees of a DDB(k) network, respectively.

Definition 2  Let GUT0 = (Vk, EUT0) be a subnetwork of
a DDB(k) network, where Vk = {0, 1, 2, …,2k – 1} and
EUT0 = {<u, v>|<u, v> are all of the 0 channels except for
the edge <00 … 0, 00 … 0> of DDB(k)}.  Similarly, let
GUT1 = (Vk, EUT1) be a subnetwork of a DDB(k) network,
where Vk = {0, 1, 2, …, 2k – 1} and EUT1 = {<u, v>|<u,
v> are all of the 1 channels except for the edge <11 …
1, 11 … 1> of DDB(k)}.
Excluding edges <00 … 0, 00 … 0} and <11 … 1, 11 …
1> in the above definition is necessary to avoid forming
cycles in the subnetworks GUT0 = (Vk, EUT0) and GUT1 =
(Vk, EUT1), respectively.  Thus, this makes it possible for
them to be as spanning trees as stated in the following
theorem.  Examples of GUT0 and GUT1 for a DDB(3)
network are shown in Fig. 2 (a) and (b), respectively.

Theorem 1  GUT0 = (Vk, EUT0) and GUT1 = (Vk, EUT1) are
spanning trees of the DDB(k) network with roots at

nodes 00 … 0 and 11 … 1, respectively.

Proof:  To prove the subnetwork GUT0 = (Vk, EUT0) is a
spanning tree of a DDB(k) network, we first prove it is
connected.  Lemma 1 implies that each node can reach
node 00 … 0 through a series of ShiftLeft operations
with 0 filling.  More precisely, any node can arrive at
node 00 … 0 through a series  of  0 channels .
Consequently, the connected property is valid.  Next,
the subnetwork GUT0 = (Vk, EUT0) is acyclic since it only
contains N – 1 links, where N is the number of nodes of
the DDB(k) network, because edge 00 … 0, 00… 0 is
excluded.  As a consequence, GUT0 = (Vk, EUT0) is a
spanning tree of the DDB(k) network.  Similarly, it is
easy to prove the subnetwork GUT1 = (Vk, EUT1) is also a
spanning tree of the DDB(k) network. ■
The tree GUT0 is called the upward-0 spanning tree since
it consists of 0 channels only and these channels are
directed upward to root node 00 … 0.  Similarly, GUT1 is
called the upward-1 spanning tree with root node 11 …
1.  It is easy to show that both the upward-0 and upward-
1 spanning trees of a DDB(k) network are unique.

The following theorem establishes some useful
properties of both GUT0 and GUT1.

Theorem 2  The upward-0 and upward-1 spanning
trees, GUT0 and GUT1, of a DDB(k) network have the
following properties:

1. Every node can reach node 00 … 0 on GUT0 and
node 11 … 1 on GUT1, respectively, with the maximal
path length log2 N, where N is the number of nodes of the
DDB(k) network.

Fig. 2.  The examples of GUT0 and GUT1 for a DDB(3) network.
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2. All external nodes (i.e., leaves) are odd-num-
bered on GUT0 and even-numbered on GUT1, respectively.

3. All internal nodes are even-numbered on GUT0

and odd-numbered on GUT1, respectively.
4. Each internal node X except for the root node on

both GUT0 and GUT1 is connected from two other nodes
with addresses ShiftRight (X, 0) and ShiftRight (X, 1),
respectively.
Note that the upward-0 and upward-1 spanning trees are
isomorphic in structure so that in the rest of this paper,
we only consider the upward-0 spanning tree.

Downward-0 and Downward-1 Spanning trees

Another kind of spanning trees are downward-0
and downward-1 spanning trees.  These spanning trees
are defined as follows.

Definition 3  Let GDT0 = (Vk, EDT0) be a subnetwork of
a DDB(k) network, where Vk = {0, 1, 2, …, 2k – 1} and
EDT0 = {<u, v>|v = ShiftLeft (u, 0) and v > u, for all u, v
∈  Vk} ∪  {<u, v>|v = ShiftLeft (u,1) and v > u, for all u,
v Vk}.  Similarly, let GDT1 = (Vk, EDT1) be a subnetwork
of a DDB(k) network, where Vk = {0, 1, 2, … , 2k – 1} and
EDT1 = {<u, v>|v = ShiftLeft (u, 0) and v > u, for all u, v
∈  Vk} ∪  {<u, v>|v = ShiftLeft (u,1) and v > u, for all u,
v Vk}.

The following theorem states that GDT0 and GDT1

are spanning trees of the DDB(k) network.

Theorem 3  GDT0 = (Vk, EDT0) and GDT1 = (Vk, EDT1) are
spanning trees of the DDB(k) network with roots at
nodes 00 … 0 and 11 … 1, respectively.

Usually, GDT0 is called the downward-0 spanning
tree since it starts from root node 00 … 0 and downward
to leaf nodes.  Similarly, GDT1 is called the downward-
1 spanning tree with root node 11 … 1.  An example
showing the downward-0 spanning tree of a DDB(4)
network is depicted in Fig. 3.

The following theorem establishes some useful
properties of both GDT0 and GDT1.

Theorem 4  The downward-0 and downward-1 span-
ning trees, GDT0 and GDT1, of a DDB(k) network have the
following properties.

1. Every node can be reached from root nodes 00
… 0 on GDT0 and 11 … 1 on GDT1, respectively, with the
maximal path length log2 N, where N is the number of
nodes of the DDB(k) network.

2. The node address of any node other than the root
with label l is ≥ 2l – 1 on GDT0 and ≥ N – 2l on GDT1, where
l is labeled starting with 0 from the root node and N is
the number of nodes of the DDB(k) network.

3. All external nodes on GDT0 have node addresses
   ≥ N
2

; all external nodes on GDT1 have node addresses

  < N
2

.
4. The parent of any node X of GDT0 has the node

address ShiftRight (X, 0); the parent of any node X of
GDT1 has the node address ShiftRight (X, 1).

Like the upward-0 and upward-1 spanning tree,
the downward-0 and downward-1 spanning trees are
isomorphic in structure .  Hence, in the rest of this paper,
we only consider the downward-0 spanning tree be-
cause it has the same root node as the upward-0 span-
ning tree.

The following corollary follows immediately.

Corollary 1  Let X1 and X2 be any two nodes on the
downward-0 spanning tree of a DDB(k) network with
the same level l, where 2 ≤ l ≤ k, then X1 and X2 have the
same address part xkxk – 1 … xl.

LOAD-BALANCING ALGORITHM

In this section, we apply the spanning trees defined
in the previous section to solve the load-balancing
problem for the DDB(k) networks.

In general, a load-balancing algorithm consists of
four major parts: load difference evaluation, load
collection, task reassignment, and load redistribution.
For convenience, we assume that each task is an inde-
pendent unit and may be executed by any processor on
the system.

The load-balancing algorithm for a DDB(k) net-
work is shown in the following.

Algorithm: LoadBalancing

This algorithm is used to balance the loads of each
node on the DDB(k) network.
Input: Unbalanced loads of each node on the DDB(k)
network.

Fig. 3.  The downward-0 spanning tree of the DDB(4) network.



M.B. Lin et al.: Spanning Trees for Binary Directed De Bruijn Networks and Their Applications To Load Balancing 121

Output: The load difference of each node on the DDB
(k) network is within ± 1 unit.
begin
1: Load difference evaluation: Evaluate load difference
among nodes on the DDB(k) network.

1.1: Sum up the load from each node on the net-
work using the upward-0 spanning tree, that is, compute   L =Σi = 1

N
l i , where li, for all 1 ≤ i ≤ N, is the load of node

i.
1.2: Broadcast the average of load AVG =  L

N
 to

every other node from root node 00 … 0 by using the
downward-0 spanning tree.

1.3: Each node determines itself is a balanced (∆i

= 0), overloaded (∆i > 0), or underloaded (∆i < 0) node
by computing ∆i = li – AVG, where 1 ≤ i ≤ N.
2: Load collection: The root node collects the extra
tasks from each other node of the network by using the
upward-0 spanning tree.
3: Task reassignment: Reassign tasks of each node on
the network using the downward-0 spanning tree.

3.1: Each node receives the load requests load0

and load1 from its left and right children, respectively.
3.2: Each node sends its extra load (load0 + load1

+ myload – AVG) to its parent node.
4: Load redistribution: The root node distributes the
extra tasks to each other node of the network by using
the downward-0 spanning tree.
end {End of LoadBalancing algorithm.}

Due to the similarity of different uses of both the
upward-0 spanning tree and the downward-0 spanning
tree in the above load balancing algorithm, in what
follows we will describe only two examples of them.
One is SumofLoad (myid) which uses the upward-0
spanning tree for summing up the load from each node
and is described as follows.

Procedure: SumofLoad (myid)

Input: Loads of each node on a DDB(k) network.
Output: The summation of the loads from each node is
collected at root node 00 … 0.
begin

if IsOdd (myid) then send myload to ShiftLeft
(myid, 0);

else begin
sum = myload;
receive load0 from ShiftRight (myid, 0);
sum = sum + load0;
receive load1 from ShiftRight (myid, 1);
sum = sum + load1;
if (myid ≠ 0) then send sum to ShiftLeft (myid, 0);
end {end of else}

end {End of SumofLoad procedure.}

As shown in Fig. 4(a) is the state before the execu-
tion of SumofLoad procedure while Fig. 4(b) is the
results of every iteration of executing procedure
SumofLoad.

The other is AVGBroadcast that is used to broad-
cast the AVG computed by the root node to every other
node on the DDB(k) network using the downward-0
spanning tree.
Procedure: AVGBroadcast (myid)
Input: The AVG of load computed by root node 00 …
0 on a DDB(k) network.
Output: Every node has the AVG.
begin

Fig. 4. An example to illustrate the operations of SumofLoad procedure
using the upward-0 spanning tree.
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if myid = 0 then send AVG to ShiftLeft (myid, 1);
else if myid <  N

2
 then

receive AVG from ShiftRight (myid, 0);
send AVG to ShiftLeft (myid, 0);
send AVG to ShiftLeft (myid, 1);
else receive AVG from ShiftRight (myid, 0);

end {End of AVGBroadcast procedure.}
The reason why we could not use the same upward-

0 spanning tree as that for SumofLoad procedure to
broadcast AVG to every other node on the DDB(k)
network is that the underlying DDB(k) network is di-
rected so that every link or channel can carry message in
only one direction.  Thus, in order to broadcast a mes-
sage as fast as possible the downward-0 spanning tree is
used.

PERFORMANCE AND CORRECTNESS

In this section we prove the correctness and ana-
lyze the performance of Load balancing algorithm de-
scribed in the previous section.

The correctness of LoadBalancing algorithm is
established by the following theorem.

Theorem 5   After the LoadBalancing algorithm
terminates, the load difference ∆i of each node Xi is
within ± 1 unit of tasks, where 1 ≤ i ≤ N and N is the
number of nodes of the DDB(k) network.

Proof: The load difference evaluation step guarantees
the average of load AVG can be computed and broadcast
to every node on the DDB(k) network since the upward-
0 and downward-0 spanning trees are used.  The load
collection step collects all extra tasks of each node on
the upward-0 spanning tree at root node 00 … 0.  Since
the spanning tree is used, no node can be excluded to
carry out the operation.  The extra tasks collected at the
root node then redistribute to every underloaded node
using the downward-0 spanning tree.  To assure this, the
task reassignment step must be performed before the
load redistribution step.  At the task reassignment step,
we use the same downward-0 spanning tree as for the
load redistribution step.  Hence, through the execution
of task reassignment, each node on the downward-0
spanning tree knows how many loads are needed by its
subtree and this information is also broadcast up to its
parent node.  The root node 00 … 0 can redistribute the
extra tasks to its child nodes and each node can then
distribute the extra tasks received from its parent node
to its child nodes according to the information that it has
recorded.  Therefore, each node guarantees to receive
the required load from its parent node and enters into the
balanced state, that is, ∆i = ± 1, where 1 ≤ i ≤ N. ■

To estimate the time complexity of LoadBalancing
algorithm, we need to analyze the complexity of task
reassignment.  As described before, the major operation
of task reassignment is to propagate the load request
from leaf nodes to its parent node one by one along the
downward-0 spanning tree up to the root node 00 … 0.
The bottleneck of this operation is that there is no direct
connection from a node to its parent node.  Consequently,
the length-k routing scheme or the optimal routing
scheme is needed for routing the information from
nodes to their parent nodes.

As a first glance, it seems that many nodes will
contest edges when they transfer load request messages
up to their parent nodes.  However, as the illustration
shown in Fig. 5 (b) with the length-k routing scheme,
nodes 111 and 110 will transfer messages to their parent
node 011 using paths 111 → 110 → 101 → 011 and 110
→ 100 → 001 → 011, respectively.  There is no common
edge of these two paths.  Thus, they are edge-disjointed.
Another case is shown in Fig. 5 (c).  In this case, assume
that the optimal routing scheme is used.  Nodes 111 and
110 will transfer messages to their parent node 011
using paths 111 → 110 → 101 → 011 and 110 → 101 →
011, respectively.  The subpath 110 → 101 → 011 is
common to these two paths.  Thus, they are not edge-
disjointed paths.  However, in fact nodes 111 and 110
use this subpath at different time as the timestamps
shown in the figure.  Consequently, these paths can be
considered as edge-disjointed paths if the timestamp is
added to them for scheduling their usage.

Fig. 5. Illustrations of edge disjoint and temporal edge disjoint paths on the
downward-0 spanning tree of a DDB(3) network.
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Since the path length in the worst case of the
optimal routing scheme is the same as that of the length-
k routing scheme, in the rest of this paper we will not
further consider this routing scheme.  The following
lemma establishes the result that any two paths from
two nodes at the same level l + 1 to their parent nodes on
the downward-0 spanning tree of a given DDB(k) net-
work are edge-disjointed if the length-k routing scheme
is used.

Lemma 3  Assuming that the length-k routing scheme is
used, any two paths from X1 to Y1 and from X2 to Y2 on
the downward-0 spanning tree of a given DDB(k) net-
work are edge-disjointed, where X1 and X2 are two
arbitrary nodes at the same level l + 1 and Y1 and Y2 are
the parent nodes of X1 and X2, respectively.

Proof: Let Path1 and Path2 be any two paths starting from
nodes X1 and X2 at level l + 1 to their parent nodes Y1 and
Y2 at level l on the downward-0 spanning tree.  As the
implication of Corollary 1, X1 and X2 have the same
address part from (l + 1)th to kth bit while Y1 and Y2 have
the same address part from lth to kth bit.  In addition,
ShiftRight (X, 0) is the node address of parent node of X.
Hence, the Path1 and Path2 may be represented as follows.

Path1 ↔ xkxk – 1 … xl + 10xl – 1 … xi … x10xkxk – 1 … xl +

10xl – 1 … xi + 2 … x2

Path2 ↔ xkxk  –  1 …   x l + 11x l – 1
' x i

' x 1
' 0xkxk – 1 x l + 1

  x l – 1
' x i + 2

' x 2
'

Without loss of generality, assume that the first
possible identical node is started with ith bit, i.e., N = xi

… x10xkxk – 1 … xl + 10xl – 1 … xi + 2 for Path1 and N’ =
  x i

' x 1
' 0xkxk – 1 x l + 11x l – 1

' x i + 2
' x 2

'  for Path2, where
1 ≤ i ≤ l – 1.  Nodes N and N’ could not be the same
because their lth bits are different, one is 0 and the other
is 1.  The only possibility that they are identical is as i
= l – 1.  However, we could not find the next identical
node in this case since the next bit, which is the lth bit,
of node N is 0 and node N’ is 1.  These 0 and 1 bits will
comprise the node addresses of both Path1 and Path2

thereafter.  Hence, both paths can only have one identi-
cal node.  That is, there is no edge conflict of Path1 and
Path2.

■
An example is shown in Fig. 3, as nodes 1011 and 1111
are routed to their parent nodes 0101 and 0111,
respectively, using the length-k routing scheme, the
paths from 1011 to 0101 and from 1111 to 0111 are:

1011 → 0110 → 1101 → 1010 → 0101
1111 → 1110 → 1101 → 1011 → 0111,

respectively.  Consequently, they are edge-disjointed
although node 1101 is used by both paths.

Having this result, we may establish the time com-
plexity of procedure TaskReassignment as follows.

Lemma 4  The time complexity of Task reassignment is
O(log2 N), where N is the number of nodes on the DDB
(k) network.

Proof: Due to that the depth of downward-0 spanning
tree is log

2
 N and the maximum length of the routing

path from level l + 1 to l is at most log
2
 N if the length-

k routing scheme is used, the running time of Task
reassignment is O(log2 N). ■

Theorem 6  The running time of LoadBalancing
algorithm is O(log2 N + Σ∀∆ i≠0∆ i), where N is the
number of nodes on the DDB(k) network and ∆i is the
number of load difference, for all 1 ≤ i ≤ N.  Here we
assume that the transfer time of each task is one time
unit.

Proof:  It is easy to compute the expected running time
of LoadBalancing algorithm.  The load difference
evaluation step uses SumofLoad and AVGBroadcast
procedures to sum up the load difference of each node
and broadcast the the average of load AVG to every
node, respectively.  Both of these two procedures need
O(log N) time since both the upward-0 spanning tree
used by SumofLoad procedure and the downward-0
spanning tree used by AVGBroadcast procedure have O
(log N) depth.  The expected running time of load
collection step is O(log N + Σ∀∆ i > 0 ∆i), where O(log N)
is contributed by the upward-0 spanning tree and the
Σ∀∆ i > 0 ∆i is the upper bound of message transfer time for
collecting all extra tasks in the system at root node 00 …
0.  As for the task reassignment step, Lemma 4 gives the
time bound O(log2 N).  The load redistribution step has
the similar time bound as that for load collection step
and is O(log N + Σ∀∆ i < 0 ∆i).  As a consequence, the total
running time is O(log2 N + Σ∀∆ i ≠ 0 ∆i).

CONCLUSION

In this paper two shortest path spanning trees, one
is called upward-0 spanning tree and the other is called
downward-0 spanning tree, for binary k-dimensional
directed de Bruijn networks are defined and applied to
solve the load-balancing problem for the systems based
on the DDB(k) networks.  The resulting load-balancing
algorithm has the time complexity of O(log2 N + Σ∀∆ i ≠

0 ∆i), where N is the number of nodes and ∆i is the total
transfer time of load difference of each node i, for all 1
≤ i ≤ N, on the DDB(k) network, respectively.
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