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INVESTIGATION OF LONGITUDINAL ELASTIC
WAVE AT RIGHT-ANGLE JOINT OF TWO RODS

Ming-Te Liang* and Chiou-Jenn Chen**

Keywords: Incident, Reflection, Transmission.

ABSTRACT

The right-angle welded joint is usefully and frequently used in
the welded type for the steel structures. The present study is
focused on the longitudinal elastic waves propagating through the
right-angle welded joint of two rods. One uses the theory and
numerical calculation to identify the consequence of the problems
of reflection and transmission. The present study indicates that the
incident longitudinal elastic waves are almost reflected in the
horizontal rod while the values of 3% of the generated pulse are
transmitted in the vertical rod.

INTRODUCTION

Welded construction is one of basic industries.
Cars, locomotives, space shuttles, aircraft, ships, off-
shore platforms and power plants are all necessary to
manufacture or construct by using weld. Steel rod butt
weld is very popular to be used in basic industries.
However, steel rod butt weld always has many de-
fects. How to detect these flaws is very much valuable
to do investigation.

Mandel et al. [1] studied the problem of stress-
wave propagation through a right-angle joint by using
the method of characteristics, and also experimentally
verified their theoretical analysis. Lee and Kolsky [2]
used the Timoshenko beam equation [3,4] and applied
the method of Fourier synthesis to investigate the
problems of longitudinal stress waves transmitted
into the welded point with an obtuse or right angle and
also experimentally verified their theoretical analy-
ses. When two straight rods of equal square cross-
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section are joined at right angles with a full penetra-
tion butt weld, there would be no transmission of
longitudinal stress waves into the perpendicular
branch. Atkins and Hunter [5] explored the problem
of longitudinal elastic waves transmitted right-angled
corners in rods of square cross-section. It was found
that the values of longitudinal elastic waves propa-
gated were not existed in the perpendicular branch
through the experimental strain values compared with
the theoretically predictive values. It is worth point-
ing out that Atkins and Hunter [5] did not give the
values of incident, reflection and transmitted waves
and time scale for Fig. 4 and Fig. 9 in the paper of [5].
Simha and Fourney [6] extended the Atkins-Hunter
equation [5] to present a general formulation for the
analysis of stress wave propagation through a
junction of rectangular rods. They concluded that a
longitudinal stress wave in the horizontal rod is not
transmitted into the perpendicular branch. Wu and
Lundberg [7] dealed with harmonic elastic wave in a
uniform rod with a semi-infinite straight input
section, a bend with constant radius of curvature and
a semi-infinite straight output section. For a sharp
right-angle bend, the energy flux of the transmitted
extensional wave is up to 4% of that of the incident
extensional wave, depending on the frequency.

This paper is focused on the study of the theo-
retical treatment of the refection and transmission of
a longitudinal elastic wave around elastic right-angled
joint in two rods of square cross-section. In order to
study, two straight rods of equal square cross-section
are joined at right angles with a full penetration butt
weld, ground back to the original cross-section. The
region of butt weld is assumed to behave as a elastic
body. The effects of the cross-section dimensions of
butt weld were neglected. The theoretical analysis is
applied to the L-type and is used to theoretically
predict the passage of longitudinal elastic waves
through the junction. One practical example is re-
ferred to illustrating case study. Finally, the conclu-
sion are drawn down.
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Fig. 1. L-type joint rod and its free-body diagram. The physical
properties of the steel rod are as follows: unit weight g = 77 KN/
m’, density p = 7850 Kg/m®, Young’s modulus E = 200 Gpa,
shear modulus G = 80 Gpa and Possion’s ratio v = 0.3.

THEORETICAL FORMULATION

Figure 1 indicates the L-type joint rod and its
free-body diagram. The L-section decomposed into
two rods of uniform and equal square cross-section of
side 2L together with a cube of side 2L. In the system
of local coordinates for the individual rod, the hori-
zontal and vertical rods are respectively adopted the
second and first quadrant. In the system of general
coordinates, the first quadrant is adopted. In the
Fig. 2, @is very infinitesimal. From the displacement

Fig. 2. The deformation of L-type joint rod.

relationship , one knows
Us=X+6y, U =Y- 6. (1)
In the case of the symmetric mass center, the

moment of inertia for the mass is

16pL°
11: g s {2}

where p is density.

The second moment of inertia is

4
=4 (3)

1, 3

The mass of per unit length is
m = 4plL°. (4)
From Fig. 1 and the definition of rotational

angle, one knows that the horizontal and vertical rod
is respectively

D1y g, 5
GO, 5)
d}'z

—== =-0. 6
(dxz)i")zﬂ ¢ )

From Fig. 1, one knows
Ui, 1) = =X, (7)
U0, 1 =-Y. (8)

Sin@ = 0 when 6<<1. From Fig. 1, one obtains
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y1(0, ) =Y+ 6L, (9)
v2(0,1) =Y — 6L. (10)

From wave equation, one knows
ox7 C? o’

where

=0, (11a)

C= \,f , E:Young’s modulus, p:density.
S:mlldrly, according to wave equation, one
obtains

(11b)

From the definition of strain, one knows that the
horizontal and vertical rod is respectively

oU,

o, = a—xl, (12{1']'
_ - 0U,
oy=E 3 k. (12b)

The following three symbols are defined

ot + 'E',): the incoming incident longitudinal
% displacement field,
Or(t — Cl‘) : the reflected longitudinal wave in the
N horizontal rod,
Ot — fz): the longitudinal displacement field
generated in the vertical rod.
From the displacement compatibility, one knows

Ui(x, )= ¢yt + %)+¢R(I_%)s (13a)

Uy(xy, ) = ¢7(r—f:%). (13b)

Now consider the relationship of welded joints.
Setting x; = 0 into Eq.(13a) and using Eq. (7) one can
get

910, 1) +¢g(0, 1) = -X. (14)

Putting x, = 0 into Eq. (13b) and using Eq. (8),
one knows

o0, 1) = Y. (15)

On calculating the axial stresses from Eq. (12a),
(12b), (13a) and (13b) and multiplying by the area 4L*
to obtain the axial forces T; and T3, one finds the
equations

T

/(0. 1) — 9p(0, 1) = TociE o (16)
T,

0,0)=- 47

‘M 2 4pCL“ L

where T, and T, are the axial forces in horizontal and
vertical rod, respectively. Taking the equilibrium of
force and moment in the Fig. 1, one gets

T, + Q,=-8pL’X, (18)

T, + 0, =-8pL°Y, (19)
16pL> 2

~M,+ (0~ Q) =13 (20)

The boundary conditions at x, = 0 for the bend-
ing moment M(x,, t) and shear force Q(xs, 1) in the
vertical rod are respectively

MO0, t) = M, 00, 1) = Q5. (20

From Fig. 1 and the definition of material
strength, one knows

Q ax-; (22]
az)’z "
M= EL(3). (23)
0%y, _ 90
m ara = - a—xz, (24)

where m = 4pL°.

From Eqgs. (22), (23) and (24) together with Egs.
(3) and (4), one obtains the equation for transverse
waves

o', . 3 9%
axgz' + a2 3:22 =0. (25)

dy,
Using initial conditions y,(x,, 0) = 0, ( Y2

) and
applying the Laplace transform, Eq. (25) becomes

d4y2 3,0 e
=0. (26
ad Tt )

Solving Eq. (26) yields

5= Apexp [~ (1 + ) () x;

+ B(p)exp |- (1 -1) (%)szzl

+ C(p)exp|(1 +1)( )

+ D(p)exp |(1-D) (7 )”ZI 27)
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where

a_?:o%é (28)

For bounded values of y,(x,, p), one would have
C(p) = D(p) = 0. Differentiating Eq. (27) twice with
respective to x, and substituting into Eq. (23) and
putting x, = 0 yields

BEL Y P )ia - By = M. (29)

Differentiating Eq. (27) triple with respective to
x, and substituting into Eq. (22) and putting x, = 0
yields

30,
2 1-DA+(1 +DB]l=——5. 30
()[( 1)+(+!)]4L4 (30)
Let x; = 0, then Eq. (27) becomes
¥(0,p)=A+B. (31)

Differentiating Eq. (27) with respect to x; and
then setting x, = 0, one obtains

) [A +B+i(A-DB)]. (32)

G =

12—0
Solving Egs. (29) and (30) for getting A and B
and then substituting them into Eqgs. (31) and (32) ,
one obtains

50, p) = 4l (G + () 0,1 (33)

dv, o
G =-EEp0.+ 255 i 69

Taking the Laplace transform with respect to Eq.
(10) and comparing with Eq. (33), one gets

+ M,]=X-L6. 33
8EL4[( ) Qz ( ) 2= (35)
Using the Laplace transform with respect to Eq.
(6) and comparing with Eq. (34), one gets

"'[( op )Qz+2( ) ﬂz]=9- (36)

8EL* U

Similarly, comparing Eq. (33) with Eq. (9), one
obtains

BEL“[( ) Q1+(ap)M1—P+L9 37)

Similarly, comparing Eq. (34) with Eq. (5), one
obtains

SEL“[( )Q1+2(ap) "#,1=-6. (38)

Applying the Laplace transform with respect to
Eq. (14) to Eq. (20), one gets

@_“"I'l'éR:_X_v (39}
dr=-7%, (40)
. T
—Pp=—L 41
9= 9 4pCpL? ()
i T,
= = 42
or 4pCpL? (42)
T, + 0, =—8pL*p*X, (43)
T, + 0, =—-8pL’p?Y, (44)
— My + L@, 0))= 716”" 2.4 (45)

The incident wave @, is presumed known. Thus
from Eqgs. (35)~(45), the values of M, M,, 0,, 0,, T}.
Ty, T», @g, ¢, X, ¥ and O can be determined. Solving
the simultaneous equations mentioned above, one
gets

¢r=—G(p)pd, (46)
where
4a§(l+2§)2!3
G(p) = 5 =
(1+i§+ '5)[(1 4"‘5 28 =2 )1+ 5 )+(1+2§)]
47
I
&= %h". (48)

For convenience, the original positive x; direc-
tion is reversed. Thus, Eq. (46) becomes

or=G(p)p). (49)

Applying the convolution integral to Eq. (49)
yields

br= fG(:—r)d“”“'), (50)
where
() = L[G(p)). 51)

Obviously G(t) is the response for an input step
function of unit amplitude for which d¢;/¢, is the
Dirac delta function; that is

21— ). (52)
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On defining a parameter

oL

T="5 (53)

it is easily proved that G(7) can be denoted in the form

G(1) = X(§), (54)
where
X(5) = X(»). (55)

Using the Laplace transform on Eq. (55) gives

P : X(x)e-dx

14,2
dofl + 252713
1 3/
%JI(' + 4—“‘; 2 + -2,_{)(1 + —foézl+(l +297

b

) s'fl(l + 4“3_,,12 +
=5'20(s'2). (56)

Applying the inverse Laplace transform to Eq.
(56) gives

(57)

$ % 2
f e &xQu)du.
2.Jo

Tx) ¥

X(x) =
(

Substituting & = 0.866 into the above equation,
one obtains

0.000254-3.0793453+0.000165-1.15462

g6)= (6. 158955+3.079354+2.666853+6.309452+5. 154?s+5
- 0.00007s + 1.15466 (58)
{2 309452 + 1.1547s + 1)
The inverse Laplace transform of Eq. (58) leads
O(u) = L~ '[Q(s)]
(59)
From Abramowitz and Stegun [8], one gets
e-@smvorgy = L [T 5 “erfc 2, (60
| e L/Z (60)
where
o X A
erfc (x) = 2::‘”2[ e-dr, erf (x) = 27;"/2[ e~ dn,
x Jo (61)
and w(x + yi) = w(z) is the regular function of z,
(z)=¢€ [l —erf(—iz)]. (62)

Thus, Eq. (56) can be written as

X(x) = 0.0423816 ¢%5840%(1 — erf (0.764225/%))

+ (—0.000015 + 0.4107))w( — 0.6087vx + 0.25/xi)

+ (= 0.000015 - 0.4107i)w(0.6087/x + 0.25.xi)
+(0.0503946-0.3073i)w(-0.450343/x+0.408636/xi)
+(0.0503946+0.3073i)w(0.450343/x+0.408636/x1)
+(=0.071556+0.039018i)w(0.925546/3-0.540764/x7)

+(=0.071556+0.03901 8/)w/( —0.925546/x—0.540764vx1).
(63)

After simplifying the above equation, one ob-
tains

X(x) = 0.0423816 €°84%%(1 — erf (0.764225/x))

+Re [( — 0.0003 — 0.8214i)w(0.6087.x + 0.25/xi)]
+Re [(0.10079+0.61461)w(0.450343/x+0.408636vxi) |
+Re [(0.143112 + 0.078036i)w(0.925546/x
+0.540764/xi)] —e~ 0642((0.286224c0s(1.001004x)

+0.156072sin(1.0010041)]. (64}

Calculating the X(x) by substituting x values and
using the appropriate Table in Abramowitz and Stegun
[8] yields Table 1. When x >100, the x values are not
influenced by the X(x). Thus

X(x)=0.3098x""2  when x > 100. (65)

From Table 1, Fig. 3 can be plotted. For an input
unit step function , the response @y is directly obtained
by X. It is worth to point out that the shape of X is
independent of the cross-section geometry. How-
ever, the time scale 7 depends on L'?; for the ex-
periment L = 1.27cm and 7= 2.2us in [5]. The whole
width of the profile of Fig. 3 represent 0.22 ms. Thus
Fig. 4 in [5] can be given the values of ¢ versus time
scale. Fig. 4 in present study obviously make up a
deficiency in [5]. Finally substituting Eq. (57) into
Eq. (50), one gets

r= | - 01019 ay. (66)
From Achenbach [9] , one knows
vb n
W ,_ [h"(x), x€ (a,b),
Ja h(x)8™(x — X )dx —<0‘ ot 67)
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Table 1. Values of X(x) corresponding to x

X erf(0.7642/xi) w(0.6087vx+0.25/xi)  w(0.4503/x+0.4086vxi) w(0.9256vx+0.5408./x1) X(x)
0 0 1.0 1.0 1.0 0.00003
0.5 0.555256 0.7130+0.3239i 0.6895+0.2112i 0.5151+0.3233i 0.033524
1 0.720187 0.5846+0.3734i 0.5843+0.2391i 0.3764+0.3179i 0.106381
1.5 0.814377 0.4956+0.3860i 0.5166+0.247% 0.3005+0.29941 0.181298
2.0 0.873599 0.4339+0.3870i 0.4666+0.2498i1 0.2519+40.27851 0.235782
25 0.912531 0.3795+0.3805i1 0.4277+0.2485i 0.2185+0.2596i 0.235782
3.0 0.938766 0.3390+0.3721i 0.3959+0.2446i 0.1941+0.2435i 0.263223
3.5 0.956813 0.3061+0.3619i 0.3698+0.2405i1 0.1624+0.2855i 0.267081
4.0 0.969345 0.2791+0.3512i 0.3479+0.2361i 0.161040.2173i 0.229698
45 0.978121 0.2564+0.3409i 0.3286+0.23121 0.1492+0.20661 0.205822
5.0 0.984335 0.2369+0.3304i 0.3122+0.2267i 0.1396+0.1971i 0.184437
5.5 0.988744 0.2206+0.3203i 0.2976+0.22191 0.1314+0.1892i 0.168304
6.0 0.99188 0.2062+0.3113i 0.3034+0.2075i 0.1241+0.1816i 0.165898
8.0 0.997764 0.1651+0.2782i 0.2449+0.2013i 0.1043+0.1587i 0.141122
10.0 0.999369 0.1423+0.2540i 0.2172+0.18721 0.0914+0.1426i1 0.118574
20.0 1 0.087+0.1812i 0.1486+0.1435i 0.0623+0.10141 0.076574
30.0 1 0.0673+0.14811i 0.1192+0.12011i 0.0499+0.0829i 0.060528
40.0 1 0.0567+0.1279i 0.1023+0.1053i1 0.0429+0.0723i 0.05117
50.0 1 0.0512+0.1142i 0.0908+0.0948i 0.0382+0.0642i 0.045147
60.0 1 0.0452+0.1041i 0.0825+0.0869i 0.0348+0.0642i 0.045147
70.0 1 0.0415+0.0963i 0.0761+0.08071 0.0321+0.05431 0.037528
80.0 1 0.0386+0.0919i 0.0714+0.0756i 0.0308+0.0508i 0.0349463
90.0 1 0.0363+0.0848i 0.0669+0.07151 0.0283+0.0479i 0.0327647
100.0 1 0.0342+0.0804i 0.0633+0.0679i 0.0268+0.04541 0.03098
0.30 8.00E-4 — -
Legend
4 A Incident
il —@— Reflected |
40084 — | T Trnsmited (0. o*% '
P — Jll.'
020 — .'f. b .
X(x) / ., ‘
0. — = .
¢ DODE+0 b-g;____-.:t_l:r_tO___xtT == fr,‘
010 - .-'\‘ |
4,004 — ” {
Y kH |
] ) : L [
~— 1
-8.00E-4 - I . | |
RS I I T I 0.00E+0 2.00E-4 4.00E-4 6.00E-4
0.00 20.00 40,00 60.00 80.00 100,00 Time(sec)

Fig. 4. Values of ¢ versus time.
Fig. 3. Values of X(x) corresponding to x.

+ 0.25/11)] + Re [(0.10079 + 0.61460)w(0.450343/¢
+ 0.408636/1i)] + Re [0.143112

+ 0.078036i)w(0.925546/1 + 0.540764./1i)]
— e~ 0564210,286224 cos (1.001004¢)

+ 0.156072 sin (1.001004¢)].

Thus, Eq. (50) can be simplified as

or = X(),
= 0.0423816 €841 — erf (0.764225/1))

+ Re [(-0.00003 - 0.8214)w)(0.6087/1 (68)
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Table 2. The time interval needed action and the obtained values of transmitted longitudinal waves for three different sizes of
steel rod. The dimensions of sr-1, sr-2 and sr-3 are a = 1.219 m, 1.5 m, 1.0 m, b = 0.025 m, 0.03 m, 0.02 m, ¢ = 0.025 m,
0.03 m, 0.02 m and d = 1.219 m, 1.5 m, 1.0 m, respectively

sr-1 sr-2 sr-3
t(sec) (/1) or t(sec) (t/1) oOr t(sec) (/1) or
0.00024 112.15 0.0293 0.00030 116.73 0.0291 0.00020 116.55 0.0291
0.00026 121.50 0.0280 0.00034 132.31 0.0269 0.00024 139.86 0.0262
0.00028 130.84 0.0273 0.00038 147.86 0.0255 0.00028 163.17 0.0242
0.00030 140.19 0.0260 0.00042 163.42 0.0242 0.00032 186.48 0.0227
0.00032 149.53 0.0253 0.00046 178.99 0.0232 0.00036 209.79 0.0214
0.00034 158.88 0.0246 0.00050 194.55 0.0222 0.00040 233.10 0.0203
0.00036 168.22 0.0239 0.00054 210.17 0.0212 0.00044 256.41 0.0193
0.00038 177.57 0.0233 0.00058 225.68 0.0206 0.00048 279.72 0.0185
0.00040 186.92 0.0227 0.00062 241.25 0.0199 0.00052 303.03 0.0178
0.00042 196.26 0.0221 0.00066 256.81 0.0193 0.00056 326.34 0.0171
0.00044 205.61 0.0216 0.00070 272.37 0.0188 0.00060 349.65 0.0166
0.00046 214.95 0.0211 0.00074 287.94 0.0183
0.00048 224.31 0.0207 0.00078 303.50 0.0178
0.00050 233.65 0.0202 0.00082 319.07 0.0173
0.00052 242.99 0.0199 0.00086 334.67 0.0169
0.00054 252.34 0.0195 0.00090 350.20 0.0165
0.00056 261.68 0.0192
0.00058 271.03 0.0188
0.00060 280.37 0.0185
0.00062 289.72 0.0182
0.00064 299.07 0.0179
0.00066 308.41 0.0176
0.00068 317.76 0.0174
0.00070 327.10 0.0171
0.00072 336.45 0.0169
a0 . can be computed numerically.
\ & Lagos ILLUSTRATIVE EXAMPLE
R st
- &\ a > S Assume that the physical properties of welded
; T AL T joint are the same as the steel rod. Fig. 1 indicates the
I = ‘ physical characteristics of the steel rods. For the
¢'T dioe — Q e By calculating convenience, one assumes that the welded
B % *a joint has the equal size, i.e. length, width and thick-
5 .7 Bl Ty ness are equal each other. The thickness of welded
= ba joint is the same as that of rod. The three different size
002 — of steel rod are adopted and listed in Table 2. Because
the adopted steel rod is of different size, the time of
! action is also not the same. Using Eq. (68). the time
! | interval needed action and the obtained values of
T e 1 ok el S A i transmitted longitudinal elastic waves for three dif-
0.00E+0 2.00E-4 4.00E4 6.00E-4 B.00E-4 1.00E-3

Using the incident wave in Eq. (66) as the input
function in the integral, the theoretical values of ¢y

Time (sec)

Fig. 5. Values of ¢r versus time.

ferent size of steel rod is denoted in Table 2. From
Table 2, Fig. 5 can be plotted.

DISCUSSIONS

Atkins and Hunter[5] used Eq. (66) as the input
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function in the integral, the theoretical ¢ is computed
numerically and compared with the experimental
profile in Fig. 9 in [5]. They pointed out that the
agreement is good except perhaps at the peak
amplitude, where the theoretical value exceeds the
experiment one by about 25%. Eq. (66) was utilized
by Simha and Fourney[6] for the theoretical determi-
nation of the transmitted longitudinal elastic wave.
They pointed out again that the transmitted longitudi-
nal elastic wave amplitude is as most as 25 percent of
the incident elastic wave amplitude. In this paper, one
knows from Table 2 or Fig. 5 that the transmitted
longitudinal elastic waves are almost not existed; that
is, the maximum values of the transmitted wave is the
values of 3% of the incident longitudinal waves. This
is occurred that boundary conditions are satisfied the
condition of compatibility while vertical rod is
asymmetry. Thus, the coupling action is happen and
the infinitesimal values of transmitted longitudinal
elastic wave in vertical rod is existed. The numerical
results in this paper is very agreed the results obtained
by Lee and Kolsky [2].

CONCLUSIONS

The problem of elastic longitudinal wave pro-
pagated in the L-type welded rod has been described.
In the process of theoretical derivation, one knows
that the values of infinitesimal deformation of the
transmitted longitudinal elastic waves are of obvious
relationship with the size of welded joint of the steel
rod. The different size of welded joint will be ac-
companied with the different values of transmitted
longitudinal elastic waves. The present study indi-
cates that when the horizontal rod of L-type welded
steel rod was applied a force, the longitudinal elastic
wave through the welded joint nearly can not transmit
into the vertical rod. In this paper, the value of ¢ is
only considered. Basically, the other unknown values
such as ¢g, X, Y, etc. can adopt the same method to
calculate them.

NOMENCLATURE

A cross-sectional area
C wave velocity

E Young’s modulus
G shear modulus

G

(), G(p) function

I
I

Ve xCONZ

N
Or
or

moment of inertia for mass

the second moment of inertia
moment

axial force

shear force

displacement

unit weight

Poisson’s ratio

density

incident longitudinal elastic wave
reflected longitudinal elastic wave
transmitted longitudinal elastic wave
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