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ROBUST MULTIPLE CONSTRAINED STATE
FEEDBACK CONTROLLER DESIGN WITH
MINIMUM AUXILIARY ENTROPY FOR LINEAR
DISCRETE SYSTEMS

Wen-Jer Chang*

Keywords: State feedback control, Auxiliary entropy. H... norm, State
variances, Regional pole assignment.

ABSTRACT

Existence of a state feedback controller with minimized
auxiliary entropy design problem will be explained in this paper.
This state feedback controller will achieve multiple performance
constraints for linear discrete systems. These constraints include
individual state variance constraints, H.. norm constraints and
regional pole assignment constraints. By achieving the previous
three requirements. the state feedback controller can then be solved
through use of the singular value decomposition (SVD) techniques
and the theory of generalized inverses. An example will be pro-
vided to demonstrate the effectiveness of the present methodology.

INTRODUCTION

The controller design approach, which mini-
mizes an entropy integral, is outlined in monographs
[1-4]. As shown in [1], these controllers lie between
H.. optimal controllers and LQG optimal controllers.
Controllers which minimize entropy are considered
optimal because of the risk-sensitive control problem
of the stochastic control theory [5]. Many direct
extensions [1-4, 6-9] result from similarities between
the control and the classical LQG control. Under a
minimal set of assumptions, the combined Hz/H..
approach [1-4, 6-8] gives formulas for solving the
problem of finding a controller such that an upper
bound for the generalized H, norm of a closed-loop
transfer matrix and the H.. norm of some other closed-
loop transfer matrix are jointly below specified
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levels. In [9], it is shown that the Linear Matrix
Inequality (LMI) approach is a convenient tool for
expressing and combining a variety of design specifi-
cations, including performance tracking, disturbance
rejection, LQG performance, robustness to model
uncertainty, and pole placement objectives.

It is well known that pole location is directly
associated with performance specifications such as
the setting time and rise time of a control system. In
practice, the exact pole location is not required and it
is often enough to simply locate them in a prescribed
region in the left half-complex plane for continuous
time systems [10-12], or in the unit disk for discrete
time systems [11-14]. A well known desired region
for linear discrete systems is a disk D centered (u.0)
with radius p, where p < 1 and [y| + p < 1. The problem
of locating all the closed-loop poles of controlled
linear discrete systems inside this specified disk D(i,p)
is explained in the literature [1 1-14].

In [1-4, 9-10, 12], an optimization procedure is
provided to achieve pole placement constraints and
H,/H.. norm constraints. As pointed out by Skelton
[15], the optimal control technique can only guarantee
that the entire control system state vector behaves
well. Little can said about the transient behavior of
individual state variables. The Riccati-like equation
approach applied in [1-13], which minimizes a qua-
dratic cost function, lacks the guaranteed individual
variance constraints with respect to system state. To
overcome such drawbacks, the authors developed an
upper bound covariance control technique [16-19]
which achieves individual variance constraints and
performs good transient behavior of the individual
state variables. In the previous exhibits [16-19], the
minimum auxiliary entropy and pole assignment con-
straints are not considered. Additional numerical
steps (e.g., SVD) are required in the controllers of
[16-19]. These additional steps prevent the control-
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lers from obtaining a precise in closed form. Hence,
the purpose of this paper is to develop a methodology
to design state feedback controllers such that closed-
loop discrete-time systems simultaneously satisfy H.,
norm constraints, circular pole constraints (i.e., D(u,p)
stability), individual state variance constraints and
minimum auxiliary entropy. The first contribution of
the present approach is to improve the previous treat-
ments [16-19]. It will characterize a closed form set
of state feedback controllers that allow the controller
parameterization to be explicit in the parameters of
the plant. Next, the present approach based on the
upper bound covariance control technique [16-19]
will provide good individual state transient behavior
rather than the mixed H,/H. method [1-8] and LMI
method [9]. A numerical example will illustrate the
theoretical results of this approach.

PERFORMANCE REQUIREMENTS
DESCRIPTION

Consider a linear discrete system described by

x(k + 1) = Ax(k) + Bu(k) + Dw(k), (la)
yk) = x(k), (1b)
u(k) = Gy(k), (le)

where x(k) e R™, Ae R**™ Be R**™ De R™
*mw G e R™* ™ and w(k) is a zero mean Gaussian
white noise process with covariance I. Furthermore,
w(k) and x(0) are independent of each other. It is easy
to find that the closed-loop system has the following
form

x(k + 1) = Ax(k) + Dw(k), (2a)
y(k) = x(k), (2b)

where A = A + BG. For the closed-loop system (2),
the closed-loop transfer function H(z) from noise
input w(k) to output y(k) may be written as

H(z)= (zI-A)" 'D. 3)
Definition 1

For a given positive scalar ¥, let the closed-loop
transfer function H(z) satisfy ||H(z)||.. £ y. where
H@)le= sup Onu[H(€’®)] and G4 (*) denotes

fe [0,27]

the maximum singular value of (). Then the entropy
of H(z) can be defined as follows [4].

det (I — y~2H"(e 19 H(e/%) |d

},2 n
IH.p=- EJ. In
=—yindet -y 2X), (4)

where X >0 is the solution of the following Riccati-
like equation;

X=ARA"+ AX(y1-X) 'XA" + DD". (5)
#

Proposition 1

If there exists a positive semi-definite matrix X
satisfying X = X and I — y~2X >0, then we can define
the upper bound entropy of I(H, y) as

I(H.p)=-y34n det(I - y~2X). (6)

That is, I,(H,))=-y%n det(I - y~2X) 2 ¥’In det(/
~y ) =IH). #
This proposition gives auxiliary entropy of I(H,
) for the closed-loop system (2). The proof of this
proposition may be found in the Appendix 2 of [4].
Now, we define X as the steady state covariance
matrix of the state vector of the closed-loop system

(2), i.e.,
X = Jim Elx(x(k)"], (7)

where E[*] denotes the expectation of [+]. Itis easy to
see that X satisfies the following Lyapunov equation

X=AXA"+DDT. (8)
Definition 2

Consider closed-loop linear discrete system (2).
It is said to be D(u, p)-stable if all the eigenvalues 4;
of matrix A satisfy |4, — u| < p. #
Lemma 1

Consider the closed-loop system (2). Let G be
given and let y> 0 be a fixed scalar. If there exists a
positive define matrix X satisfying

2AXAT - pAX - uXAT + (2 - pOX

+AXMXAT+DDT =0, 9)

where M = (¢?1 X)) 'isa positive definite matrix,

then the closed-loop system (2) is D(u, p)-stable,
||H(z)||.. < yand the state covariance matrix satisfies
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X<X.
proof:

It is assumed that A are v eigenvalue and eigen-
vector of A", respectively. Let A = x + jy and put it
into (9). We now have

(Jnr2 +y2 = 2ux + y? pz)vTXv
— (2 + y TRy - (x? + y )y TXMXv - v'DD "y
(10)

Since the right-hand side of equation (10) is
negative definite and we have

(x—p?+y < p’, an
which means that all eigenvalues of should be
located in a specified disk D(y, p).

Adding to both sides of (9), then equation (9)
becomes

K=X-AXA"-AXMXA"-DD", (12)

where K=(AQ-4Q) (AQ-4Q)" +(1-p)X and
X= (_!(_!T- Note that (1 — p*) 2 0 resulting in K 2 0. Let
z=¢?and 7 =e /%, where 6 € [0, 2n]. Equation (12)
is equivalent to

DDT = (zI - A)x(zl AT +AX(z1 A"
+ (I -A)XAT ~AXMRXA" - (13)

or

(21— A) 'pDT(zI-A) " —X+(zl A)”Ai
+XA"(ZI- A)'T-(zl -A) 'AXMXA"(z1-4)""
—@-A)"'RZI-A)"T (14)

Multiply (14) by -1 and add ¥I to both sides of
(14). This yields

y2I-H(H (2) = {M-'” @A -A) 'AXM'"?)
[M‘”2 (e~ Ay AXM”]
+(zl - A) K(zl A) (15)

It is clear that the right-hand side of equation
(15) is positive semi-definite, resulting in ¥'I —
H(z)H(z)* 2 0. This gives IH(z)||. < 7.

Subtracting (8) from (12) will give the result of

X-X=AX-XAT+AXMXA" + (AQ
- HQAQ - Q)" + (1 -pA)X, L16)

which is equivalent to

X-X= % AHAXMXA" + (AQ- 4Q) AQ-4Q)"
+(1-pHXT1 AY, a7

since A is stable. Because AXMXA " + (AQ - Q) (AQ

—uQ)T+ (1 -p?» =20, X=X is thus proved. #
From Lemma 1, we can conclude that the mini-

mum auxiliary entropy state feedback controller

design problem considered in this paper is to deter-

mine the state feedback controller G such that the

following performance criteria are satisfied:

<1> Individual variance constraints: [X1; < 07,i=1,
2..., ny; where [*];; denote the i th diagonal
element of matrix [*] and o} denotes the
Root-Mean-Squared (RMS) constraints for the
individual variances of the closed-loop linear
discrete system (2).

<2>H., norm constraints: ||H(z)||.. £ y for some
prescribed positive constant ¥.

<3> D(m, p)-stability constraints: MA)e D(u, p),
where A(*) denotes any eigenvalues of matrix [].

<4> Minimum auxiliary entropy: The auxiliary en-
tropy I,(H, ) defined in (6) is minimized.

STATE FEEDBACK CONTROLLER DESIGN
WITH MULTIPLE CONSTRAINTS

In this section, the minimum auxiliary entropy
state feedback controller which satisfies the perfor-
mance constraints <1>-<4> will be derived for linear
discrete systems. First, we will design a state feed-
back controller to achieve constraints <1>-<3>. Theo-
rem 1 will introduce the conditions for the existence
of this state feedback controller, which assigns a
specified upper bound covariance matrix for equation
(9). In Theorem 2, we will find the set of state
feedback controller solutions for the specified upper
bound covariance matrix as defined in Theorem 1.
The necessary conditions for this state feedback con-
troller minimizing auxiliary entropy will be derived
in Theorem 3. The Singular Value Decomposition
(SVD) theory, theory of generalized inverse, and
Lagrange multiplier technique will be used to derive
the results of the following theorems.

Definition 3

Given a desired c1rcular region D(y, p) and a
positive constant %, let X = X">0 bea prespecified
positive definite matrix, which meets performance
constraint <1>. The X is then called a D-y-assignable
matrix if there exists a set of matrices G such that
equation (9) has the positive definite solution X. #

Theorem 1
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A specified positive definite upper bound cova-
riance matrix X = X' > 0 satisfying performance con-
straint <I> is D-y-assignable by some G if and only if
the matrix

r=X,, +(AR-uXR '(RAT-1X) (18)
satisfies
(a) ' =0, and (19)

(b) I-BB*)[I' - (AR - uX)R™'(RA" - 1iX)|(1 - BB*)
=0, (20)

where R=2X+XMX, X, =-(u*-p)X-DD"+
UAX + uXAT - ARAT and [*]* denotes the Moore-
Penrose inverse of matrix [*](see [20]).

Proof:
It is clear that equation (9) may be written as

[BGP + (AR - iX) (PPT)~ 'P] [BGP + (AR
- X)) (PPT) 'P]" = KK, (21)

where PPT=R and K € R™ * ™ is defined by
X, + AR- R '(RAT-uX)=KK". (22)

From (21), it can be found that the right-hand
side of (22) is semi-positive definite. Hence, condi-
tion (19) will be immediately obtained. From Lemma
2.1 of [21], (21) is equivalent to

BG=KVP ' - (AR - uX) (PP")"', (23)

where V is some orthogonal matrix. From the theory
of generalized inverse [22], equation (23) must be
solvable for G, which is guaranteed if and only if

(1-BB*)KV = (I-BB") (AR - uX) (PP") 'P.
(24)

Since P is nonsingular, using Lemma 2.1 of [21] and
(22), equation (24) is equivalent to

(I-BBY)[KK"<AR-uX)R™'(RA"-1X)](I-BB ")=0.
(25)

From equation (22), we can find that (25) is equiva-
lent to (20). #

Using Theorem 1 and Definition 3 we know that
if the necessary and sufficient conditions of Theorem
1 hold for a specified upper bound covariance matrix

X, then there exists some matrices G such that equa-
tion (9) is satisfied. When equation (9) is satisfied.
performance constraints <l1>-<3> can be achieved
from Lemma 1. Here, it suggests that an assignment
must be made for the diagonal entries of X to satisfy
the variance constraint <1>. From condition (20), the
unknown off-diagonal entries of X will characterize a
nonlinear simultaneous equation. Using the well
known numerical methods (such as Fixed-point itera-
tion method and Newton’s method [23]), we can
obtain suitable off-diagonal entries of X for satisfy-
ing (20) and X=X" >0. Finally, we must substitute
the matrix X into condition (19). If condition (19) is
satisfied, then controller G will be obtained from the
following theorem. Otherwise, the diagonal and off-
diagonal entries of X must be reassigned.

Theorem 2

If the conditions of Theorem 1 hold for a speci-
fied upper bound covariance matrix X, then the state
feedback controller G which achieve this specified X
is given by

+ I 0
=B'[K

G KV U,
- uX) PP")" ']+ (I-B'B)Z, (26)

]V,T -1 _(AR

where K is expressed as in equation (22), Z € R™v*"y
is an arbitrary matrix, U, € R" =™ > "= jg ap
arbitrary orthogonal matrix, r, = Rank[(I — BB™)K],
and Vy and V, come from the SVD as follows:

(I-BBH)K = UzV,, (27)
(I-BB*)YAR-uX) (PPT) 'P=0ZV;.  (28)
Proof:

From the proof of Theorem 1. it is known that the
given X D-y-assignable if and only if there exists a
solution G to (23) for some orthogonal matrix V
satisfying (24). Using the theory of generalized in-
verses [22] and the Lemma 2.1 of [21], solution G of
(23) has the forms described by (26). #

From the above theorems we know that the first
step in designing a state feedback controller to satisfy
constraints <1>-<3> is to assign a suitable upper
bound covariance matrix X which satisfies the perfor-
mance constraint <1>. Conditions (19) and (20) of
Theorem 1 must also be achieved. If the necessary
and sufficient conditions of Theorem | are satisfied,
then the state feedback controller solution G will be
obtained from (26) of Theorem 2. To achieve con-
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straint <4>, the necessary conditions for minimizing
auxiliary entropy I,(H, ¥) via state feedback control-
ler (26) will be presented in the following theorem.

Theorem 3

If state feedback controller G defined by (26)
minimizes the auxiliary entropy I,(H, ) with |[H(z)||..
< 7, then there exists a scalar o = 0 and matrices
X=X">0, N = NT 20, such that (19)-(20) and the
following conditions are simultaneously satisfied:

a-y2%) '+ p?Ny—QIN;Q, - QIN;Q, =0,
(29)

where N, = (I — BB')N(I - BB*), 0, = A — ul and
0,=A+AX(U-X)".

Proof:

By minimizing the auxiliary entropy I,(H. 7)
through the state feedback controller G defined by
(26), it is necessary for conditions (19)-(20) of Theo-
rem | to be satisfied. To optimize I,(H, 7) defined by
(6), subject to the constraint (20), form the Lagrangian

J=—oy’n det(I - y~*X) + trN{(I - BB")[ - (u*
-pHX-DD" + uAX + uXAT - A2X
+ X(y21-X)"'XATII - BBY)}, (30)

where the Lagrange multipliers > 0and N=N"20
are not both zero. By taking the partial derivatives
[24] of (30) with respect to N, X and setting them to
zero, it is easy to obtain the necessary conditions (20)
and (29) for minimizing the auxiliary entropy I,(H,

n- #
AN EXAMPLE

Consider the linear discrete system (1) with the
following parameters:

xi(k+1)| _[0.15 0.08 || x:1(k) 0
Xk + 1) ‘|_ 0 —3.5] xk) | 2 fuct
+[0_%1]w(k). (31)

It is assumed that the performance requirements
have the following form

<1> E[x,(k)’] £0.5, E[xy(k)*] <0.1, (32)

<2> ||H(z)]l. < 0.8 (i.e., y=0.8), (33)

<3>u = 0.5 and p = 0.4 for disk D(y, p). (34)

Substituting ¢ = 0.5, p = 0.5 and y= 0.8 into
condition (20) and assigning &, = 0.025 and %, =0

X X
for = _1| ‘12
X12%¥2

, then the condition (20) becomes

~0.0375%3, + 0.0099%,, - 2.0896x 10 *=0 (35)

Note that the left-hand side of the equation (35)
is the (1, 1) element of matrix X ,,. Solving (35) we
obtain %, = 0.2416, which satisfies constraint <I>.
We may now obtain

. [o2416 o0
X—[ 0 o.o:zsl' (36)

It is easy to check that performance constraint
<1> and condition (20) are satisfied. Furthermore, by
substituting the above matrices into (18), it is easy to
find that condition (19) is also satisfied.

Since conditions (19)-(20) of Theorem 1 are
satisfied, from (22) and PPT = R we can obtain matri-
ces P and K as follows

po]07937 0
0 02259

k=|00378 0
: 0 0.0267

Furthermore, the matrices Vi and V can result
from equation (27) and (28) by using SVD,

0.8783 —0‘47821'

_[10] v -
V""[Ol » Vo=|_04782 0.8783

From (26), the state feedback control gain ma-
trix G can be obtained.

G =[0.008 -1.8206]. (37)

From the simulated responses (Fig. 1 and Fig.
2), we may obtain the variances of individual system
states: E[x;(k)*] = 6.9183 x 107 and E[x,(k)’] = 1.0067
x 107, It can be found that the performance constraint
(32) is satisfied. Substituting the state feedback
controller (37) into the discrete H.. norm definition
(Definition 1), we can obtain [|H(z)||.. = 0.0011 from
w(k) to x,(k) and ||H(z)||.. = 0.0116 from w(k) to x(k).
It is obvious that the H.. norm of the closed-loop
transfer function satisfies the performance require-
ment (33). Calculating the eigenvalues of the closed-
loop matrix A, we can find that the closed-loop sys-
tem poles are 0.1456 + 0.0356i, which are located in
the specified disk D(y, p). From the above descrip-
tions, it is shown that the state feedback controller
(37) drives the linear discrete system (31) to achiev-
ing the multiple performance requirements <1>-<3>.
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x 107

-2t

-3

0 50 100 150 200 250 300 350 400 450 500

Fig. 1. Steady state response of state x(k).

From Theorem 3, we know that if the state feedback
controller (37) minimizes the auxiliary entropy I,,(H,
P (i.e., the constraint <4> is satisfied), then there
exists a scalar @ > 0 and matrices X=X’ >0, N = N”
= 0 such that conditions (19), (20) and (29) are all
satisfied. To achieve constraint <4>, we choose @ =
0 and substitute X defined in (36) into condition (29).
We may then conclude that the (I, 1) element of
matrix N must be zero and the other elements must be
commensurately chosen for N = N” > 0. Placing X
defined in (36) into (6), we obtain the minimum upper
bound entropy [,(H, ) = 0.3289.

CONCLUSIONS

This paper has provided a solution of multiple
constrained state feedback controller design prob-
lems for linear discrete systems. The performance
constraints considered in this paper include regional
pole placement, H., norm constraints, individual vari-
ance constraints and minimum auxiliary entropy. We
first introduced a Riccati-like equation whose solu-
tion gives an upper bound of the state covariance
matrix. Based on this Riccati-like equation, the con-
ditions and solutions of the multiple constrained state
feedback controller design problems are derived
through the SVD theory, the generalized inverse
theory, and the Lagrange multiplier technique.
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