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ABSTRACT

The robust stability of Lur’e system with parametric uncertainty
is studied through the Popov-Lyapunov approach.  Robust stability
bounds of such a system are presented.  Since we avoid using norm
forms and absolute values, the obtained stability bounds are less
conservative.  An example demonstrating the feasibility of our method
is illustrated.

INTRODUCTION

Many significant results on robust control of linear
systems with uncertain parameters are recently obtained.
This work can be roughly divided into two directions:
the frequency domain approach [1-3] and the state-
space approach [4-6].  In the former, many researchers
proposed various sufficient (and necessary) conditions
to ensure  stability or to estimate the root distributions
of interval polynomials.  However, most of these results
fail to provide stability bounds (robustness measures)
on the uncertain parameters.  For the state-space
approach, although many results give the range of pa-
rameters for stability, they are generally restricted to
bounds on the norm forms of an additive uncertainty in
the system matrices.  Since the norm expression of the
uncertain matrices gives typically more conservative
results for the estimation of stability, some achieve-
ments to decrease conservatism in stability robustness
bounds are successively presented.  The method pro-
posed by Gao and Antsaklis [6] is one of these less
conservative results.

In practice, most physical systems are generally
nonlinear and include parametric uncertainty.  These

nonlinearities and uncertainty may be caused by satura-
tion of actuators, friction forces, backlashes, aging of
components, changes in environmental conditions, or
calibration errors.  Especially, many nonlinear systems
can be transformed into the well-known Lur’e systems;
that is, they can be decomposed into linear parts and
nonlinear parts.

The robust absolute stability of Lur’e systems is of
considerable interest to researches.  An analytical method
for robust absolute stability analysis of Lur’e systems
subject to parameter variations was proposed [7], in
which the linear plant coefficients are functions of few
physical parameters.  Two robust stability criteria for
Lur’e systems were proposed [8]; in these cases a
bounded scalar perturbation function must be given in
advance.  The classical Popov criterion was generalized
to include problems with both parametric uncertainty
and bounded perturbations [9]; the main result is that a
robust Popov criterion for an interval Lur’e system is
given, and the maximum range of the nonlinear sector is
also obtained.  However this approach cannot estimate
stability bounds of uncertain parameters to guarantee
the stability of the system; i.e. the stability can only be
judged if the bounds of the uncertain parameters are
given.  Robust Popov theorems were presented in [10-
12], but in many cases the uncertain matrices cannot be
transformed to feedback forms (i.e. ∆A = −BFC, 0 ≤ F ≤
K, see [11]); thus the feasibility of this approach is
diminished.  Conditions for robust stability of a Lur’e
system with multiple nonlinearities was proposed [13];
stability bounds were also given.  The defects of this
manner is that the calculation is tedious.

In this paper, we consider a control system of
Lur’e type in which not only the linear part include
parametric uncertainty but also the nonlinear sector
bound is unknown.  We use Lyapunov’s direct method
to guarantee the global stability of a Lur’e system with
parametric uncertainty, and then a robustness measure
that gives a bound on allowable uncertainty for the
system is derived, evading expressions for the norm or
the absolute value.  A feature of the measure is that it is
possible to decrease further the conservatism of the
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stability bounds in a class of problems for which knowl-
edge of signs and ranges of uncertain parameters is
available.  As the plants are specified in the forms of
state variables, all system parameters have explicit physi-
cal meaning.  Therefore, the derived stability bounds
can directly help us to select appropriate performance
(precision or reliability) for system elements.  An ex-
ample demonstrates the feasibility of our method.

SYSTEM DESCRIPTION

In practical applications, many control systems
can be described by a Lur’e system with parametric
uncertainty as ,

    x = (A + ∆A)x – (b + ∆b)φ0(σ), (1a)

σ = cTx (1b)

where x(t) ∈  Rn is the state; σ(t) ∈  R is the output; A ∈
Rn × n, b = [bj] ∈  Rn × 1 and c ∈  Rn × 1 are the nominal system
matrices; ∆A ∈  Rn × n and ∆b = [βj] ∈  Rn × 1 denote
uncertain matrices; and φ0 ∈  R is a sector nonlinearity
and belongs to the sector [0, K0], K0 > 0.  Assume that
∆A and ∆b take forms

    ∆A = Σ
i = 1

m

k iE i, (2)

    ∆b = {[β j]:β j
– ≤ β j ≤ β j

+, if b j = 0,

   then β j = 0, j = 1...n} (3)

in which Ei are given real constant matrices, and ki are
real uncertain parameters.  We assume    (b j + β j

–)(b j + β j
+)

 > 0; this assumption signifies that even if bj are uncertain,
their signs do not be changed.  Without loss of generality,
we represent system (1) as the following form

   x = (A + ∆A)x – bφ(σ), (4a)

σ = cTx (4b)

where the nonlinearity φ(σ) belongs to the sector [0, K],
and K satisfies the following condition

   
K ≥ K 0 max max

j
b j ≠ 0

b j + β j
–

b j
, max

j
b j ≠ 0

b j + β j
+

b j
.   (5)

In the next section, we consider the stability of
Lur’e system with parametric uncertainty and find some
less conservative allowable bounds such that the system
remains stable.

ANALYSIS OF STABILITY

The following lemmas are useful for stability analy-
sis of Lur’e systems with parametric uncertainty.
Lemma 1  If U ∈  Rn × n and x ∈  Rn, then

   
x TUx = x T U T + U

2
x = x THx (6)

where H is a symmetric matrix.
Proof:  The proof is straightforward and is omitted for
brevity.
Lemma 2  For any Hermitian matrices Hi, and scalars ki,
i = 1...m.

    λ Σ
i = 1

m

k iH i ≤ Σ
i = 1

m

λ max(k iH i). (7)

Proof:  See [6].
Lemma 3  If ε is a strictly positive number, W0 and W
are positive-definite symmetric matrices and

    εW 0 + Σ
i = 1

m

k iH i = εW (8)

where ki are real uncertain parameters, and Hi are given
real constant Hermitian matrices.  Then

    Σ
i = 1

m

k iλ i < λ max(εW) (9)

with λ i defined by

    
λ i =

λ max(H i) for k i ≥ 0
λ min(H i) for k i < 0

i = 1...m. (10)

Proof:  This lemma is easy to be proved with the aid of
Lemma 2.

With the aid of the above lemmas and Lyapunov’s
direct method, we have the following theorem.
Theorem:  If the system described by equation (4)
satisfies the assumptions as follows:

(A1) the nonlinearity φ(σ) belongs to the sector [0, K]
where K is a positive number;

(A2) let    v = 1
2

(rA Tc + c) and     γ = rcTb + 1
K

 where r, K >
0are chosen such that γ ≥ 0.  Given a symmetric
positive-definite matrix W, there exists a scalar ε
> 0, a vector q, and symmetric positive-definite
matrices P and W0 satisfying

ATP + PA = −qqT − εW, (11)

   Pb – v = γq, (12)

    εW 0 + Σ
i = 1

m

k iH i = εW (13)

where
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   H i = 1
2

(U i
T + U i) (14)

Ui = (2P + rKccT)Ei; (15)

Then, the point x = 0 is globally asymptotically stable.

Proof:  Let us consider a Lur’e-Pastnikov Lyapunov
function candidate

    V(x) = x TPx + r φ
0

σ
(y)dy,   r > 0 (16)

Since P is a symmetric positive-definite matrices and
the nonlinearity φ(σ) belongs to the sector [0, K], i.e., 0
≤ σ • φ(σ) ≤ Kσ2, it implies V(x) is positive-definite.
From system (4), we derive

    V(x) = x T(A TP + PA)x – 2x T(Pb – 1
2

rA Tc – 1
2

c)φ(σ)

    – (rcTb + 1
K

)φ2(σ) – 1
K

(Kσ – φ(σ))φ(σ)

+ 2xTP∆Ax + rφ(σ)cT∆Ax. (17)

where    1
K

(Kσ – φ(σ))φ(σ) ≥ 0.   Let

   v = 1
2

(rA Tc + c), (18)

    γ = rcTb + 1
K

. (19)

It follows that

   V(x) ≤ xT(ATP + PA)x − 2xT(Pb − v)φ(σ) - γφ2(σ)

+ xT(2P∆A + rKccT∆A)x

= xT(ATP + PA)x − 2xT(Pb − v)φ(σ) - γφ2(σ)

    
+ x T(2P + rKccT) Σ

i = 1

m

k iE i x. (20)

Let us define

Ui = (2P + rKccT)Ei (21)

   H i = 1
2

(U i
T + U i). (22)

According to Lemma 1, we have

    V(x) ≤ x T(A TP + PA)x – 2x T(Pb – v)φ(σ) – γφ2(σ)

    
+ x T Σ

i = 1

m

k iU i x

=
    

x T A TP + PA + Σ
i = 1

m

k iH i x – 2x T(Pb – v)φ(σ)

  – γφ2(σ). (23)

If equations (11) to (13) are satisfied, then

    
V(x) ≤ – x T εW – Σ

i = 1

m

k iH i x – (x Tq + γφ(σ))2

    ≤ – εx TW 0x – (x Tq + γφ(σ))2 < 0 (24)

So, x = 0 is globally asymptotically stable.
For system (4), if the parameters A, b, c, and Ei are

known, the procedure of deriving the robust stability
bounds of ki is as follows:
Step 1. Draw the Popov plot of cT(jωI − A)−1b.  If the

Lur’e system is absolute stable, then select ap-
propriate positive numbers r and K.

Step 2. According to equations (3) and (5), the stability
bounds of βj and K0 can be found.

Step 3. Evaluate v and γ from equations (18) and (19),
respectively .

Step 4. Select a symmetric positive-definite matrix W
and a positive real number ε, then P can be
obtained by solving the following algebraic
Riccati equation

   A r
TP + PA r – PR rP + Q r = 0 (25)

in which

    A r = A – 1
γ bvT, (26)

    Q r = εW + vvT

γ , (27)

    R r = bb T

γ . (28)

Of course, solving the above Riccati equation is
very easy with the aid of many package software such as
MATLAB.  If P is nonpositive-definite, then select
different ε or W until P has a positive-definite solution.
For convenience, we can set εW = εI.
Step 5. Since λmax(εW) = λmax(εI) = ε and λ i can be

found by equations (10), (12) and (13).  Thus,
the allowable bounds of ki can be estimated from
inequality (9).

Since a parameter varies in various directions, it
affects the system stability variously [6].  One of the
significance of the proposed method is that the conser-
vatism is apparently decreased as a result of avoiding
using norms and absolute values.  Some remarks con-
cerning the proposed method are as follows.
Remark 1  The stability bound on ∆A is obviously
dependent also on the size of K (i.e. the bound of ∆b and
the size of K0).  In general, if K is large, then large
uncertainty in the entries of ∆A is not allowable.
Remark 2  The proposed method only provides a suffi-
cient condition to guarantee the stability of a Lur’e
system with parametric uncertainty.  If various values
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of ε are selected in Step 3, then the corresponding
stability bounds can be found, respectively.  The system
which parameters are varied in the union region of all
bounds is still stable.  Thus the conservatism is de-
creased further.

AN ILLUSTRATIVE EXAMPLE

In order to show the feasibility of the proposed
method, we consider a mass-damper-spring system, in
which the mass is driven by a torque motor.  The
schematic description of the system and the equivalent
block diagram are shown in Figures 1 and 2, respectively.
Assume that the time constant of the motor is much
smaller than the time constant of the mass-damper-
spring system such that the relationship between the
motor command −φ0 and the driving force f can be
regarded as a constant gain, i.e., f = −kMφ0.  Additionally,
the motor is controlled by a proportional controller with
saturation.  The dynamic equations of the nonlinear
system are as follows:

  x = x 2, (29a)

  x = – k
m x 1 – c

m x 2 + 1
m f

   = – k
m x 1 – c

m x 2 –
k M
m φ0(σ), (29b)

σ = kPx1. (29c)

where φ0 is a nonlinear element that belongs to the
sector [0, K0].  For practice applications, the parameters
m, c, k, kM and K0 are difficult to be estimated  exactly
or may be variable.  In this example, we suppose

  k
m = 1 – k 1, (30)

  c
m = 3 – k 2, (31)

   k M
m = 1 + β 2, (32)

kP = 1. (33)

Rewriting  equation (29) as the form of equation (1), we
have

    
x = 0 1

– 1 + k 1 – 3 + k 2

x – 0
1 + β 2

φ0(σ), (34a)

σ = [1  0]x, (34b)

According to the previous definition, the matrices  A, b,
c, ∆A, ∆b, and Ei are as follows:

  
A = 0 1

– 1 – 3
, (35)

  b = 0
1

, (36)

  c = 1
0

, (37)

    ∆A = k 1E 1 + k 2E 2 = k 1
0 0
1 0

+ k 2
0 0
0 1

,       (38)

   ∆b = 0
β 2

. (39)

Our purpose is to find the stability bounds of K0, k1, k2,
and β2.  According to the Popov plot of the nominal
system cT(jωI − A)−1b shown in Figure 3, let us consider
the case of r = 1 and K = 1.  Since the bounds of ∆A and
K are notably dependent as described in Remark 1.  The
larger the value of K is, the smaller the allowable range
of ∆A.  Along the previous mention and equations (3)
and (5), K0 and β2 have to satisfy the following condi-
tions

K0 > 0, (40)

1 + β2 > 0, (41)

K0(1 + β2) ≤ 1. (42)

The stability bounds of K0 and β2 are shown in Figure 4.
Next, we let ε be equal to 0.5, 1 and 2, respectively.  The
corresponding stability bounds are shown in Figure 5,
and the stability region is the union of these bounds.
The stability region according to our method is appar-

Fig. 1.  A schematic description of the mass-damper-spring system.

Fig. 2.  Equivalent block diagram of the mass-damper-spring system.
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ently asymmetric about the origin.

CONCLUSIONS

We assess the stability of Lur’e systems with
linear uncertainty and/or unknown nonlinear sectors.
Robustness stability bounds for Lur’e systems with
parametric uncertainty are presented.  These bounds are
less conservative and easily obtained due to avoiding
norm forms.  According to the proposed method, the
information how various uncertain parameters affect
the stability of system can be described clearly.  From
the illustrative example, we demonstrate that our method
is feasible and useful for practical applications.
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