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NEAR-FIELD SOURCE LOCALIZATION USING
MUSIC WITH POLYNOMIAL ROOTING

Hsien-Sen Huhg,* Shun-Hsyung Chang** and Chien-Hsing Wu***

n

Keywords: Near field, Polynomial rooting, MUSIC, Location estima-
tion

ABSTRACT

In this paper, the bearing, elevation, and range estimation of
near-field narrow-band sources from data observed across an array
of sensors is considered. For high-resolution source localization,
the multiple signal classification (MUSIC) algorithm is modified
and extended to its 3-D version by accounting for spherical curva-
ture and spreading factor in the array manifold. However, the
simultaneous estimation of bearing, elevation, and range from 3-D
MUSIC spectrum requires exhaustive multidimensional search. As
to alleviate computational load, an alternative algorithm is
proposed. The proposed algorithm involves search in the range
domain combined with polynomial rooting, which replaces the
search in the azimuth-elevation domain, for bearing and elevation
estimation. Simulation results are provided to show the efficacy of
the proposed algorithm.

INTRODUCTION

Localization of radiating sources by passive sen-
sor array is an important problem in a variety of
applications, such as radar, sonar, seismology, and
radio astronomy. Various algorithms have been pro-
posed for bearing estimation of multiple sources which
are assumed to be located in the far field so that the
propagating waves emanating from them are essen-
tially planar when they reach the array. The plane
wave approximation to the actual spherical wavefront
generated by a point source is appropriate when the
distance is sufficiently large and the aperture is suffi-
ciently small. In essence, the wavefront curvature is
spherical in the near-field region, quadratic in Fresnel
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region, and planar in far-field (Fraunhofer) region.
The near field is usually characterized by a distance,
R, also known as the near-field to far-field transition
distance, given by R = 2D*A, where D is the array
aperture measured in the unit of wavelength A [1]. For
large aperture arrays as used in sonar systems where
D is on the order of several tens or more, the distance
R is sufficiently large (on the order of several hun-
dreds or more) so that sources are often located in the
near field.

For narrow-band sources in the near-field
region, Huang and Barkat [2] proposed a two-dimen-
sional (2-D) version of MUSIC algorithm in which an
exhaustive search is required in bearing-range
domain. Weiss and Friedlander [3] examined an
efficient algorithm which involves search in the range
direction combined with polynomial rooting, which
replaces the search in the bearing direction. As a
consequence, computational load can be significantly
reduced. For narrow-band sources in Fresnel region,
Starer and Nehorai [4] developed an algorithm based
on path-following (or homotoby), which is limited to
uniform linear arrays. All the algorithms mentioned
above were developed under the assumption that all
the sources and sensors are on the same plane so that
only bearing and range are estimated.

In this paper, we examine a source localization
problem, of which the data model is more general and
accurate than the ones considered in [2-4], for simul-
taneous estimation of bearing, elevation, and range
of narrow-band sources located in the near-field
region. The MUSIC algorithm [5] is modified to its
three-dimensional (3-D) version to estimate the near-
field range, bearing and elevation of sources. A
computationally efficient algorithm, extending the
work of [3], is proposed, which involves search in the
range domain combined with two-stage polynomial
rooting for bearing and elevation estimation. The
proposed algorithm requires a smaller amount of com-
putation than algorithms based on three-dimensional
search. The performance of the proposed algorithm is
evaluated by Monte-Carlo simulation.
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PROBLEM FORMULATION

In this section, we formulate the problem for the
near-field localization of narrow-band sources. By
near field, we mean that the wavefront of the propa-
gating wave emitted by a source is spherical as
opposed to plane wave for far-field source.

A passive 3-D sensor-array geometry with
sources in near field, measured in spherical coordi-
nate system, is shown in figure 1. Suppose that M
sources are located at unknown locations (7, 8, @),
m=1, ..., M, where r,,, 6,,, and ¢,, represent the range,
bearing (azimuth) and elevation angles for the mth
source, respectively. The wavefronts of the propagat-
ing waves emitted by the sources are assumed to be
spherical. The L (L > M) sensors are deployed at sites
of (#,0,8), I = 1, ..., L, arbitrary but known to the
processor. Assuming the medium for propagating
waves is homogeneous and nondispersive, the direc-
tion and shape of wavefronts arriving at each sensor
are unaltered in the near-field region. In the presence
of noise, the observed data at the ith sensor can be
expressed as

M
x0= X s, t- 1) 4 n0,i=1,2,., L (1)

Herein, s5,(t), m = 1, ..., M are the radiated
signals and n,(#), i = 1, ..., L are some noise process.
Zim denotes the distance from the mth source to the ith
sensor, defined as

Zim = {F2 + 1% = 2F;r,[cos @ cos @),
+sin @ sin ¢,, cos (8, 6,)]}" "%, (2)

and its reciprocal repreéents the spherical spreading
factor. This factor describes the fact that the ampli-
tude of a spherical wave decays as the wave pro-
pagates away from the source, and is inversely pro-
portional to the propagating distance. The parameter
Tim 18 the delay associated with the signal propagation
time from the mth source travelling to the ith sensor,
and equals z;,/c, where ¢ is the wave’s propagation
speed.

We assume that the signals are narrow-band and
they all have a common frequency f,. Therefore, the
effect of a time delay on the received waveforms is
simply a phase shift. Thus Eq. (1) becomes

x(t) = mf] é e~ 2oTims, (1) + nt). 3)

Define

-i-(t) = [Xl(t), sany xL(r)]T’
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Fig. 1. A passive three-dimensional array geometry with sources in the
near field, measured in spherical coordinate system.

j(t) = [Sl(t)$ woey SM(I)]Ts

A(t) = [ny(0), ..., n (D],

where the superscript T denotes the transpose. Equa-
tion (3) can be expressed in vector-matrix form as

) = A5(0) + A(D), 4)

where A is the array location matrix, whose (i, m)
element is given by

[A‘]J‘m = ﬁe_jth‘m‘rl’ i= l! veny Ls m= I' weey Ms

where A is the wave length.
The problem that we are addressing here is how

to estimate {r,, O, ¢}, m =1, ..., M, given the K
snapshot data %(¢), t = 1,..., K.

3-D MUSIC ALGORITHM

The MUSIC algorithm [5] can be modified in a
straightforward way to estimate bearing, elevation
and range as follows. Let R be the sample correlation
matrix given by

R= “}E ‘gx(r)x”(r) , (6)

where the superscript H denotes the conjugate trans-
position. To determine the number of sources, we
rank the eigenvalues A; of the matrix R in decending
order to obtain
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M2 2. )]

The estimated number of sources, M, is then
determined as the value for which either the Akaike
information criterion or minimum description length
function is minimized [6]. Let iy, , ..., it; be the
noise eigenvectors associated with the L — M smallest
eigenvalues, A5, ..., Az. The column span of the
noise-subspace is then constructed as

U=l 1Bl ®)

The array manifold, d(r,6,¢), consists of all pos-
sible near-field steering vectors, that is

T
a(r,0,9) = zl_l exp (— jz—iz‘), ZI—L exp (— ;2%) A
9)
where z;, i= 1, ..., L, is
2(r,0,9) = {7} + r* = 27 r{cos §,cos ¢
+sin @, sin ¢ cos (8, - O)1}' . (10)

The estimates of the source locations are defined as
the minimizers of the null spectrum

P\(r,6,0) = a"(r,6.0)0,0, a(r.6.9), (11)

or the normalized null spectrum

at(r,0,0)0,0" a(r,0.9)

a"(r,6,9)a(r,6,9) 0=

Py(r.0,9) =

From the viewpoint of localization, P, is favor-
ably suggested for the reasons stated as follows. As
a listening device, the array senses sources that are
close to it much more easily than those far away
because of spherical spreading. Thus, if we identify
a source by a null (inverted peak) in P; spectrum there
is an intrinsic bias toward positions where the source
level is higher. And this intrinsic bias can be cor-
rected by scaling the null spectrum in accordance with
the intensity variation caused by spherical spreading
as done in the normalized null spectrum P,.

Alternatively, P, in (12) can be expressed in the
same form as in P; of (11), provided that elements of
the array manifold @ in (9) are multiplied by appropri-
ate normalization factors. It should be noted that both
the array manifold and the normalized array manifold
have elements which are periodic with period 27 in
either elevation or bearing domain. This property

facilitates polynomial rooting for both elevation and
bearing as to be described in the next section. To
estmate source locations, the minima of P,(r, 6, ¢) can
be found by performing an exhaustive search in range-
bearing-elevation domain.

3-D MUSIC WITH POLYNOMIAL ROOTING

In this section, we propose an approach which
involves one-dimensional (1-D) search in range do-
main combined with polynomial rooting in elevation
and bearing domains. Because the elements of the
normalized array manifold are periodic functions with
period 27 in both elevation and bearing angles, we can
represent the ith element of the normalized array
manifold, for a given r, by the Fourier series:

alr,6,¢) = . ;w Iﬁmc (e Tke1®),

Bl o Ly (13)

where
Colr)=1/(4m?) f i j " a(r.0.0)e 149+ W dgdp.
B (14)

Since a,(r, 6, ¢) is a smooth function, it can be
approximated quite well using a finite number of
Fourier coefficients. Suppose that (2N; +1)x(2N; + 1)
coefficients are sufficient to describe all the L ele-
ments a;(r, 6, ¢). Then construct the matrices C(r) as

[C‘;'(r)]ﬂ'= Cjkl(r)& i= ]-! sany Ls (15)
and the vectors

d@)=le™?, .., eN)T, (16)

B(6)=[e ™, ., MO, a7
So, (13) becomes

ay(r,6,9) = b (O)C(Nd(9), (18)

and the normalized array manifold vector is
5" (O)C\(Nd(9)

a(r,6,0) = . . (19)

5"(6)C.(d(9)]

Thus the normalized null spectrum can be expressed



4 Journal of Marine Science and Technology, Vol. 6, No. 1 (1998)

das
Py(r,6,9) = d"(9)G(r,0)d(9) , (20)

where the matrix G is given by

G(r,0) = [CY (B (), ...
A

Ciob O, |, @1)
5"(6)C,(1)

where the superscript * denotes the complex conjuga-
tion. By defining z; = ¢/, the normalized null spec-
trum Py(r, 6, z)) = d  (z,)G(r,0)d(z,) is a polynomial in
z, for fixed values of 8 and r. If the Fourier series has
zero truncation error and infinite data is available,
then the roots of Py(r, 6, z;) = 0 for the true r and 0 are
on the unit circle, and they correspond to z; = €*,
where ¢ is the true elevation angle. However, the
roots may move off the unit circle due to finite sam-
pling error and the truncation of the Fourier series.
Therefore, by defining a set of discrete points over a
region of range-bearing of interest, we find the roots
of the normalized null spectrum for every precalculated
G(r, 8)’s, and choose the roots that are closest to the
unit circle as the candidates. From these candidates,
M roots that are closest to the unit circle are selected
and the angles of these selected roots are the estimates
of elevation angles, @, i =1, ..., M.

On the other hand, the normalized null spectrum
can also be expressed as

Py(r,6,0) = 5" (6)0(r.0)(6) , (22)
where O(r,¢) is given by

0(r9) = [CY(Hd (@) , -
d"(®)Cy(»

Cind 0,0, .| (23)

d"(9)C1(r)

To refine the estimate of @, we substitute each
estimated elevation angle, @, into the normalized null
spectrum to obtain P,(r,0,) for every discrete
location r. By defining z; = €%, Py(r, z,,¢,) becomes a
polynomial in z,. Thus, the estimate 8, of the bearing
can be obtained as the angle of the root of P,(r, z,,8;) = 0
that is closest to the unit circle.

To refine the range estimates, we substitute each

y
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Fig. 2. Sensor array configuration.

estimated bearing-elevation pair, (8;,9,), into the
normalized null spectrum to obtain the 1-D function
Py(r,0,8). A line search for the minimum of this
function is then performed over the range using
Newton gradient procedure. The minimizer 7 is the
range estimate.

The algorithm presented here extends the work
of Weiss and Friedlander [3] which is limited to
estimation of range and bearing only and to the case
where spherical spreading is of no concern in the data
model.

SIMULATION RESULTS

As shown in Fig. 2, we consider an array of 10
sensors deployed on three concentric circles whose
radii are %2,, A, and 32, respectively, on the x-y plane.
Two uncorrelated narrow-band zero-mean Gaussian
sources are present: the first source located at the site
of bearing angle 45°, elevation angle 15°, and range
4.5A; and the second source located at the site of
bearing angle 60°, elevation angle —30° and range
6.5A. The noise is a zero-mean Gaussian white
random process, uncorrelated with the signals. The
signal-to-noise ratio (SNR) of both signals is 20 dB.
The array is assumed to collect 500 snapshots.

To have better understandings of elevation
estimation in the proposed algorithm, a rectangular
grid was placed on the region spanned by 1A < r < 84
in range and —-90° < @ < 90° in bearing on the range-
bearing parameter plane. The grid intervals are 0.14
in range and 1° in bearing. Fig. 3(a) shows the
locations of the polynomial roots for each grid point,
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Fig. 3. Distribution of polynomial roots closest to the unit circle (a):for
each grid point in the bearing-range plane for elevation estima-
tion, (b):for each grid point in the range line for bearing estima-
tion.

which are closest to the unit circle. Among these
roots, only the two roots that are closest to the unit
circle were selected and the angles of these two roots
closely matched the true elevation angles as indicated
by small circles on the unit circle. For bearing estima-
tion, a linear grid with 0.1 of grid interval was placed
on the region spanned by 14 < r < 84 in range. Fig.
3(b) depicts the locations of the polynomial roots for

Table 1. Estimator statistics in terms of bias, standard devia-
tion (STD), and root mean square error (RMSE).
(a): the first source, and (b): the second source.

(a)
1*SOURCE REARING ELEVATION RANGE

" TRUE 45° 15° 452
MEAN 44.9839° 14.9888°  4.51631
STD 0.0666° 0.0307°  0.03181
BIAS 0.0161° 00112°  —0.01632
RMSE 0.0864° 0.0327°  0.0357A

(b)
2" SOURCE REARING ELEVATION RANGE
TRUE 60° 230° 6.57
MEAN 60.0009°  —29.9484°  6.5367A
STD 0.0445° 0.1093°  0.07924
BIAS 0.0009° —0.0516° —0.03761
RMSE 0.0444° 0.1207°  0.0872A

each grid point, which are closest to the unit circle.
Among these roots, only the two roots that are closest
to the unit circle were chosen. The bearing angles, as
indicated by two small circles on the unit circle, were
accurately estimated as the angles of these two roots.

Based on 300 Monte Carlo trials, the estimator
statistics in terms of bias, standard deviation (STD),
and root mean square error (RMSE) for the two sources
are given in Table 1.

Next, estimation performance was evaluated
based on 100 Monte Carlo trials for each different
SNR and snapshot number. The RMSE of elevation,
bearing, and range estimates for the first source were
plotted in Fig. 4. Similar behaviors were also
observed for the second source, thus not shown in the
paper. We note that the accuracy of elevation, bear-
ing, and range estimates improves as SNR increases
and/or snapshot numbers increases.

Finally, in order to compare estimation perfor-
mance using normalized and unnormalized MUSIC
spectra, a single source, located at bearing 45° and
elevation 15°, has its range varing from 14 to 184.
The signal-to-noise ratio is 20 dB. The number of
snapshots is 500 and Monte Carlo trials is 100.

Fig. 5 plots the RMSE of elevation, bearing and
range estimates as a function of range. The bearing
and elevation accuracy degrades as the source is
approaching the array. On the contrary, the range
accuracy improves as the source is closer to the array.
In addition, the proposed algorithm using normalized
spectrum has smaller RMSE than unnormalized
spectrum.

CONCLUSIONS
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Fig. 4. Root mean square error (RMSE) versus signal-to-noise ratio
(SNR) with varing snapshot numbers for the first source. (a):
elevation estimate, (b): bearing estimate, (c): range estimate.

We presented an algorithm for simultaneous
estimation of elevation, bearing and range for near-
field narrowband sources. The algorithm is based on
MUSIC algorithm. In general, estimation of eleva-
tion, bearing and range requires a three-dimensional
search. We have shown here that the search in bearing
and elevation domains can be replaced by polynomial
rooting in two stages. The search in the range direc-
tion is performed by a Newton gradient method at the
final stage. The proposed algorithm was tested by
Monte Carlo simulations.
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