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A UNIFIED APPROACH FOR THE ROBUST SPR
PROPERTY OF A PARAMETRIC UNCERTAINTY
SYSTEM

Chih-Yung Cheng* and Chao-Fong Chang**

Keywords: strict positive real, parametric uncertainty, value set.

ABSTRACT

In this paper, we adopt a unified approach based on the concept
of value set to analyze the robust strict positive real (SPR) property
of uncertain systems with interval, affine linear or multilinear
uncertainty structures.

INTRODUCTION

Since the beginning of the 1980s, it was gradu-
ally recognized that the real issue of control engineer-
ing we were faced with was the difficulty of modelling
accurately the plant to be controlled. The idea of
taking model uncertainty into design consideration
soon developed into the so-called robust control theory.

The issue of robustness in control system de-
signs has been one of the main research interests over
the past fifteen years. In the early stage, the small gain
theorem is used as the principal tools for modelling
plant uncertainty. H.. control timely supplied a pow-
erful tool for robust control system designs. This
approach is based on shaping of singular values,
which is essentially a gain concept.

Gradually, the attention extends from the con-
cept of “gain” to the concept of “phase”, which is
closely related to the concept of positive realness. A
real rational function G(s) = %ﬁ% is said to be strict
positive real (SPR) if:

« G(s) is analytic in the closed right half complex

plane;
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» Re[G(s)] > 0, for Re[s] > 0.

Therefore, for an SISO system, we have the very
important phase condition that the polar plot of a SPR
transfer function must lie in the right half of the
complex plane. That is,

- g < arg[N(jaJ)]—arg[DUw)]-:%. Vowe R.

The strict positive realness can be thought of as
a counterpart of small gain concept. Small gain
theorem deals with the robust stability of a feedback
loop consisting of a nominal system and a norm-
bounded uncertainty block and it implies that the
tolerance of uncertainty will increase if we can reduce
the norm of the nominal system. Similar to the small
gain theorem, the robust stability of a feedback loop
consisting of a nominal system and a positive real
uncertainty block will be retained if the nominal
system is strictly positive real. The dual concept of
small gain and positive real is shown in Figure 1. In
the small gain case, system gain is restricted inside a
finite number, say 1, while in the strict positive real
case, system phase is restricted within £90°.

In this paper, we focus on the system with para-
metric uncertainties and investigate the problem of
robust strict positive realness. In the following dis-
cussions, the uncertain system will be modelled as a
real rational function family

7 i
%(
(7

Fig. 1. small gain versus positive real.
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_ N(s, a)
G(T) = D(S_,B; N

where

N(s.a) = :’-zl) as', D(s, b) = __ZU b;s,

a;, b; are real uncertain coefficients.

The uncertain parameters could be of indepen-
dent, affine linear or multilinear structures, which
will be defined in later sections. And a given family
of transfer functions is said to be robust SPR if every
member of the family is SPR.

When analyzing a parameter uncertain system
with its coefficients varying within a prescribed range,
we are indeed dealing with a whole family of systems.
Since there are infinitely many members in the fam-
ily, it is not practical to check one by one whether all
the members satisfy a certain property. Therefore, if
we can find a finite subset of the family such that the

whole family satisfy certain property if and only if

this finite subset satisfy this property, we can reduce
the computation drastically and this finite subset is
usually called the extreme point set [2,3,6]. In this
paper, we are going to provide an extreme point result
for the robust SPR property for the parametric uncer-
tainty systems,

Following the same line of idea, we have seen
several related results in the literature. Bose et al. [4]
and Shi [7] discussed the robust SPR problem for
interval plant families. Bhattacharyya et al. [5] con-
sidered the robust SPR property in absolute stability
of nonlinear system. Vicino et al. [9] provided a
framework based on simple frequency domain geo-
metric properties analyzing robust SPR for interval
plant-controller families. Recently, Tang et al. [8]
generalized the result of robust SPR for interval plant
family to affine linear system and provided a method
to synthesize the controller C(s) such that the open
loop system is SPR.

In the following sections, we will provide
a unified geometric approach which includes
some of the previous results as special cases and
generalizes the robust SPR criterion to multilinear
system.

DEFINITIONS AND NOTATIONS

In this section, essential terminologies and nota-
tions are introduced.
Definition 1 (SPR) A real rational function G(s) of
the complex variable s is said to be strict positive real
(SPR) if:

* G(s) is analytic in the closed right half plane,

and

* Re[G(s)] > 0, for Re[s] > 0.

The following property gives necessary and suf-
ficient conditions for a real rational function to be
SPR.

Property 1: A real rational G(s) = % is SPR if and

only if the following conditions hold:

* D(s) is Hurwitz;

* Re[G(jw)] > 0,Vw e IR.

From the second point of Property 1, we obtain
the following property.
Property 2: The polar plot of a SPR transfer function
must lie in the right half of the complex plane. That
is

- 5-*’ < arg[N(jw)] — arg[D(jw)] < % Voe R.

In the paper, the robustness problems involving
real parametric uncertainty will be considered. The
real rational uncertain system is expressed as a ratio
of two uncertain polynomials. Denote p(s, g) with g
€ Q as an uncertain polynomial where g is a vector of
uncertain parameters and Q is a bounding set for ¢
where

Q={qe R"q;<q;<q for i=1,2, .., 1}.

Similarly, p(s, r) with r € R defines another
uncertain polynomial with bounding set R.
Definition 2 (robust SPR) An uncertain system G =
‘gﬁ g; with g € Q. r € R is said to be robust SPR if

N(s, q) .
'D(s,g) is SPR forallge Q and r € R.

Whenever there is no danger of notation confu-
sion, we will drop the uncertain parameter of N(s, g)
to N(s) and D(s, r) to D(s).

The approach in this paper is mainly based on
the geometry of value sets of uncertain polynomials,
which is defined as follows.

Definition 3 (value set) Given an uncertain polyno-
mial p(s, q) with g € Q. The value set at frequency @
€ IR is given by

plw, Q) = {p(jw, q) : g € Q}.

That is, p(jo, Q) is the image of Q under p(jm, *).
Since the value sets of uncertain polynomials

associated with different parameter structures have

certain special properties, we investigate the numera-

" tor and denominator uncertain polynomials separately

and then combine them to get the phase properties of
the uncertain systems.
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ROBUST STRICT POSITIVE REALNESS OF
INTERVAL SYSTEMS
Let G, be a family of proper interval plants, i.e.,

G1= {G(s): G(s) = %g—;, N(s) € Ao, D(s) € Dy},
(1)

where A; and D, are families of interval polynomials,
i.e.,

= (NG NG) = 35 as's g 147 a7,

i=0,.. m}
D; = {D(s): D(s) = f)_:ﬂ rst, rye [r7, 1),
i=0,..n} -

and n = m.

For a given interval polynomial, we define the
following subset and make specific reference to the
numerator family, but similar definitions hold for the
denominator family. The set N includes the four
Kharitonov polynomials [2] representing four spe-
cific corners of the interval family in the coefficient
space

Ng = {N1(s), Na(s), N3(s), Na()},
where

N\(s) = g5 + q7s + q35> + 35> + ...,

Ny(s)= g5 +qis+ q5s2 + q35° + ...,

N3(s) = g6+ q7s + q3s? + @35> + ...,

Ny(s) = g5+ q}s + g5s* + q35° + ...

Lemma 1: (Value set for interval polynomials) [2]
For each frequency @, the value sets in the complex
plane of the numerator and denominator families of G;
are rectangles, denoted by V,(®) and V), respec-
tively. Furthermore, the previously defined
Kharitonov polynomials correspond to the four verti-
ces.

It will be shown that the SPR condition of
an interval family of transfer functions can be simpli-
fied by checking “eight” extremal transfer functions
of the family. The original form of this result has been
given in [5]. In the following, a slightly generalized
version will be given along with a straightforward
proof.

Theorem 1: An interval family G; of proper transfer
functions defined in (1) is robust SPR if and only if the

Vd

Vn

Fig. 2. Value sets for case |.

following eight transfer functions are SPR.

N N N N
G|: = —D‘:. Gz: = —DT, G3: = —D;. G4: = ‘Di,
N N N N
Gs:= —D;, Gg: = -Dj-, Gy = D_:' Gy = —Dz.
Proof:

« Necessity: If the system is robust SPR, it means
every member in the family is SPR. Therefore,
the necessity holds obviously.

« Sufficiency: For an arbitrary @ 2 0, there are
three possible alternative configurations.

— Case 1: (The value sets V,(w) and V() lie entirely
in the same quadrant but exclude the sides be-
longing to the coordinate axes). For example,
if V,(®) and V() both lie in the first quadrant.
From Figure 2, the phase difference A¢(®) =
arg[N(jw)] — arg[D(jw)] satisfies the phase condi-
tion, i.e.,

T ¥4
-5 <Ap(w) <75

— Case 2: (The value sets V,(®) and V() lie entirely
in two adjacent quadrants of the complex plane
including the coordinate axes). From simple geo-
metric graph, the phase difference is achieved in
correspondence to one out of the eight pairs of
Kharitonov numerator and denominator polynomi-
als. For example, if V,(®) lie in second or fourth
quadrant and V,(®) lie in the first quadrant (see
Figure 3), then A¢(®) is achieved by the following
configurations:

N(jw) = N3; D(jw) = Dy — Gg,
NUCI'J) = Ny; D(}ﬂ)} =D, — Gy,
N(jw) = N3; D(jw) = Dy = G,
N(jw) = Ny; D(jw) = D, = G1.

If V,(®) lie in the first or third quadrant and
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Fig. 3. Value sets for case 2.

4 2 4 2
Vn Ve
1 3 1 3
4 2
Ve
1 3

Fig. 4. Value sets for case.

V,(w) lie in the second quadrant (see Figure 3), then
it is easy to check A¢(w) is achieved by the following
configurations:

N(jw) = Ni; D(jw) = D3 — Gs,
N(jw) = N»; D(jw) = Dy — Gy,
N(jw) = Ny; D(jo) = Dy — G,
N(jw) = N»; D(jw) = D3 — Gg.

The same method applies when considering other
possible adjacent pairs of quadrants.

— Case 3: (The value sets V,(w) and V() lie in three
quadrants of the complex plane). There are two
situations in this case: The first situation is the
valuse sets V,(w) and V () lie in the same half
plane. For example, see Figure 5, it satisfies Prop-
erty 2. So, this situation is similar to Case 2. The
second situation, for example, if at some frequency
w*, the value sets V,(w*) and Vy(w¥) lie in three
quadrants is depicted in Figure 6, such that |A¢( @w*)|>
Z  Then it implies that there exist another ® < @*
such that V,(@) and V (@) are in the situation de-
scribed in Case 2, with |A¢(w*)|2g. But, this
situation violates the Property 2. Hence, if the eight

Va(w)

Fig. 5. Value sets for case 3.

V(o)

Vi (w9

Fig. 6. Value sets for case 3.

special transfer functions satisfy the phase condi-
tion, this situation can not happen.

Note that the proof excludes the possibility of
degree dropping more than one since it obviously
violates Property 2. By the analysis above, we can
conclude that if the eight transfer functions are SPR,
then it implies the interval family of G, is robust SPR.
The proof is completed.

Remark: Several simplified conditions for the ro-
bust SPR property of families of low order transfer
functions can be given as follows [9], which is similar
to the case of the Kharitonov’s theorem for polynomi-
als of order n < 4 given in [1]. The following results
can be easily obtained via the previous graphical
analysis.
1.If n = 2, SPR of the two transfer functions G,, Gs
implies robust SPR of the entire family.
2.If n = 3, SPR of the four transfer functions G,, Gs,
Gg, Gg implies robust SPR of the entire family.
3.If n =4, SPR of the six transfer functions G,, Gs, Gg,
Gy, G4, G; implies robust SPR of the entire family.
Example 1: Consider the following stable family
G(s) of interval system whose generic element is
given by
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Fig. 7. Phase difference for example 1.

G(s) = SB%‘” ]
s rest+ sty
Solution: We first check eight extremal plants as
follows:

s> +4s2+ 25+ 1
s 4452+ 55+ 17

3,12
= Go(s) = -5 +3s +&‘
Gyls) 2(5) s +452+ 55+ 1

34+ 442 1 343524254 1
Gu(s) = S+dsiast ]l _s343524 254 1
U e L W

sSS+4s7+s5+1 ()_.5'3+3.$2+25_+_1
o) =515

Gs(s) = 2
5(5) s3+352+ 5542 s3+3524 55+ 1

G-,»(s)=s—;—+452+2s+l, ():s3+352+_2sﬂ_
S +3s2+6s+2° ° 53+ 352+65+2

Since these eight plants are SPR and by Theorem
1, G(s) is robust SPR. In order to verify the result,
a computer simulation result plotting the outer
envolope of the phase angle is shown in Figure 7. For
w e [10%, 10*], its phase difference satisfies

larg[N(j)] — arg[D(j®)]| < 7
therefore, G(s) is robust SPR.

ROBUST STRICT POSITIVE REALNESS OF
AFFINE LINEAR SYSTEMS

In this section, let us start with the definition of
an affine linear uncertain polynomial.
Definition 4 (affine linear uncertain polynomial)
Assume g is a vector composed of uncertain param-
eters. An uncertain polynomial p(s, g) = Z?:o ai(q)s'
is said to have an affine linear uncertainty structure if
each of the coefficient function a;(g) is an affine
function of g. That is, for each i, there exists a vector
o; and a scalar f3; such that

afq)=0alg+pB;

Let G, be a family of transfer functions with
affine linear uncertainty structures, i.e.,
Ni
Gar= {G(s) : G(s) = P N(s) € Nogs
D(s) € Dyg) )

where both N,z and Dy are affine linear uncertain
polynomials.

Affine linear cases can arise frequently in uncer-
tain feedback system descriptions. For example, for
an interval uncertain plant

N(s,
P(qu,r): D((%’

connected to a controller

Nls)

D(s)’

forming a unity-feeback system, the closed-loop trans-
fer function

C(s) =

P o NAING.qg) _
CL™ NAs)N(s, g) + DAs)D(s, )’

comes out naturally as an affine linear system.

In order to represent the value sets of affine

linear polynomials, we first review some elementary
materials from the theory of convex analysis. A set C
c IR¥ is said to be convex if the line joining any two
points ¢’ and ¢? in C remains entirely within C, and its
convex hull, denoted by conv C, is the smallest convex
set which contains C. A polytope P in R is the
convex hull of a finite set of points {p', p*, ..., p"}. 1.e.,
P = conv {p'} and call {p', p?, ..., p"} the set of
generators. A point p € P is said to be an extreme
point of P if it can not be expressed as a convex
combination of two distinct points in P.
Lemma 2: (Value set for affine linear polynomials)
[2] Let 2 = {p(*, q): ¢ € Q} be an affine linear
polynomial with uncertainty bounding set 0 =
conv{q'}. Then, for a fixed @ > 0, the value set p(j,
Q) is a polygon with generating set {p(jw, ¢')}. That
is

p(jo, Q) = conv{p(jo, ¢")}.

Furthermore, we introduce some new notations
as follows:

a(, :the subset of the vertex polynomial in Ny
D, :the subset of the vertex polynomial in Dy
V. (w): the value set of Ny
Vi (w): the value set of D,z
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Fig. 8. Phase difference for example 2.

Suppose there are m vertex polynomials in N
the phase of the i-th extreme polynomial in Al at the
s = jw is denoted by 6,(®), i=1,2, ..., m, and 0 <
6,;(w)<2m. Then define

6,(w): = max 6,(a),

O (@) := ierr[lli!lm] 6, (w).

Similarly, 8;(®) and 63 (w) for D, can be de-
fined.

It will be shown in the following that the robust
SPR condition of an affine linear family of transfer
functions can be simplified by checking vertex trans-
fer functions of the family. The original form of this
result has been given in [8].
Theorem 2: A proper transfer function family Gz
defined in (2) is robust SPR if and only if the follow-
ing conditions are satisfied:

* Re[G(0)] > 0, VG(s5) € Gupr
* Ng and D, contain at least one Hurwitz stable
polynomial, respectively;
* 0;(@) - 63(w) < 7, 6(@) ~ 6() >~ 7 for all
we IR.
Proof: The proof will be included as a special case in
multilinear case in the next section.
Example 2: Consider the following family G(s) of an
affine linear system whose generic element is given
by

57+ (g, +4)s2+(q, +q,+6)s+ 1
2+ 293+ q4+ s>+ (qu+ s+ (23— q4+5)

G(s) =

and g, € [-1,2), q2 € [-2,2], g5 € [-1, 1], g4 € [-2,2].
Check whether this system is robust SPR or not?
Solution:

1.Re[G(0)] = »—— L

2q q+_5“aﬂd1£ZQ3—Q4+5£9 SO,
3744

the condition Re[G(0)] > 0 is satisfied.

2.Let ¢, g2, g3, g4 be all zeros. Then the roots of
numerator and denominator polynomials are
{-1.905341.2837,-0.1895} and {-0.5163+j0.7558,
-5.9674}, respectively. So, the numerator and de-
nominator polynomials are both Hurwitz stable.

3. A computer simulation result plotting the phase
difference is shown in Figure 8. The phase dif-
ference satisfies the third point of Theorem 2;
therefore, the system is robust SPR.

ROBUST STRICT POSITIVE REALNESS OF
MULTILINEAR SYSTEMS

In this section, let us start with the definition of
a multilinear uncertain polynomial.
Definition 5 (multilinear uncertain polynomial)
Assume g is a vector composed of uncertain param-
eters. An uncertain polynomial p(s, g) = Z?:n ai(q)s'
is said to have a multilinear uncertainty structure if
each of the coefficient function a;(¢) is multilinear.
That is, if all but one component of the vector g is
fixed, then a;(g) is affine linear in the remaining
components of g.

Let G be a family of transfer functions with
multilinear uncertainty structures, i.e.,

Gati = {G(S): G(5) = 3 N(s) € Nt

D(S) € Dmuh‘i} (3)

where both A(,,,,;; and D,,,;; are uncertain polynomials
with multilinear structures.

Multilinear cases can arise frequently in uncer-
tain system descriptions. The following are some
examples.

1. In frequency domain description, for example, we
only roughly know the two dominant poles location
of a transfer function

. 1 _
Glg= (s+qg)5+qy)°

and we can describe g and ¢, to be in an interval to
account for the uncertainty. Therefore we can
rewrite it as

G(s) = ! e
s2+ (g1 + 4925+ 919,
where it becomes a multilinear case.

2. In time domain description, for example, we repre-
sent a two-state system as

x=Ax+bu,

_| 41 492 r
_I(Is Q4Ix+|"2 -
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To accout for the uncertainty, which could be re-
sulted from modelling inaccuracies, we allow g,
g2, g3 and g4 to lie in an interval. When computing
its characteristic polynomial

det(s;— A) = s* — (q1 + q4)s + (9194 — 9293),

the multilinear structure came out naturally due to
the operation of determinant.

As far as the value set is concerned, the
multilinear case is much more complicated than the
affine linear case. The following theorem provides a
tight approximation of the value set of multilinear
uncertain polynomial, which will be used in the later
proof.

Lemma 3: (Mapping Theorem) [2] Suppose Q < R'
is a box with extreme points {g'} and f: Q = R*is
multilinear. Let

Q) = {flg): g€ Q}.
Then it follows that
conv f(Q) = conv{f(q’)}.

And some new notations will be introduced as
follows:
A, :the subset of the vertex polynomial in

%"m-h-,

D, :the subset of the vertex polynomial in
rJDJri'u.d'.n's
V,(@): the value set of Npui»
V4 w): the value set of Dy
Suppose there are m vertex polynomials in Nopyuis
the phase of the i-th extreme polynomial in Ay at s
= jwis denoted by 6,(®), i=1,2, ..., m, and 0 < 6,(®)
< 2x. Then define

6,(0):= max 6,(®),

8,(w):= ‘_En‘[l]iflm] 6,{w).
Similarly, 8}(w) and 6 (w) for D, can be de-
fined.
Theorem 3: A proper transfer function family G i
defined in (3) is robust SPR if and only if the follow-
ing conditions are satisfied:
* Re[G(0)] > 0, VG(S) € Gmutsi
* Npwuiei and D, contain at least one Hurwitz
stable polynomial, respectively;
* 0}(0) - () < T, 6,(0) - 3(w) >~ % for all
we R.
Proof:
A basic difference between the analysis of affine

85N\ Val®) Valo)| 82 gr < v (u) velw)| 8

Fig. 9. Typical value sets for affine linear and multilinear systems.

linear and multilinear cases is the shapes of the corre-
sponding value sets. The affine linear map has the
property that transformation of straight lines remains
straight lines. Therefore, in the affine linear case, the
value set mapped from a polytope will be a polygon.
However, in the multilinear case, due to the multilinear
structure of uncertain parameters, the boundary of its
value set is not necessarily composed of segments.
Furthermore, it could even be a nonconvex set. This
phenomenon highly complicates the problem of the
multilinear systems. Typical value sets of affine
linear and multilinear systems are shown in Figure 9.
Fortunately, by Lemma 3, the value sets of multilinear
system can be contained in the convex hull generated
by its vertices and when calculating the phase angle
no conservatism will be introduced by using the cov-
ering.

« Necessity: If G, is robust SPR, it obviously
implies that Re[G(0)] > 0, VG(s) € Gpmuni by Property
1. From Definition 1 we can deduce following fact: a
transfer function G(s) is SPR if and only if G'(s) is
SPR. By above fact and Property 1, we know that
Noputri A0d Dpury contain at least one Hurwitz stable
polynomial, respectively. Furthermore, it naturally
satisfies phase condition and implies that

03(0) - 63(0) < T, 6,() ~ 6j() > z,

forall we IR.

« Sufficiency: This part of proof is proceeded as
follows. To have the robust SPR property, the fre-
quency response of the whole family must stay inside
the open right half complex plane. The first and
second point of Theorem 3 can show that we have at
least one such member. And we need to further show
that the frequency response the whole family does not

cross the imaginary axis. That is, VYre IR, we IR,
N(s) € Nopuiri» D(8) € Douiri
N(jow) . .
DGy~ "

or
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D(jw) # —jrN(jw).

The left hand side is the value set of denominator
uncertain polynomial and the right hand side is the
* % (depending on the sign of r) revolving value set of
the nominator uncertain polynomial. In previous
section, we have known that the value set for an affine
linear uncertain polynomial is a polygon and all edges
of the polygon are obtained from the edges of uncer-
tainty box. For multilinear uncertain polynomial, its
value set has more complex structure. The outer
boundary of the value set is not only obtained from the
edges of uncertainty box but also from the internal
points of uncertainty box. For the sake of simplicity,
the Mapping Theorem provides a conservative result.
From Figure 9, the angles of 6;(68;) and 63(8;) are
determined by extreme polynomials in N and Dy,
respectively. It is easily shown the value set inequal-
ity D(jw) # —jrN(jw) is equivalently to the phase
condition

0 (@) - 0, (w) < -"2'5, 0,(w) - 0() >- ’27 Voe R.

Then it implies that the family G is robust
SPR. The proof is completed.
Remark: Note that the case of interval systems could
also be treated similarly, but with the special property
that its value set rectangle parallel to real and imagi-
nary axis, more specific result can be obtained. This
is exactly what Theorem 1 investigated.
Remark: The same framework and reasoning can be
extended to include nonlinear parameter systems.
However, in the nonlinear case, the extreme points
needed to determine the phase angle may not happen
on the vertices or edges of uncertainty space, which
makes the nonlinear case much more difficult to
compute.
Example 3: Consider the following family G(s) of a
multilinear system whose generic element is given by

_ 5,4+(q1+92)5+4 9,
445 +(q3+q4+q495)5*+(q395+q4G5+q3)5+34 5

Solution:

1.Re[G(0)] = q‘g%. Due to ¢, 2. 3. g4 are all
positive numbass, Re[G(0)] > 0.

2. Let g = 04, q2 = 0'6, gy = 15., q4 = 1.5, gs = 1.5.
Then the roots of numerator and denominator
polynomials are {-0.4, -0.6} and {-1, -1, -1.5},
respectively. So, the numerator and denominator
polynomials are both Hurwitz stable.

3. A computer simulation result plotting the phase
difference is shown in Figure 10. The phase dif-
ference satisfies the third point of Theorem 3;
therefore, the system is robust SPR.

G(s)

Phans diffwence
S
i
50
w w 16" ' '
Frecquency

Fig. 10. Phase difference for example 3.

CONCLUSION

Positive realness is an important and fundamen-
tal notion in network and system theory. The concept
has been widely used in the stability analysis of
feedback systems, which includes lots of applications
in adaptive control theory. In this paper, the problem
of robust strict positive realness for uncertain systems
defined by interval, affine linear and multilinear were
discussed. Under a unified geometric framework, we
can conclude that to guarantee the robust SPR prop-
erty, we need only check some extreme points of the
whole family of systems.
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