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COMPLETE SOLUTION OF THE FIVE-POSITION
SYNTHESIS FOR SPHERICAL FOUR-BAR
MECHANISMS

Chen-Chou Lin*

Key words: Spherical mechanism, Path generation, Motion genera-
tion, Continuation method, Five precision points.

ABSTRACT

The objective of this paper is to synthesis spherical four-bar
motion and path generators using continuation method (homotopy
method). Using continuation method, we may obtain a complete set
of the solutions to the problems, and provide mechanism designers
with all possible choices which meet the kinematic specifications.
In contrast to other local numerical schemes such as Newton
method and Powell method which are sensitive to initial guess,
continuation method is a global convergence method that guarantee
to find all solutions to the equations. In this paper, the problems
with four and five precision points will be formulated, solved, and
compared with the past results. We use the concept of graphical
inversion and pole method to derive the design equations. Equa-
tions derived from such method are relatively simple. The total
degree of the design equations is lower than other methods. Hence
we may solve the design problems effectively. A reliable computer
code using the numerical scheme has been developed and applied.
The resulting mechanisms will be classified by their rotatability,
and mechanisms with circuit and order defects will be examined.

INTRODUCTION

For the problems of mechanism dimensional
synthesis, the synthesis of path generators means to
design the dimension of the linkage so that a coupler-
point may trace a curve approximating the desired
path. In general, there are two ways of approximating
a curve. One is to make a point on the linkage pass
the selected precision-points on the desired curve.
The other way is application of optimization tech-
nique such as least-square method to make the total
deviation between the traced curve and the desired
path minimized. For the first approach, we may

Paper Received January, 1998. Revised April, 1998. Accepted April,

1998. Author for Correspondence: Chen-Chou Lin.

*Associate Professor, Department of Mechanical and Marine Engineer-
ing, National Taiwan Ocean University, Keelung, Taiwan R.0O.C.

assign at most nine precision-points on the desired
path for the synthesis of planar or spherical four-bar
linkages. In practical design situation, one may desire
to specify the ground pivot locations, or to coordinate
between the crank angles and the position of the
precision-points. In these cases, a maximum of five
precision-points can be specified.

There are various approaches used in solving the
planar motion and path generation problems, includ-
ing graphical methods [1], analytical closed-form
solutions [1], and numerical methods [2-11]. Graphi-
cal methods are used in simple cases or where high
precision is not expected. Analytical closed-form
solutions mainly refer to vector-loop method or com-
plex-number method. It has been proved successful
for them in solving path generation problems with
five or less precision points. In the aspect of numeri-
cal method, Roth and Freudenstein [5] first proposed
the Bootstrap approach in solving nine-point path
generation problem for planar linkages. However, the
approach does not guarantee the convergence of the
problem. Nevertheless, the method has some simi-
larities with continuation method. Recently, continu-
ation method was applied in the synthesis of planar
linkages, and proved to be an effective numerical
technique [4,8,10-12]. The method has the advan-
tages that it is a globally convergent numerical scheme
which tend to be convergent, and users do not have to
provide initial guess. Besides, the method can pro-
vide the complete set of solutions for the problems.
The limitation of the method is that the total degree of
the system can not be too large, otherwise the compu-
tation time would not be acceptable. In the past years,
there were some investigations about the ways of
reducing the system order for continuation method.
For examples, introducing the multi-homogeneous
variables, or parameter homotopy technique [10,11],
etc. We may obtain all of the mechanisms that meet
the design specifications by continuation method.
This means that mechanism designers can have more
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choices. On the other hand, traditional method such
as Newton’s method can provide only one set of
solution. Often, even different initial guesses may
converge to the same solution.

There were only limited research about the
synthesis of spherical motion and path generation
problems. Suh and Radcliffe [7] first applied dis-
placement matrix in the synthesis of spherical path
generators. However, the total degree of the design
equations in their formulation become very large for
five-point synthesis. Also they only solved the prob-
lem with moving pivots or fixed pivots locations
specified. Recently, Chiang, Lin and Tong [3,9]
proposed the pole method which is considered as a
semi graphical-analytical method. The formulation
can handle various design specifications for path
generation problems. We shall apply the concepts of
graphical inversion and pole method to cast the design
equations into the form of system of polynomial
equations. The same examples in [9] will be illus-
trated and solved by continuation method here. The
complete set of solutions will be provided for the
synthesis of spherical linkages with five-position
motion and path generation problems.

THE DESIGN EQUATIONS

If a rigid body undergoes a motion with the axis
of rotation always passing through the center of a
sphere S, then the rigid body motion is called a
spherical motion. A spherical linkage is a linkage on
which all of the points remain on concentric spherical
surfaces during its movement. To solve the dimen-
sional synthesis problems of planar mechanisms,
researchers often model the linkages by vectors or
complex numbers in their mathematical representa-
tions. However, for spatial or spherical linkages, we
have to use matrices, or dual numbers/vectors to
represent the linkages and their motion.

Consider a Cartesian coordinates system whose
origin is located at the center O of a unit sphere S. The
equation of the spherical surface is then

S:+y*+2=1. (n

Let the position vector of a point P(xy, ¥, 2;) be
r;, and r; rotate an angle ¢ about an axis of unit
direction vector u to its second position r;. Then the
spherical motion of the vector can be formulated by
the Rodrigue equation as following:

r; = (1—cos@)(r;*u)u + cos¢gr; + sing(u x ry), (2)

or expressed in its matrix form as

r> = R(u, ¢)ry, (3)

Where

uvg+co  u UV —uSP U UV +usP
R, 9)=| uuvo+usg uvd+cop uuvd—use|,
UV —USP UMY+ U SO uivh+cd

(3a)

and c¢ = cos¢, s¢ = sing, v = 1—cos¢

To formulate the design equations of the motion
generation (body guidance) and path generation prob-
lems of spherical four-bar linkages, here we shall use
the concept of inversion in graphical synthesis
approach of planar mechanisms, and the concept from
the pole method developed by Chiang, Hsi, and Lin
[3,9]. The formulation has the following advantages:
(1) The problems can be formulated in the form of
system equations of polynomials, which is required
by continuation method, (2) The total degree of the
polynomial system is far less than that of other formu-
lation approach, such as that in [7], (3) In our
approach, we may specify either ground pivot loca-
tions or crank angles for path generation problems.
The second advantage is considered important since,
in general, continuation method demands the system
order be small. In what follows, we shall first review
some of the above concepts, and modify the synthesis
procedure in [9] in order to reduce the system’s total
degree to fit our need.

Motion Generation (rigid-body guidance)

We begin with the motion generation problem
with four finitely separated positions specified. The
problem is stated as following: If given four finitely
separated positions, it is to be determined the loca-
tions of two fixed pivots Ay, By, and the first position
of two moving pivots A, B, of linkages that can guide
a body from position 1, 2, 3, to position 4. In general,
the four positions can be specified in the form of
displacement matrices, for example, D; denotes the
transformation matrix between position 1 and i.
Nevertheless, they can also be specified in the form of
locations of two selected points on the coupler. And,
the later specifications can always be transformed
into the first one. Now let the homologous points of
the circle-point A; be denoted by A; (i = 2, 3, 4), we
then have the following relation:

Xai XAl .
Yai|=Dui| yai |- i=2,3,4 4
Zai a1
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Because all circle-points A; must lie on the circle
centered at the center-point Ag, meaning that Ag(x4,
Ya0» Z40) must lie on the plane of perpendicular bisec-
tor between A; and A;. Therefore, we may obtain the
following equations:

(xai — xa1)%a0 + (Vai — Yar)Yao + (2ai — 241)240= 0
i=2,3,4. (5)

In its matrix form, we have

Xg2—Xa1 Yaz—Yar Zaz2—Zai (| Xao0
Xg3—Xg1 Yaz—Yal 2a3—Zai [[Yao[=0-
Xaa—Xa1 Yaa—Yar Zaa—Za1 || 240

i=23,4. (6)

Substitute Eq. (4) into Eq. (6), we get

Uy Vi Wilxs0
U, Vo Wy || yao[=0, (7)
Uy V3 Wi || 240

where U; = (dyy; — 1)xa1 + diayar + dizizars (8a)

Vi=dyixay + (dazi — D)yar + dozizar, 1= 1,2, 3.
(8b)

W, = ds1ixa1 + dapyar + (d3zi — Dzan, (8¢)

and d,; denotes the matrix element in Dy;.

For the existence of non-trivial solutions of Ay
in Eq. (7), the determinant of the square matrix of
left-hand side must vanish. By expanding the deter-
minant, we derive the equation of a spherical cubic
cone, whose intersection with the unit sphere S repre-
sents the circle-point curve, which is denoted by &, .
The expanded determinant is expressed in terms of
polynomials of x4, ya1, 241 as following:

. 3 3 3 2

ki €yxz) + CoYar + €324 + CaX 1Y)
+ CeX21Za1 + CeYI1Xay + C1V512

sX41Za1 + Ce¥a1Xa1 + €7YV41241

2 2 _
+ CgZ31Xa1 + CoZZ1Ya1 + C10¥a1YaiZa1 = 0, (9)

where the coefficients ¢;’s are not listed here for
brevity. In practice, we use symbolic processing
software package Mathematica to derive these coeffi-
cients.

For the four-position motion generation prob-
lem, we may arbitrarily assign a coordinate, for
example, x4, substitute it into Eq. (9), then solve
together with Eq. (1), to get the y4;, and z4;. Then we
substitute these coordinates into two of the equations
in Eq. (7), together with Eq. (1), we may now get the

coordinates of the corresponding center-point Ay.
Similarly, we can solve for the coordinates of the
other Burmester-point pair B, and By. Hence we may
conclude that there are o number of free choices for
the synthesis of four-position motion generation of
spherical four-bar linkages.

For five finitely separated position motion gen-
eration problem, we are given by the displacement
matrices D, i = 2 to 5. Following the same procedure
as in four-position problem, we may derive two equa-
tions of the spherical cubic cones kj1234) and ky(1235)-
Together with Eq. (1), we may solve for the locations
of circle points A; and By, and their corresponding
center points Ag and By. There is no free choice in the
synthesis five-position motion generation problems;
meaning that there are only finite number of linkages
to be synthesized in this kind of problems. It has been
pointed out by Roth in [6], that there are at most six
real solutions (excluding their origin symmetric solu-
tions) for spherical five-position motion generation
problems.

Path Generation with Prescribed Crank Angles

The path generation problem with prescribed
crank angles is stated as following: Given the loca-
tions of four discrete points, E; (i = 1 to 4), and three
crank angles, @,, @3 and @, it is required to synthesize
linkages whose coupler point can pass the four preci-
sion points, and coordinate with respect to the
prescribed crank angles. Here we shall apply the
concept of inversion process in graphical synthesis.
Fig. (1a) shows the prescribed crank angles, the pre-
cision points, as well as the linkage to be determined.
If we fix the crank AgA,, the corresponding positions
of the four precision points with respect the crank
angles become E’; (i = 1 to 4). The positions of E” is
can be obtained by rotating A¢E; about A axis through
—¢,, —¢3 and —@4, as shown in Fig. (1b), and their
coordinates can be expressed as .

xl;ji . XEi
yii | = R(OAg, - ¢'.‘)[)’|-;i . i=2,3,4 (10)
Zgi ZEi

Equation (10) shows that the coordinates of E;
can be expressed in terms of polynomials of x40, Y40
z40. Since points E;, E’, E3, and E’; must locate on
the circle centered at A,, it follows that

(g = Xp)Xay + Vg = YEY a1 + (zg = 2e0)241 = 0,
i=2,3,4 (11)

For the existence of nonzero solution of x4, Y41.
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Fig. 1. (A) Four-Point Path Generation Problem. (B) An Inversion of
Fig. 1(A).

and z,4; in the homogeneous equations set Eq. (11), the
determinant of the coefficient matrix must vanish.
Hence .

X2~ Xg1 YE2—YE1 iE2<ER1
det| | xg3—Xg1 Ye3—Ye1 ZE3— 2k

Xga —Xg1 YE4a— YE1 ZE4—ZE1

=0. (12)

By expanding the determinant of Eq. (12), we
obtain a sixth-degree polynomial equation in vari-
ables of x40, Y40, Z40- We may further reduce it into a
third-degree polynomial equation, if a proper coordi-
nate system [13] is chosen. The intersection of the
surface with a unit sphere § is a cubic-order curve,
which represents the collection of the center-points
Ag that satisfies the design specifications. It is ex-
pressed as following:

: 3 3 3 2
ka0t k31x30 + k32Va0 + k33230 + K34X40Y a0

+ k35x30Za0 + k36¥302a0 + K379A0% + k35240 a0

+ k39230Y40 + K30%a02a0 + K21XZ0 + k22V50

+ K32 + KogXg0Y a0 + K25Ya0Za0 + K26¥a0240

+ kX0 + koVao+ k13240 + ko=0. (13)

where the coefficients k,, are not listed here for
brevity, nevertheless, they can be obtained by using
symbolic processing package. It is shown that k,,’s
are functions of positions of precision points and the
prescribed crank angles.

For the four-position path generation problem,
we may arbitrarily assign a coordinate, for example,
Xa0, substituting it into Eq. (13), then solve together
with Eq. (1), to get the y4o, and z49. Then we substitute
these coordinates into Eq. (10) to get coordinates of
E’;. Then solve two of the equations in Eq. (11),
together with Eq. (1), we may now get the location of
the corresponding circle-point A;. To solve the posi-
tions of the other pair of pivots B, and By, we first find
the coordinates of homologous points A, A3, and Ay,
then derive the coupler’s displacement matrix Dy;
from positions of A;E; (i = 1, 2, 3, 4). At this stage, we
may follow the procedure in motion generation syn-
thesis to solve the positions of B) and B;. As we may
see, there are also e free choices in the design pro-
cess.

For five-point path generation problem, as in
four-point problem, we may derive the equations of
the center-point Ag, kaoc1234) and kso(1235), together
with Eq. (1), solve for the locations of the center
points Ay. Note that the solution number of Ay is finite
here. Then the corresponding circle-point A; and
their homologous points A;, A3, A4, and As can be
found. At this stage, we may follow the steps in five-
position motion generation problem. By solving the
equations kgy(1234) and kgi(1235), together with Eq. (1),
we get the locations of the other circle points B;.
Finally, the corresponding center point B, can be
derived accordingly.

Path Generation with Ground Pivot Specifications

In this case, the prescribed specifications are the
positions of two fixed pivots, Ay and By, along with
the precision points E; (i = 1, 2, 3, 4, 5). We shall
apply the concept of pole method proposed by Chiang
[9] in order to find the positions of moving pivots A,
and B;. However, here we make some modifications
in order to shape our formulations into pelynomial
form. Figure 2 shows the spherical linkage in its first
and ith positions, and AgA; and ByB; subtending equal
angles ¥/2 at the pole P;. If we rotate the position

vector OA, about the ith pole axis OP,, through the
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Fig. 2. The Angles Subtended by A; Ag and Aj A, at Pole.

negative ith angle of rotation of the coupler —¥;, we

obtain a second position OAy; (i =2, 3,4, 5). Itisclear
that A, lies on the plane of perpendicular bisector
between Ag and Ay;. Therefore, we have the following

relations:

(x40i — x40)%Xa1 + (Yaoi = Yao)Yar + (Zaoi — Za0)Za1

=0. i=2,3,4,5. (14)
Similarly, for the other fixed pivot By, we have
(xBoi — xpo)xg1 + (¥Boi — Y80)¥B1 + (ZBoi — ZB0)ZBI

=0. i=234,5. (15)

For the existence of nonzero solution of x4y, a1,
Za1, X81, Y81, and zg, of the above homogeneous
equations set, the following determinant has to van-

ish. That is,
Xa02—%a0 Yaoz—Yao Za02— 240
det| | X403~ %40 Yao3—Yao Zaoz—Z2a0||=0s
Xs04 —Xa0 Yaos —Yao Zaos —Za0
(16)
Xa03—Xa0 Yao3—Yao Za03 —Za0
det| | X4 —%s0 Yaos—Yao Zaos—2Z2a0||=0:
X405 —Xa0 Yaos —Yao Za05 —<a0
(17)
Xpo2 —Xpo Yoz —YBo ZB02~ZB0O
det| | xo3—*po Ypo3—Yeo Zso3z—Zmo | |=0s
Xpoa —Xpo Ymoa — Yo ZB0o4 —<BO
(18)

Fig. 3. Two Success Rotations By the Coupler.

Xpo3 — Xpo Y03 — Yo ZB03 — ZBO
det | | xgos — X0 YBo4 — YB0 ZBos — ZB0
Xpos — Xgo YBos — YBo 2805 ~ B0

=0. (19)

In Chiang’s approach, he used the following
Rodrigue equations to express the coordinates of Ag;
(or By;) in Eg. (16) to Eq. (19).

ra0i = (1 — cosy,)(rp; * ra0)Tp; + COSYiT40

— siny(rp; X Tap)s (20)
with rp; expressed in terms of cosy, sin¥, and coordi-
nates of E;. However, it becomes tedious when we try
to convert it into polynomial form, because that cos¥;
term is contained in the square-root’s bracket. We
shall use the displacement matrix Dy; in [7] to express
the coordinates of Ag; and By; Let the displacement
matrix be product of two rotation matrices, as shown
in Fig. (3).,

Dy = R(Q;, a)R(E;, B),

where Q; = E; x E;, and ¢; is the angle between the
position vectors of the first and ith precision points.
Therefore,

XA0i _4|*40 XA0

Yaoi| = D1i | Yao| = R(E;, = BIR(Q;, — )| Yao |-
ZA0i Za0 ZA0
i=2,3,4,5 (1)
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It is shown from Eq. (21) that x,0;, Y40i» and zap;
can be expressed in linear combinations of cosf;, and
sinf;. Similarly, xpo; Ygoi» and zgo; can be derived in
the same manner.

XBoi 80

Ypoi| = RE;, — BIR(Q; — )| ypo |-

ZBoi ZBo

i:2, 39 4! 5' (22)

We may now substitute right-hand side of Eqs.
(21) and (22) into Egs. (16), (17), and (18), (19),
respectively, then expand the determinants. Hence
Egs. (16) and (17) become

LA2341 m31825354 + M328253C4 + M3382C254 + M345203C
+ M35C285354 + M36C253C4 + M37C2C3854 + M35C2C3C,
+ Ma15282 + Mya52C3 + Ma382854 + MygS2C4 + Mp5C053
+ MpeCyC3 + My7Ca84 + MpgCaCy + M295384
+ My 1053Cq + M3 11€384 + My 12C3C4 + M8
+ MyaCy + M3853 + N4C3 + M 554 + MgCq + My

=0, (23)

L3450 n318535485 + N328354Cs + N3353C4Ss + N3453C4Cs
+ N35C35485 + N3gC354C5 + N37C3C4S55 + N35C3C4C5
+ Ny 185383 + N2253C4 + No38355 + M2453C5 + Nas5C354
+ N26C3C4 + N27C385 + NagC3Cs + MagS3ss + Ny 1054C5
+ N3 11€485 + N 12C4Cs + My 53 + N 2C3 + M35,
+ Ny4Cq + Ny584 + NygCs + N =0, (24)

Similarly, equations (18) and (19) also have the
same form of Egs. (23) and (24),

B 3 ’ ’ . -
L 234 m31523354 + m323253C4 +.. + mn = O, (25)

LP34s: N3 548455 + n3p8384Cs+ ... +ng=0,  (26)
where s; = sinf}; and ¢; = cosf;, i = 2,3,4,5. The
coefficients my,’s and n,,’s can be derived by sym-
bolic processing packages, and are not listed here for
brevity.

To solve the variables B;, we need four more
compatibility equations:

Ci: sin’Bi+cos’Bi—1=0. i=2,3,4,5. (27)

Once f; are solved, we may substitute them into
Egs. (21) and (22) to get the coordinates of Ag; and By;.
Finally, we substitute these coordinates into two of
the Eqs. set (14) and (15), together with Eq. (1), we
may solve the positions of moving pivots A, and B,.

NUMERICAL CONTINUATION

The principle of continuation method (or
homotopy method) is that we begin with a start system
whose solutions are known, and each polynomial
equation in the start system have the same degree as
that of the corresponding polynomial equation in the
target system. Then we track from the initial point
along a homotopy path, if the path does not diverge,
we shall achieve the target system with the problem
solved. During the process of path tracking, we are
actually solving many subproblems by Newton method
(or other locally-convergent method); Specifically,
the solution of previous homotopy step is used as the
initial guessing values of the current step. In the
traditional homotopy method, the homotopy function
H is defined as:

H(z, t): F(z)+ (1- )G(2). (28)
where ¢ is the homotopy parameter. When f equals 0,
the homotopy function H is the same as the start
system G(z); and when ¢ equals 1, H becomes the
system polynomial equations F we want to solve.
Note that H, G, F, and z are arrays of the same
dimension. The start system G is generally defined as
the following:

Gi Cnzli—-Cp=0. i=1,2,....1 (29)
where C;; and C;; are random numbers, d; is the degree
of the equation F;.

The tracked path is called homotopy path. The
number of total homotopy paths is the product of each
polynomial equation’s degree of the system F, or is
called Bezout number. The way of following the
homotopy path incrementally fromr=0to 1 is called
path-tracking. There are three path-tracking algo-
rithms mentioned in the literature. They are: (1)
Ordinary Differential Equation Based, (2) Normal
Flow, (3) Augmented Jacobian Matrix, denoted by
DF, NF, and QF, respectively. Here we adopt the NF
algorithm in computation.

Suppose we want to track a homotopy path, and
its initial value (zg, fp) is known. We first take an
increment, and along the tangential direction of the
homotopy path at t = ty, we may obtained a predicted
value of z at 1 = 1y +At by

z=(t=ty+ At) = Z (1) + (dz/dt)At. (30)

The unit tangential vector dz/dt can be obtained
by first taking derivative of H with respect to #, that is:

dHEO.0 dz _ ), o, 31
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is an n X n matrix, H,(z(?),

In Eq. (31), %

t) is an n x 1 array. We may use QR decomposition
method to solve the above linear equation system, and
obtain dz/dt. Note that dz/dt in Eq. (30) is a unit
vector, so that we have to normalize the vector ob-
tained from Eq. (31). After the predicted value is
obtained, we use Newton method to compute the
correct value at ¢t = fo+ At . Let T(z) = H(z, 1o+ A1)

Zy=1, (32)

dr@zy\"
zh,:zk—( af:*)) T(z), 33)

where Z is the predicted value obtained from Eq. (30).

In practical implementation of the scheme, we
have to evaluate the angle between the tangential
vectors at (z(t), t) and (z(r + At), t + At). This is to
avoid the situation of abrupt function value change
between the current and next step. If abrupt change do
occur, we then restart the predicting process by taking
a smaller step (A#/2).

NUMERICAL EXAMPLES

In section 2 we’ve cast the design equations of
three types of problems into system of polynomial
equations. Here we shall apply the continuation
method to solve the problems. A motion generation
problem is imbedded in a problem of path generation
with prescribed crank angles, therefore, it will not be
illustrated individually. Two examples will be given.
path generation with prescribed crank angles. To
synthesize a five-point path generation problem with
prescribed crank angles, we first determine the loca-
tion of Ay by solving kag(1234) and kso(1235) of Eq. (13)
and Eq. (1). After the locations of A, A,, ... As are
obtained, we then solve the coordinates of the other
circle—point B, by solving k,g]{]gg‘n and k3|(]235] of Eq

Table 1. The coordinates of precision points and correspond-
ing crank angles

E; X Yi Zi ¢; (deg.)
1 0 0.35157691 0.936159 0
2 -0.120247 033037401 0.936159 20
3 .0.220407 0.25632520 0.941126 40
4  -0.286565 0.12486548 0.949889 60
5 -0.306167 -0.01378554 0.951878 75

(9) and Eq. (1) simultaneously. Finally, the location
of By are determined. Note that the Bezout numbers
of both subproblems are 18.

Example 1

The coordinates of five precision points E; and
four crank angles ¢; are shown in Table 1. The
example is taken from Chiang’s example [9], but with
higher precision. We apply the traditional homotopy
to solve k,u)“gg‘;) and k_,q[)(uj,j] of Eq (13) and Eq (1).
We found ten sets of real solutions of Ay, as listed in
Table 2. Then the corresponding circle-point A; is
derived by solving two of the Eq. (11) and Eq. (1),
which is also listed in Table 2. By finding the
homologous points of Aj, together with the coordi-
nates of precision points E; (i = 1,..,5), we may solve
the coordinates of the other circle-point By (an imbed-
ded motion generation problem). Again we apply the
traditional homotopy to solve kgj(1234) and kpy(1235) Of
Eq. (9) and Eq. (1). Ten sets of real solutions of B, are
found, but only five sets are shown in Table 3 due to
the origin symmetry property. Finally, their corre-
sponding center-point B, can be obtained by solving
two of the Eq. (5) and Eq. (1), as shown in Table 3.
Note that not all of the corresponding center-point of
B, can be obtained due to the fact that some solutions
of B, are at the poles position.

Table 2. The real solutions of A and their corresponding A,

Xa0 Yao ZA0 XAl YAl ZA1
1 0.1298623 -0.7421495 0.6575332 0.1396759 -0.2188076 0.9657193
2 0.2314213 -0.5763645 -0.7837399 0.0899787 0.4466046 0.8901956
3 0 0 1 -0.0843698 0.3653350 0.9270448
4 0.7645452 0.1203288 0.6332390 0.7669234 0.4366295 0.4703013
5 0.0424124 0.0096460 0.9990536 -0.0412003 0.3562823 0.9334696
6 0.1129917 -0.6408044 -0.7593435 0.1323077 0.4230299 0.8964042
7 0.0220257 0.0011671 0.9997567 -0.0645178 0.3610775 0.9303013
8 0.3616052 -0.5400912 -0.7599626 0.0281881 0.4161886 0.9088413
9 -0.2884520 0.2863784 -0.9136645 0.1684800 -0.2483078 0.9539170
10 -0.1186018 0.1194402 0.9857320 -0.2160792 0.5737059 0.7900451
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Table 3. The real solutions of B; and By corresponding to solution set #1 in Table 2

XB1 ¥ XBo YBo ZBo

1 0.4423878 0.6333900 0.6349095 0.8976987 0.0161331 0.4403144

2 -0.3025020 0.7318484 0.6106476 B, is the pole P3

3 0.1396759 -0.2188077 0.9657193 0.1298623 -0.7421495 0.6575332

4 -0.4319020 0.6243112 0.6509195 B, is the pole Pa3

5 -0.1415574 0.8027400 0.5792841 B, is the pole P

Table 4. The nondegenerate mechanisms fulfilling the design specifications in Ex. 1
Ay Ay By B, Comments

1 (0.129862265, (0.139675922, 0.897698706, (0.442387619, Grashof
-0.742149525, -0.218807698, 0.016133077, 0.633390289, link2 is crank
0.657533174) 0.965719332) 0.440314385) 0.634909393)

2 (0.231421280, (0.089978658, (-0.254837656, (-0.107934214, Grashof
-0.576364472, 0.446604573, 0.095291287, 0.189237532, link?2 is rocker
-0.783739872) 0.890195594) 0.962277164) 0.975981230) order defect

3 (0.231421280, (0.089978658, (0.007059200, (0.003638768, Non-Grashof
-0.576364472, 0.446604573, 0.073698997, 0.360721754,

-0.783739872) 0.890195594) 0.997255547) 0.932666380)
4 (0.231421280, (0.089978658, (0.460338718, (-0.000057737, Non-Grashof
-0.576364472, 0.446604573, -0.522163799, 0.434473531,
-0.783739872) 0.890195594) 0.717936788) 0.900684599)

5 (0,0,1) (-0.084369834, (0.530088022, (-0.311846322, Non-Grashof
0.365335035, 0.105575252, -0.006881392,
0.927044790) -0.841344493) 0.950107635)

6 (0.764545218, (0.766923357, (0.898300301, (0.930717582, Non-Grashof
0.120328843, 0.436629458, -0.146008413, 0.303664839,
0.633238959) 0.470301265) 0.414412973) 0.203844174)

74 (0.042412350, (-0.041200305, (0.029974548, (-0.035183231, Non-Grashof
0.009646048, 0.356282301, 0.022777476, 0.413319935,
0.999053625) 0.933469580) 0.999291105) 0.909905914)

8 (0.112991721, (0.132307704, (-0.144813144, (-0.079385752, Non-Grashof
-0.640804412, 0.423029865, 0.191104314, 0.343053066,
-0.759343516) 0.896404152) 0.970828664) 0.935955392)

9 (0.112991721, (0.132307704, (-0.220517988, (-0.117683260, Non-Grashof
-0.640804412, 0.423029865, 0.040888438, 0.108289377,
-0.759343516) 0.896404152) 0.974525501) 0.987129202)

10 (0.022025725, (-0.064517837, (0.492939483, (-0.274214436, Non-Grashof
0.001167093, 0.361077537, 0.038769499, 0.083312874,
0.999756723) 0.930301274) -0.869199397) 0.958052926)

11 (0.022025725, (-0.064517837, (0.143339851, (-0.384721164, Non-Grashof
0.001167093, 0.361077537, -0.128057926, 0.903628911,
0.999756723) 0.930301274) 0.981353583) 0.188266879)

12 (0.361605187, (0.028188073, (-0.047161083, (0.016393930, Non-Grashof
-0.540091176, 0.416188589, 0.048210769, 0.327925973,
-0.759962638) 0.908841290) 0.997723185) 0.944561165)

13 (0.361605187, (0.028188073, (-0.362821588, (-0.085555189, Grashof
-0.540091176, 0.416188589, 0.133520721, 0.117641311, link2 is rocker
-0.759962638) 0.908841290) 0.922243304) 0.989363852)

14 (0.361605187, (0.028188073, (-0.524427163, (-0.000146364, Grashof
-0.540091176, 0416188589, 0.693474453, 0.399049003, link2 is rocker
-0.759962638) 0.908841290) 0.494033737) 0.916929589)

15 (-0.288452012, (0.168479974, (0.729482779, (0.278254672, Non-Grashof
0.286378410, -0.248307839, -0.317806582, -0.253433757,

-0.913664513) 0.953917038) 0.605684614) 0.926469464)

16 (-0.118601752, (-0.216079194, (0.984872274, (0.198341622, Grashof
0.119440205, 0.573705934, -0.110632592, -0.260471416, link2 is crank
0.985732044) 0.790045115) 0.133368036) 0.944889011)
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Fig. 4. (A) A Feasible Design of Ex. 1, #2 in Table 4. (B) A Feasible Design of Ex. 1, #16 in Table 4.

Table 5. Design specifications of example 2

X y z
E; 0.5 0.6 0.6244998
E, 0.3 0.8 0.5196152
E; -0.1 0.8 0.5916078
E, -0.3 0.7 0.648074
Es 0.6 0.4 0.6928203
Ao 0 0 1
B, 0.7071067 0 0.7071067

The solutions in the third row of Table 3 shows
that the mechanism is a degenerate one with two of its
link length equal to zero. Such solutions should be
excluded. After all of the B, and By corresponding to
the ten sets of solutions in Table 2 are found, we
further examine the rotatability of the mechanisms.
Table 4 shows all of the nondegenerate mechanisms
that satisfy the specifications. Among the sixteen
mechanisms, only #1 and #16 are feasible because the
input link can make full rotations. Fig. 4(a) and (4b)
show the coupler curves passing the precision points.
The figures are results from the motion analysis pack-
age MECHANICA. Note that there is no solution
identical to the answer in [9]. The reason is that the
coordinates yg; of the precision-points in example 1
have been modified so that the length of the position
vector is equal to one.

Path Generation with Ground Pivot Specifications

Example 2

Table 5 shows the design specifications of such

problem. This example is also taken from Chiang
[13].

After the coefficients are derived by Mathe-
matica, we apply the 1-homogeneous homotopy
method to solve sinf; and cosp; (i = 2,3,4,5) from Egs.
(23), (24), (25) and (26), together with the four com-
putability equations Eq. (27). The Bezout number of
the system is 1296. (Note that the Bezout number is
589824 if we use the Suh’s formulation [7].) There are
sixteen sets of real solutions of obtained. The result
of B; are shown in Table 6. Then we substitute f; into
Egs. (21) and (22) to find coordinates of Ay; and By;.
Finally, by solving two of the Eq. (14) and (15),
together with Eq. (1), we obtain the coordinates of the
circle-points A; and B;. Their coordinates are listed
in Table 7.

We examine the rotatability of the mechanisms
in Table 7. The Grashof mechanism is denoted by
‘G’, and non-Grashof one by ‘NG’ in Table 7. We
further check their branch defects and order defect.
As shown in Table 7, the number in the comments
denotes the passing sequence of the precision points
by the coupler-point; Mechanisms #2 and #7 have
branch and order defects, while #6, 8, 10, 11, 12, 14
do not have any defects, and the rest have branch
defect only. Note the solution #9 is the same as the
answer from Chiang. Figure 5 (resulting from
MECHANICA) demonstrates the passing of preci-
sion points by the coupler-point curve of mechanism
#6 in Table 7 .

The codes was written in FORTRAN, developed
and executed on a 486/100Mz PC. The average
execution time is, for the first example, 1.1s per path;
and for the second example, 25s per path. The execu-
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Table 6. The real solutions (of ;) by solving Egs. (23), (24), (25), (26), (27)
B (deg.) Bs Ba Bs
1 -39.946866 28.3783920 -13.9787580 15.1230530
2 5.0875094 27.188004 97.088009 80.5363490
3 148.51028 149.02806 51.2429350 147.9888200
4 7.4954342 105.78905 43.877985 76.9989260
S 103.82641 29.7136910 42.6154860 72.8595250
6 -47.445142 33.731007 38.679016 43.7588320
T 7.403504 -46.034393 -34.617085 -5.5326016
8 22.351743 -26.381132 38.453362 40.7150920
9 19.037263 45.122867 57.692804 80.4005010
10 23.54982 34.41971 -9.83586 35.6038290
11 69.394068 81.627485 86.576073 92.2211990
12 -1.9434876 91.16204 94.3438790 95.7001230
13 22.313002 52.173802 66.976176 96.5721160
14 98.155703 22.847757 105.81964 104.8521700
15 -43.316542 -38.454779 -33.294229 81.2922320
16 -25.509732 -10.817697 43.095799 30.4387110
Table 7. The mechanisms fulfilling the design specifications in Ex. 2
Xa1 Yai Zal Xg1 Yo Zp) Comments
1 0.3423927 -0.1296145 0.9305737 0.8109208 -0.3545551 0.4655085 NonGrashof,
pass 1-2-3
2 -0.6226947 -0.0167462 0.7822856 0.18050342 -0.1203403 0.9761848 NG,1-4-5-3
3 0.7292376 0.5019565 0.4650293 -0.0870786 0.2047293 0.9749376  Grashof, pass 1-4
4 -0.6523399 0.1415521 0.7445909 0.12665916 -0.0497913 0.9906959 NG, 1-3
5 -04797264 0.4151703 0.7729788 0.1225811 -0.0611761 0.9905712 NG,1-3
6 -0.0923931 -0.7463575 0.6591009 0.8169919 -0.4335955 0.3801567 G,1-2-3-4-5
7 0.4497704 -0.1932066 0.8719964 0.9373027 -0.1896528 0.2923961 NG,1-4-5-2
8  -0.1234608 -0.8140431 0.5675308 0.7827079 -0.4172019 0.4618560 G,1-2-3-4-5
9 -0.0921916 0.0586758 0.9940110  -0.1839569 0.3963604 0.8994767 G,1-2-3-4
10 -0.1671290 -0.8945945 0.4144498 0.7574083 -0.3999633 0.5161027 G,1-2-3-4-5
11 -0.7137237 -0.2242567 0.6635567 0.3090444 -0.4699837 0.8268052 NG,1-2-3-4-5
12 -0.8566417 -0.3517913 0.3773697 0.2212870  -0.3009001 0.9276266 G,1-2-3-4-5
13  -0.0910223 0.1360747 0.9865083 -0.0732288 0.4223394 0.9034750 NG,1-2-3-4
14  0.8803770 0.4718230 0.0481603 0.1317618  -0.1677727 0.9769806 G,1-2-3-4-5
15 0.5005738 0.1410012 0.8541338 0.5515259  -0.7745495 0.3096649 G,1-2-3-4
16  0.2506777 -0.1163524 0.9610530 0.6830587 -0.4107287 0.6039311 G,1-2-3

tion time depends heavily on the tolerance criterion
setting. Here we shall not discuss the convergence
criterion vs. CPU time.

CONCLUSIONS

In contrast to local numerical schemes such as
Newton’s method, continuation method is a globally
convergent numerical method that can obtain the
complete solution set of a problem. In this paper, we
have developed a reliable computer code, and demon-
strated the effectiveness of continuation method in

solving the synthesis of spherical four-bar linkages,
including body-guidance and path generation prob-
lems.

In the derivation of the design equations, we use
the concept of graphical inversion approach, and the
concept of the pole method. We’ve also modified the
procedure of the pole method in order to reduce the
system order. The formulation has the advantages in
that (1) the design equations are in the form of poly-
nomial system equations, (2) the total degree of the
system is less than that of other approaches, (3) it can
handle various design specifications. It is shown that,
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Fig. 5. A Feasible Design of Ex. 2, #14 in table 7.

for the problems of five-position motion or path
generation with prescribed crank angles, the total
degree of the system is at most 18 X 18 = 324. Even
for the problem of path generation with ground pivot
specifications, the Bezout number is 1296, which is
considered a small order. In the two examples, we’ve
successfully compute all of the solutions of each
problem. Further implementations is under develop-
ment for the nine-point synthesis problems.
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