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ABSTRACT

This paper is concerned with the fundamental   properties asso-
ciated with the Nomoto models.  Specifically, the state space model
associated with the first order Nomoto model is both observable and
controllable.  The state space model associated with the second order
Nomoto model is also observable; however, it is controllable only if
the effective sway time constant is different from the effective yaw
time constant.  The zero appearing in the transfer function model is
found responsible for the overshoot behaviors, which are typical in
the yaw rate for large rudder angle steering.  This suggests that a
second order Nomoto model is more appropriate if the overshoot
feature is to be properly modeled.  Both the first and second order
Nomoto transfer function models are identifiable, with an ill-condi-
tioning problem associated the latter.  This makes the first order
Nomoto model very popular in the adaptive autopilot applications.
Model reduction for a fourth order transfer function ship model
describing the sway-yaw-roll dynamics is conducted to reach the
second order Nomoto model describing the sway-yaw dynamics and
the first order Nomoto model describing the yaw dynamics itself, and
the Bode plots for these models are given to show the changes in
system frequency response caused by model simplification.  Thus,
appropriate model structures can be selected according to the intended
frequency range of application to meet the modeling accuracy
requirements.

INTRODUCTION

Ship response in waves is typically treated as a six
degree-of-freedom rigid body motion in space.  Whereas,
a three degree-of-freedom plane motion is usually con-
sidered adequate for ship maneuvering study [1].
However, for high speed vessels like the container
ships, turning motion induced roll is not negligible.
Hence a four degree-of-freedom description that in-

cludes surge, sway, yaw and roll modes is needed [2, 3].
Since the hydrodynamics involved in ship steering is
highly nonlinear, coupled nonlinear differential equa-
tions are needed to fully describe the complicated ship
maneuvering dynamics.

A simple transfer function model description is
usually preferred when a qualitative prediction capabil-
ity is all we need from the model.  This is the case in a
model-based controller design, since the feedback con-
troller itself tolerates certain amount of modeling error
and a complicated model might result in a controller too
complicated to implement.  The popularity of the first
order Nomoto model in ship steering autopilot design is
due to its simplicity and relative accuracy in describing
the course-keeping yaw dynamics, where typically, small
rudder angles are involved [4, 5].  Extension to large
rudder angle yaw dynamics basing upon the Nomoto
model has been proposed to better describe the nonlin-
ear behavior of yaw dynamics [6].

Fundamental properties like the controllability and
observability of linear systems are known to be impor-
tant in the design for controllers.  The controllability
property ensures that all the system states can be driven
to desired values with the control input.   The
observability property ensures that all the system states
can be retrieved from the measured output [7].
Specifically, the controllability property itself ensures
the state-feedback controllers can be successfully
implemented.  The controllability and observability
properties together ensure the output-feedback control-
lers can be successfully implemented.  The identifiabil-
ity property ensures that the system model parameters
can be uniquely determined from measured input output
data, which is crucial to the design of adaptive control
systems [8, 9].

Generally speaking, state space models are less
identifiable than transfer function models.  Ship steer-
ing state space dynamics models are also known to have
identification difficulties due to the cancellation effect
[10].  Since most adaptive ship steering autopilot
designs are based on transfer function models, our
identifibaility study will be concerned with the Nomoto



Journal of Marine Science and Technology, Vol. 7, No. 2 (1999)80

transfer function models.  However, the controllability
and obsevability issues have to be concerned with the
state space models.  This is because the transfer function
models only represent the controllable and observable
parts of the system dynamics.  Namely, in transforming
the state space models into the transfer function models,
if there is any uncontrollable or unobservable mode, it
will be cancelled out and can not be seen in the transfer
function model.  Hence, it is the state space counterparts
of the Nomoto transfer function models will be used in
the study for the controllability and observability
properties.

Overshoot behaviors are typical for underdamped
oscillatory system.  For plane motion-based ship steer-
ing dynamics, there is no restoring forces involved.
Hence the yaw rate and sway speed will not exhibit
oscillatory behaviors.  However, for large rudder angle
steering, overshoot behaviors in the yaw rate can be
observed.  It will be shown that this yaw rate overshoot
phenomenon is due to coupling effect from the sway
mode.  A transfer function point of view will be taken to
show that the sway coupling effect introduces a zero and
a high frequency pole into the system.  Specifically, the
location of the zero relative to the imaginary axis on the
overshoot behavior will be explored and the importance
of selecting the appropriate model structure in order to
capture key hydrodynamic features, like the overshoot
behaviors can be better recognized [11].

Finally, model reduction with respect to a fourth
order transfer  function models describing the
sway-yaw-roll modes of motion will be presented [12].
Simplifications to a second order model and to a first
order model describing the sway-yaw and yaw modes
respectively are discussed.  The Bode plots for these
models will be given to illustrate the modeling error
incurred due to model simplifications.  Based on the
frequency response information of the Bode plots, a
trade-off between model complexity and model accu-
racy can be better exercised according to the intended
purpose and range of application of the model.

SHIP STEERING DYNAMICS MODEL REDUCTION

It is well known that coupled nonlinear differential
equations are needed to fully represent the complicated
ship maneuvering dynamics.  However for ship steering
autopilots design, a simple model with average predict-
ing capability is usually preferred.  Based on the linear-
ized surge-sway-yaw-roll equations of motion, a fourth
order transfer function relating the yaw rate to the
rudder angle is derived.  Further simplifications to the
second order Nomoto model and the first order Nomoto
model are also described.

Upon linearization with respect to a straight line

motion with a constant forward speed u0, the surge
equation is decoupled and the following linear coupled
sway-yaw-roll equations follow immediately.  Refer-
ring to Fig. 1, we have

   m(v + u 0r) = Y VV + Y VV + Y ϕϕ + Y PP

   + Y PP + Y rr + Y rr + Y δδ (1a)

   IXϕ = K PP + K PP – mgGMφ + K VV

   + K VV + K rr + K rr + K δδ (1b)

   IZψ = N rr + N rr + N φφ + N PP

   + N PP + N VV + N VV + N δδ (1c)

where YV,   Y V ,  …, indicate  the hydrodynamic
coefficients; for instance, YV indicates the derivative of
the sway force Y to the sway speed V evaluated at the
reference condition; m is the mass of the ship; IX is the
moment of inertia about the x-axis; IZ is the moment of
inertia about the z-axis; V is the sway speed; u is the
surge speed; r is the yaw rate; Ψ is the heading angle
defined by    ψ = r ; p is the roll rate; φ is the roll angle
defined by    φ = p  and  GM  is the metacentric height,
which indicates the restoring capability of a ship in
rolling motion.

Taking the Laplace transform of Eqs. (1a)-(1c)
and rearranging, we have

a1V = a2Φ + a3r + a4δ (2a)

b1Φ = b2V + b3r + b4δ (2b)

c1r = c2V + c3Φ + c4δ (2c)

where

Fig. 1.  Sway-yaw-roll motion coordinate system.
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  a 1 = (m – Y V)S – Y V (3a)

   a 2 = Y PS 2 + Y PS + Y φ (3b)

  a 3 = Y rS + Y r + mu 0 (3c)

a4 = Yδ (3d)

  b 1 = (IX – K P)S 2 – K PS + mgGM (3e)

  b 2 = K VS + K V (3f)

  b 3 = K rS + K r (3g)

b4 = Kδ (3h)

  c 1 = (IZ – N r)S – N r (3i)

  c 2 = N VS + N V (3j)

   c 3 = N PS 2 + N PS + N φ (3k)

c4 = Nδ (3l)

After eliminating the sway speed V and roll angle
φ from Eqs. (2a)-(2c), the following transfer function
relating the yaw rate r to the rudder angle δ can be
obtained:

   r
δ =

a 1(b 1c 4 + b 4c 3) + a 2(b 4c 2 – b 2c 4) + a 4(b 1c 2 + b 2c 3)
a 1(b 1c 1 – b 3c 3) – a 2(b 2c 1 + b 3c 2) – a 3(b 1c 2 + b 2c 3)

(4)

It can be easily verified that the numerator of Eq.
(4) is third order in S, while the denominator is fourth
order in S.  Hence, Eq. (4) can be expressed in the
following form

   r
δ =

K(1 + T 3S)(S 2 + 2ηω0S + ω0
2)

(1 + T 1S)(1 + T 2S)(S 2 + 2ξωnS + ωn
2)

(5)

where the quadratic factors are due to the coupling
effect from the roll mode on the yaw rate.  The zero (1
+ T3S) and the pole (1 + T2S) are due to the coupling
effect from the sway mode on the yaw dynamics.

If the roll mode is neglected, Eq. (5) can be further
reduced to the following form

   r
δ =

K(1 + T 3S)
(1 + T 1S)(1 + T 2S)

(6)

Eq. (6) is known as the second order Nomoto
model, where K is the static yaw rate gain, and T1, T2 and
T3 are time constants.  Numerical values of the param-

eters in Eq. (6) for a Mariner class vessel are given by T1

= 118, T2 = 7.8, T2 = 18.5 and K = 0.185 [7].  The zero
term (1 + T3S) and the high frequency pole term (1 +
T2S) are due to the coupling effect from the sway mode.

In practice, because the pole term (1 + T2S) and the
zero term (1 + T3S) in Eq. (6) nearly cancel each other,
a further simplification on Eq. (6) can be done to give
the first order Nomoto model

   r
δ = K

(1 + TS)
(7)

where

T = T1 + T2 − T3 (8)

in Eq. (8) is called the effective yaw rate time constant.
Eq. (8) is obtained by equating the right handside of Eq.
(6) to the right handside of Eq. (7) requiring the equality
relationship to hold up to first order in S.  If T2 = T3;
namely, a perfect cancellation occurs, then the equality
relationship is true up to second order in S, then T is of
course, equal to T1.  For the Mariner class vessel, the
value of the effective constant T in Eq. (8) is given by T
= 107.3.

The first order Nomoto model defined by Eq. (7) is
widely employed in the ship steering autopilot design.
The yaw dynamics is characterized by the parameters K
and T, which can be easily identified from standard
maneuvering tests.  In practice, ship steering autopilots
are design for heading angle control.  Hence, it is the
transfer function relating the heading angle Ψ to the
rudder angle δ being needed in the autopilot design.
Since the yaw rate r is actually the time derivative of Ψ,
the required transfer function can be readily obtained by
adding an integrator 1/S to the transfer function models
defined by Eq. (6) and Eq. (7).

FUNDAMENTAL PROPERTIES OF THE FIRST
ORDER NOMOTO MODEL

The controllability, observability and identifiabil-
ity properties of the first order Nomoto model-based
system will be discussed in this section.  The identifi-
ability property will be discussed with respect to the
first order Nomoto transfer function model.  However,
the controllability and observability properties have to
be discussed with respect to the state-space model de-
rived from the Nomoto model.  This is because the
transfer function model always represents the observ-
able and controllable parts of the system dynamics.  If
there is any unobservable or uncontrollable parts of the
dynamics, they are cancelled out before reaching the
transfer function model form.  Hence, it only makes
sense to discuss the controllability and observability
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properties of the state space model, which contains the
observable, unobservable, controllable and uncontrol-
lable modes [11].

Eq. (7) can be expressed in time domain as

   Tr + r = Kδ (9)

With the notation

   ψ = r (10)

where Ψ is the heading of the ship.  Eq. (9) can be
written as

   Tψ + ψ = Kδ (11)

Eq. (10) and Eq. (11) can be arranged in the
standard state space form

  x = Ax + Bu (12a)

y = Cx (12b)

where

   x =
ψ
r (12c)

u = δ (12d)

y = Ψ (12e)

and

  
A =

0 1

0 – 1
T

(12f)

  B = 0
K TK T

(12g)

C = [1  0] (12h)

According to linear system theory, the system
defined by Eqs. (12) is controllable if the following
matrix U is of full rank

U = [B  AB]

  
=

0 K TK T
K TK T – K

T 2K
T 2

(13)

and the system is observable if the following matrix V is

of full rank

  V = C
CA

 = 1 0
0 1

(14)

Straightforward computation indicates that the
matrix U and the matrix V defined by Eq. (13) and Eq.
(14) respectively are full rank.  Hence, the first order
Nomoto model-based system is both controllable and
observable.  Eq. (12b) describes the measurement
information.  According to Eq. (12h), the measured
signal is the heading angle Ψ, which is readily available
onboard almost all the vessels.

In the above discussion, controllability indicates
the system states (Ψ, r) can be controlled to arbitrary
value via application of the rudder δ.  Observability
indicates the system states (Ψ, r) can be obtained via the
measured data Ψ.  Moreover, controllability implies the
state-feedback controller will be successful.  With the
addition of observability implies that the output-feed-
back controller will be successful.

Identifiability of the first order Nomoto model
defined by Eq. (7) implies that the parameters K and T
can be uniquely determined from the input rudder angle
δ and the output yaw rate r.  Since, this is equivalent to
fitting a first order model to the measured input-output
data, and the gain K and the time constant T are uniquely
determined.  Consequently, the first order Nomoto model
satisfies the identifiability property.  Hence, on-line
estimation of the model parameters based on the mea-
sured rudder and yaw rate information will be possible
and adaptive control strategy can be successfully
implemented.

FUNDAMENTAL PROPERTIES OF THE SECOND
ORDER NOMOTO MODEL

Similar to previous discussions the identifiability
condi t ion wi l l  be  discussed bas ing upon the
transfer function model defined by Eq. (7), and the
controllability and observability conditions will be
discussed basing upon the corresponding state space
model.

Recall that the second order model Nomoto model
defined by Eq. (6) is obtained from Eq. (1a) and Eq.
(1c), while neglecting the roll mode.  Namely,

   m(v + u 0r) = Y vv + Y vv + Y rr + Y rr + Y δδ (15a)

   I zr = N vv + N vv + N rr + N rr + N δδ (15b)

Eqs. (15) can be put in state space format as
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   m – Y v – Y r 0
– N v Iz – N r 0

0 0 1

v
r
ψ

+
– Y v mu 0 – Y r 0
– N v – N r 0

0 1 0

v
r
ψ

   
=

Y δ
N δ
0

δ (16)

Eq. (16) can be further rearranged in the standard
state space format as

  x = Ax + Bu (17a)

y = Cx (17b)

where

   x =
v
r
ψ

(17c)

u = δ (17d)

y = Ψ (17e)

and

  

A =
a 11 a 12 0
a 21 a 22 0
0 1 0

(17f)

  
B =

b 11

b 21

0
(17g)

C = [0  0  1] (17h)

The elements in matrix A and B are given by

  a 11 =
(I z – N r)Y v + Y r N v

(m – Y v)(I z – N r) – N vY r
(17i)

  a 12 =
(I z – N r)(Y v – mu 0) + Y r N r

(m – Y v)(I z – N r) – N vY r
(17j)

  a 21 =
(m – Y v)N v + N vY v

(m – Y v)(I z – N r) – N vY r
(17k)

  a 22 =
(m – Y v)N r + N v(Y v – mu 0)

(m – Y v)(I z – N r) – N vY r
(17l)

   b 11 =
(I z – N r)Y δ + Y r N δ

(m – Y v)(I z – N r) – N vY r
(17m)

   b 21 =
(m – Y v)N δ + N v N δ

(m – Y v)(I z – N r) – N vY r
(17n)

Controllability of the second order Nomoto model-
based system described Eqs. (17) is satisfied if the
following matrix U is of full rank

U = [B  AB  A2B]

  

=

a 11
2 b 11 + a 11a 12b 21

b 11 a 11b 11 + a 12b 21 + a 12a 21b 11 + a 12a 22b 21

a 21a 11b 11 + a 21a 12b 21

b 21 a 21b 11 + a 22b 21 + a 22a 21b 11 + a 22
2 b 21

0 b 21 a 21b 11 + a 22b 21

(18)

After some computation, it can be verified that the
matrix U defined by Eq. (18) is of full rank if

a12b21 − a22b11 ≠ b11(a21b11 − a11b21) (19)

Alternatively, the condition defined by Eq. (19)
can be verified by requiring the columns in Eq. (18) not
proportional to each other and the rows in Eq. (18) not
proportional each other.  Controllability condition of
the system defined by Eqs. (17) implies that the states
Ψ, r and v can be driven independently to arbitrary
values via the rudder angle δ.

Implication of the controllability condition will be
further explored.  Recall that by eliminating the sway
velocity v in Eq. (15a) and Eq. (15b) leads to the second
order Nomoto model defined by Eq. (6).  Similarly by
eliminating the yaw rate r in Eq. (15a) and Eq. (15b)
leads to the sway to rudder transfer function

   v
δ =

K v(1 + T vS)
(1 + T 1S)(1 + T 2S)

(20)

where Kv is the static sway gain coefficient and Tv is the
sway time constant.  It is to be noted that the poles of the
sway-rudder model defined by Eq. (20) are exactly the
same as those in the yaw-rudder model defined by Eq.
(6).

From Eq. (6) and Eq. (20), it follows that

  v
r =

K v(1 + T vS)
K(1 + TS)

(21)

Eq. (21) shows that, if Tv = T, then v is proportional
to r.  Namely, v is dependent on r, since Kv/K is a
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constant.  However, we recall that for the second order
Nomoto model-based system defi]Öd by Eqs. (17).  If
the system is controllable, then the state variables Ψ, r,
v have to be able to move independently via application
of the rudder δ.  It is thus inferred that for the system to
be controllable, Tv must be different from T.  Namely, Tv

≠ T is equivalent to the condition given in Eq. (19) that
ensures the controllability of the system.

Observability condition of the system defined by
Eqs. (17) is satisfied if the following matrix V is of full
rank

  
V =

C
CA
CA2

  
=

0 0 1
0 1 0

a 21 a 22 0
(22)

It can be easily verified that Eq. (22) is of full rank
for any ship.  Hence, the second order Nomoto model-

based state space system is observable.  This implies
that all the states (Ψ, r, v) can be reconstructed from the
measured heading angle Ψ.

Identifiability of the second order Nomoto model
defined by Eq. (6) implies that the parameters K, T1, T2

and T3 appearing in Eq. (6) can be uniquely determined
from the input δ  and output r measurements.  It is clear
that if T2 = T3, then it is impossible to identify all the
four parameters K, T1, T2 and T3.  Since the zero term (1
+ T3S) will cancel out the pole term (1 + T2S).  It is then
inferred that the system defined by Eq. (6) is identifi-
able if T2 ≠ T3.

In practice, the value of T2 is nearly equal to the
value of T3 and we have a near cancellation situation.
This will result in an ill-conditioning problem when
trying to identify the values of T2 and T3 appearing in the
second order Nomoto model defined by Eq. (6).  Due to
this ill-conditioning property, the first order Nomoto
model defined by Eq. (7) is preferred to Eq. (6) in the
design for an adaptive autopilot, where reliable on-line
estimation of the model parameters is needed.

SYSTEM OVERSHOOT AND ZERO LOCATION

In this section, the effect of the zero term appear-
ing in the second order Nomoto model defined by
Eq. (6) will be studied.  Unit step response will be given
to illustrate the relation between the zero location and
the existence of overshoot behaviors.  Unit step re-
sponses for the second order Nomoto model defined by
Eq. (6) with the following numerical data will be
presented.  Specifically, K = 10, T1 = 10, T2 = 20.  Four
values will be assigned to T3 to represent different
locations of the zero.  Specifically, Fig. 2 corresponds to
the unit step response for T3 = 40, Fig. 3 corresponds to
T3 = 25, Fig. 4 corresponds to T3 = 15 and Fig. 5
corresponds to T3 = 5 respectively.  The overshoots are
observed in Fig. 2 and Fig. 3 but do not appear in Fig. 4

Fig. 2.  Unit step response,   10(1 + 40S)
(1 + 10S)(1 + 20S)

.

Fig. 3.  Unit step response,   10(1 + 25S)
(1 + 10S)(1 + 20S)

.

Fig. 4.  Unit step response,   10(1 + 15S)
(1 + 10S)(1 + 20S)

.
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and Fig. 5.  Moreover, the overshoot is larger in Fig. 2
than that in Fig. 3.  By examing the position of the zero
relative to the pole, it is found that the closer the zero is
located near the imaginary axis, the larger the overshoot
is.  Moreover, for the overshoot to exist, the zero must
be located to the right of the poles.

In practice the overshoot in the yaw rate r is
observed in large rudder angle turning maneuver.  Thus,
it is inferred that the second order Nomoto model has to
be employed, if the overshoot phenomenon is to be
captured.  Since the  first order Nomoto model can never
exhibit an overshoot phenomenon, it is indeed only
suitable for the description of small rudder angle yaw
dynamics, where overshoot in the yaw rate r will not
appear.

Moreover, for the steering dynamics, there is no
hydrodynamic restoring force involved.  Hence the yaw
rate r will not have an oscillatory behavior and the ship
steering dynamics will always act like an over-damped
system.  Consequently, the poles are always of real
values and this further justifies that the second order
Nomoto model that has two real poles is indeed appro-
priate in describing the plane motion-based ship maneu-
vering dynamics.  Recall that when reducing the second
order Nomoto model defined by Eq. (6) to the first order
Nomoto model defined by Eq. (7) actually neglects the
sway coupling effect on the yaw mode.  The zero and the
high frequency pole are then neglected.  Thus it can be
inferred that the overshoot in the yaw rate r is actually
caused by the sway coupling effect, and the tighter the
maneuver is, the larger the sway coupling effect is.
From the above discussions it is concluded that the first
order Nomoto model is suitable for describing the small
rudder angle yaw dynamics, and needs only two param-
eters to characterize the system behavior.  This makes it
relatively easy to identify the model from experiment
data.  The second order Nomoto model has better capa-
bility in capturing the overshoot behavior.  However,
near cancellation of one of the poles and zero makes it
an ill-conditioning problem in identifying  the model
parameters from experiment data makes it less attrac-
tive for an adaptive autopilot application.

In this paper, an alternative approach is suggested
for an adaptive autopilot implementation basing upon
the second order Nomoto model.  Since the zero of the
transfer function helps better describing the yaw dy-
namic overshoot behavior, its structure is retained and
the parameter is fixed at a value determined off-line
from input-output experiment data.  The model de-
scribed by Eq. (6) is thus unchanged, except that the
parameter T3 is fixed.  Hence, only the parameter K, T1

and T2 need to be identified on-line.  This strategy
preserves the feature of the second order Nomoto model
without introducing the ill-conditioning problem in iden-

tifying the model parameters makes it more attractive
than the conventional implementation of an adaptive
autopilot based on the first order Nomoto model defined
by Eq. (7).

MODEL SIMPLIFICATION AND BODE PLOTS

A fourth order linear state space model represent-
ing the sway-yaw-roll modes of motion given in Ref.
[12] will be used as the nominal model in constructing
the corresponding yaw to rudder transfer function.  Fur-
ther simplification to the second order Nomoto model
and the first order Nomoto model will also be presented.
The nominal state space model is given by

  x = Ax + Bu (23a)

y = Cx (23b)

where

   
x =

φ
p
v
r

(23c)

u = δ (23d)

y = r (23e)

and

  

A =

0 1 0 0
– 0.059 – 0.07 – 0.00594 0
– 0.0756 0 – 0.04 – 1.933
0.001134 0 – 0.00011– 0.0813

(23f)

Fig. 5.  Unit step response,   10(1 + 5S)
(1 + 10S)(1 + 20S)

.



Journal of Marine Science and Technology, Vol. 7, No. 2 (1999)86

  
B =

0
0.00821
0.1559

– 0.0033

(23g)

C = [0  0  0  1] (23h)

Using the MATLAB, the transfer function from
input rudder δ to the output yaw rate r is obtained as

   r
δ =

– 0.0033S 3 – 0.00038S 2 – 0.000195S – 0.000079

S 4 + 0.1913S 3 + 0.075S 2 + 0.0692S + 0.00013

(24)

The numerator and denominator of Eq. (24) are of
third order and fourth order in S respectively, and this
agrees with that of Eq. (4).  It is to be noted that Eq. (24)
represents the yaw dynamics with inclusion of the roll
and sway coupling effects.

Fig. 6.  Bode diagrams, fourth order model.

Fig. 7.  Bode diagrams, second order model.

Fig. 8.  Bode diagrams, first order model.

By neglecting the roll mode in Eq. (23), the fol-
lowing yaw rate to rudder transfer function that includes
the sway coupling effect can be obtained

   r
δ =

– 0.0033S – 0.00015

S 2 + 0.1213S + 0.00304
(25)

Eq. (25) corresponds to the second order Nomoto
model defined by Eq. (6) Further neglecting the sway
coupling effect results in the model that has yaw mode
itself only

   r
δ =

– 0.049
1 + 17.78S

(26)

Eq. (26) corresponds to the first order Nomoto
model defined by Eq. (7) Bode plots that represent the
frequency domain yaw responses of the models defined
by Eqs. (24)-(26) are given in Figs. 6-8 respectively.
Each figure has a magnitude plot and a phase plot.
Specifically, Fig.6 corresponds to the fourth order model,
Fig. 7 corresponds to the second order model and Fig. 8
corresponds to the first order model.  The magnitude
plot and phase plot of the second order Nomoto model
are about the same as those of the fourth order model,
expect that there are humps associated with the fourth
order model.  The difference between the second order
Nomoto model and the first order Nomoto model is
somewhat larger.  Specifically, there is a 5db magnitude
difference and a 20 deg phase difference for the fre-
quency range between 10−2 rad/sec to 10−1 rad/sec.

Based on the results of Figs. 6-8, it is clear that the
effect of model simplification from the fourth order
model to the second order Nomoto model is not
significant; namely, the coupling effect of the roll mode
on the yaw motion is negligible.  However, the effect of
model reduction from the second order Nomoto model
to the first order Nomoto model is more significant;
namely, the coupling effect of the sway mode on the
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yaw motion is not negligible.  Hence for the ship model
reported in Ref. [12], it seems reasonable to use the
second order Nomoto model defined by Eq. (25) to
represent the behavior of the fourth order model repre-
sented by Eq. (24) in an autopilot design.

Step input response of the ship models described
by Eqs. (24)-(26) is also given to exhibit their time
domain behaviors.  Specifically, Figs. 9-11 correspond
to the yaw rate response, due to 35 deg rudder input, of
a fourth order, second order and first order model
respectively.

With the frequency response information of the
Bode plots for models with different level of complexity,
modeling errors caused by model reduction can be
better assessed.  The yaw rate response in the time
domain provides a convenient way of assessing the
behavior of each model.  It is well known that a more
complicated model tends to better describe the system
behavior in a wider frequency range.  However, the
intended frequency range of a dynamic system is
usually limited a finite interval, which is usually roughly
known in advance.  This information is helpful in choos-
ing the appropriate model that achieves reasonable
accuracy in the frequency range of interest.

CONCLUSIONS

The first order Nomoto model being very popular
in the design for ship steering autopilots is not without
reason.  Its simplicity and reasonable accuracy in
describing small rudder angle yaw dynamics make it
attractive.  Moreover, the relative easiness in identify-
ing the model parameters makes it suitable for adaptive
autopilot application, where on-line estimation of the
model parameters is important.  The second order
Nomoto model includes the coupling effect from the
sway to the yaw mode.  This introduces a zero and a high
frequency pole into the transfer function.  The zero
structure contributes to the overshoot phenomenon,
which can be seen in the yaw rate for large rudder angle
maneuvers.  However, the ill-conditioning problem
associated with the second order Nomoto model in the
identification of the model parameters from input-out-
put data seems to outweigh the improvement gained in
its modeling capability.  An approach that retains the
zero structure while avoiding the ill-conditioning
problem during on-line estimation has been proposed.

The first order Nomoto model’s state space coun-
terpart is found to be both controllable and observable;
hence, both the state feedback and output feedback
controllers can be successfully implemented.  The
second order Nomoto model’s state space counterpart is
also observable; however, the system is not controllable,
if the effective sway time constant Tv is equal to the
effective yaw rate time constant T.  Bode plots of
models with different level of complexity are useful in
characterizing the relative modeling errors incurred due
to model reduction on the frequency domain.  With the
help of Bode plots, justification of using a simple model
can be done within the intended frequency range of
application to ensure that the frequency response of the
simple model reasonably approximates that of the
complicated ones.

Fig. 9.  Yaw rate response due to rudder, fourth order model.

Fig. 10.  Yaw rate response due to rudder, second order model.

Fig. 11.  Yaw rate response due to rudder, first order model.
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