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ABSTRACT

Approaching flood can be likened to a oncoming missile, and
flood routing is viewed as to build an anti-missile system.  The
applications of the Kalman filter to hydrologic models are not suitable.
The Kalman filter fails to yield totally effective predictions in the
hydrologic routing by the fact that any specific objective (peakflow)
cannot be designated in advance.  Without predetermined objectives,
the predicted flows cannot catch the real values but follow the traces
of the real hydrograph.

INTRODUCTION

Estimation is the procedure of determining the
state of a system from noisy measurements, taking
account of measurement errors and system disturbances.
The estimation method developed by Kalman (1960)
would be the most common.  One of the most substantial
characteristics of the Kalman filter is its recursive  pro-
cedure that processes measurements to obtain the opti-
mal estimate.  Kalman filter problems appear naturally
in many physical circumstances where an estimation
theory is needed to sequentially process measurements.
It has been applied to a broad range of fields, such as
navigation system control, power system control and so
on.  Its use in hydrology began in 1973, when Hino
applied the Kalman filter to identify the parameters of a
linear, lumped, discharge model from serial observations,
then use the new parameters updated by new observa-
tions to forecast streamflow.  Thereafter interest and
enthusiasm arose to explore the applications of the
Kalman filter to hydrology.  Numerous papers and
reports have been issued.  The work can be found in
Chiu (1978) and Wood (1980).

While the Kalman filtering theory provides a di-

rection of study to hydrology, we must ask: Is it really
unmistakable?  The objective of this paper is to examine
the applicability of the Kalman filter to hydrologic
routing.  In this study, two  examples related to a falling
body similar to an approaching flood, and a hydrologic
model with unit hydrograph will be examined by using
the Kalman filter.

INTERPRETATIONS

In a discrete form, the discrete Kalman filter equa-
tions for deterministic input are

X(k + 1) = Φ(k + 1, k)X(k) + U(k) + W(k + 1)
W(k + 1) ~ N(0, Q(k + 1)) (1)

Y(k + 1) = H(k + 1)X(k +1) + V(k + 1)
V(k + 1) ~N(0, R(k + 1)) (2)

where
X(k) : state vector at time k
Φ(k + 1, k) : state transition matrix from time k to k + 1
U(k) : deterministic input
Y(k + 1) : measurement at time k + 1
H(k + 1) : measurement matrix
Q(k + 1) : system noise covariance matrix
R(k + 1) : measurement noise covariance matrix

Assume that H(k + 1) = 0, then the measurement
contains no information about the state.  On the other
hand, suppose that Φ(k + 1, k) = 0, so that the system is
a memoryless form.  The notation of filter variables
mentioned above will be found in many books on Kalman
filtering theory (e.g., Jazwinski 1970; Gelb 1974; Bozic
1979).  Given the assumption that a linear form exists
between  the updated state estimate and the measurement,
the optimal filter equations which minimize the estima-
tion error can thus be derived, such as error covariance
matrix P(k) and Kalman gain matrix K(k).  The compu-
tation corresponding to a sequence of observations for
prediction of X(k + 1|k), P(k + 1|k) and updating of X(k
+ 1|k + 1), P(k + 1|k + 1), K(k + 1) will be performed
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recursively.  That is,

X(k + 1|k) = Φ(k + 1, k) X(k|k) + U(k) (3)

P(k + 1|k) = Φ(k + 1, k) P(k|k) ΦT(k + 1, k)
+ Q(k + 1) (4)

X(k + 1|k + 1) = X(k + 1|k) + K(k + 1)[Y(k + 1)
− H(k + 1) X(k + 1|k)] (5)

P(k + 1|k + 1) = [I − K(k + 1) H(k + 1)] P(k + 1|k)
(6)

K(k + 1) = P(k + 1|k) HT(k) [H(k + 1) P(k
+ 1|k) HT(k + 1) + R(k + 1)]− 1 (7)

where superscript T denotes the transpose of a matrix
and
X(k + 1|k) : state prediction
X(k + 1|k + 1) : state estimate update
P(k + 1|k) : error covariance prediction matrix
P(k + 1|k + 1) : error covariance update matrix
K(k + 1) : Kalman gain matrix

Since complete information of the physical pro-
cess is usually not available, the difference exists be-
tween the true model and the used model, such that the
model error can not be avoided.  It is inevitable that an
untrue model will downgrade the filter performance,
and model divergence may arise.  Therefore, the error
sensitivity analysis of the  filter  model is vital (Jazwinski
1970; Gelb 1974).

EXAMPLES

Hydrologic events have a great deal of irregular
and uncertain phenomena.  As knowledge on hydrologic
behavior grows,   hydrologic models are subsequently
upgraded.  Sometimes hydrologic models are simplified
to approximate a real situation due to nonlinearity.  In
this study, in order to diagnose the applicability of the
Kalman filtering to hydrologic estimation, unit
hydrograph indicating the rainfall-runoff relationship
will be illustrated.  However, a real transition matrix
and deterministic inputs contained in a hydrologic sys-
tem model are seldom precisely known.  Therefore, an
analogous example will be explained firstly, in order to
survey the effect of the model error.  That is, a noise-
free system (i.e., Q(k) = 0 ) representing a falling body
in a constant field is applied (Jazwinski 1970, pp. 287-
292; Bozic 1979, pp. 130-133).

Case 1: Falling Body
In this example, the actual system model is given

as

  x 1(k + 1)
x 2(k + 1)

= 1 1
0 1

x 1(k)
x 2(k)

+
– 0.5g
– 1.0g

(8)

with the real state transition matrix

   Φ(k + 1, k) = 1 1
0 1

(9)

The measurement model is written as

  
y(k) = [1 0]

x 1(k)
x 2(k)

+ V(k) (10)

where x1(k) and x2(k) denote the position and velocity
individually, and the measurement noise is given by
R(k) = 1.

Before starting the estimation, the true initial con-
ditions of x1(0) = 100, x2(0) = 0 and g = 1 are assumed.
Moreover, the initial values of the state vector and the
error covariance matrix are also assumed to be

   X(0|0) = 95
1

P(0|0) = 10 0
0 1

Notice that the  solution of this example outlined
in Jazwinski (1970) and Bozic (1979) are computed
only for t = 1,2,...,6, where the real filter model is
operated.  However, what would the result be if incor-
rect information is imposed on the model? Therefore,
emphasis here is placed on the error sensitivity analysis.
Also, detailed computations will be demonstrated for t
= 1, 2, ..., 14, where the observations after t = 6 are
assumed by the author.  The results of the true trajectory
and the filter performance with real system are shown in
Table 1.  We see that the error covariances of position
and velocity decrease, and the updated errors  are smaller
than the predicted errors due to measurement involved.
We also observe that the Kalman gain becomes smaller,
indicating that further measurements provide less infor-
mation for sufficiently large t.

Special cases  using incorrect  values of Φ, H, Q,
R or P(0|0) have been studied by some authors (e.g.,
Fagin 1964; Heffes 1966).  Consider here the case of
error in  alone.  Suppose that we are not familiar with the
system model of a falling body.  The erroneous model,
for example, has the transition matrix as

   Φ(k + 1, k) = 1 10
0 1

(11)

  The model error can be viewed as an error in Φ.
The filtering results with incorrect transition matrix are
summarized in Table 2.  As we see, the filter diverges.
The position prediction clearly gets lost, and the pre-
dicted position error does not decrease.  In spite of the
fact that the position error can drop dramatically by
measuring the falling body (the Kalman gain of position
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goes to one), the addition of a measurement model
improves the estimate just to a certain degree, and
without any effective way.  That is, the filtering to
position prediction seems not to appear prominent on
account of the incorrect model.

Case 2: Flood Routing
In problems of hydrologic routing, for example,

the Muskingum model might be one of the most com-
monly used hydrologic models.  The model is described
by

Ok + 1 =  C0 Ik + 1 + C1 Ik + C2 Ok (12)

where
Ok : streamflow in the under reach at time k
Ik : streamflow in the upper reach at time k
C0, C1, C2 : model’s parameters, and C0 + C1 + C2 =

1.0

In applying the linear Kalman filter to the
Muskingum model, Wang et al. (1987) described this
system by,

  O k + 1

O k
=

C 2 0
1 0

O k

O k – 1
+

C 0 C 1

1 0
Ik + 1

Ik
+

Wk + 1

0
(13)

for the system model with the state transition matrix

   
Φ(k + 1, k) =

C 2 0
1 0

(14)

and

  
y(k) = [1 0]

O k

O k – 1
+ V(k) (15)

for the measurement model, where y(k) represents the
observed flows at lower reach.  The Muskingum model
(Eqs. 13-15) has the similar form as the falling body
(Eqs. 8-10).  Yet, both of the dimension of state transi-
tion matrix is different.  The matrix in Eq. 14 has rank
one, as compared with rank two of Eq. 9.  Thus, the
system in Eq. 13 cannot meet the observability condi-
tion (Gelb 1974), i.e., the system is not observable.  The
measurement model in Eq. 15 can do nothing for
prediciton model in Eq. 13 but monitor the real-time
flood only.  The formulation through Eqs.13-15 appears
inappropriate.

In another way, as applied by Hino (1973), Eq. 12
is a type of multiple linear equation, and the parameters
can be estimated by using the Kalman filtering algorithm.
That is,

  C 0

C 1

C 2 k + 1

=
C 0

C 1

C 2 k

+ Wk + 1 (16)

and

  
y(k) = [Ik I k – 1 O k – 1]

C 0

C 1

C 2

+ V(k) (17)

where the state transition matrix in Eq. 16 is an identity
matrix.  Since the uncertain circumstances in the hydro-
logical conditions during typhoons warrant the subse-

Table 1.  Falling body in a constant field with true state transition matrix

k x1(k) x2(k) y(k) x1(k|k − 1) x2(k|k − 1) P11(k|k − 1) P22(k|k − 1) x1(k|k) x2(k|k) P11(k|k) P22(k|k) K1(k) K2(k)

0 100.0 .0 95.00 1.00 10.00 1.00
1 99.5 -1.0 100.0 95.50 .00 11.00 1.00 99.63 .38 .92 .92 .92 .08
2 98.0 -2.0 97.9 99.50 -.63 2.00 .92 98.43 -1.16 .67 .58 .67 .33
3 95.5 -3.0 94.4 96.78 -2.16 1.92 .58 95.21 -2.90 .66 .30 .66 .31
4 92.0 -4.0 92.7 91.81 -3.90 1.58 .30 92.35 -3.69 .61 .15 .61 .24
5 87.5 -5.0 87.3 88.16 -4.69 1.24 .15 87.68 -4.84 .55 .08 .55 .17
6 82.0 -6.0 82.1 82.34 -5.84 .98 .08 82.22 -5.87 .50 .05 .50 .13
7 75.5 -7.0 75.4 75.85 -6.87 .81 .05 75.65 -6.92 .45 .03 .45 .10
8 68.0 -8.0 68.8 68.23 -7.92 .68 .03 68.46 -7.87 .40 .02 .40 .08
9 59.5 -9.0 59.0 60.08 -8.87 .58 .02 59.68 -8.94 .37 .02 .37 .06
10 50.0 -10.0 50.6 50.24 -9.94 .51 .02 50.36 -9.92 .34 .01 .34 .05
11 39.5 -11.0 39.4 39.94 -10.92 .46 .01 39.77 -10.95 .31 .01 .31 .04
12 28.0 -12.0 28.3 28.32 -11.95 .41 .01 28.31 -11.95 .29 .01 .29 .04
13 15.5 -13.0 14.5 15.87 -12.95 .37 .01 15.50 -12.99 .27 .01 .27 .03
14 2.0 -14.0 2.1 2.00 -13.99 .34 .01 2.03 -13.99 .25 .00 .25 .03

xi(k): true values;  i = 1 (position), i = 2 (velocity); y(k) : position observations
xi(k|k − 1): predicted state; xi(k|k): updated state; Ki(k): Kalman gain
Pii(k|k − 1): predicted error variance; Pii(k|k): updated error variance
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quent discharges as a nonstationary series, the related
parameters inside hydrologic model could be regarded
as variables depending upon the change of these
circumstances.

In this study, for example, the appropriateness for
time-varying parameters of unit hydrograph renewed by
the Kalman filtering algorithm is tested.  As compared
with Eqs. 16-17, the system model and measurement
model are as follows.

  U 1

U 2

U n k + 1

=

U 1

U 2

U n k

+ Wk + 1 (18)

and

  

y(k) = [Ik I k – 1 I1]

U 1

U 2

U k

+ V(k) (19)

where Ik and Uk correspond to the excess rainfall and the
value of unit hydrograph at time k, respectively.  As
shown in Table 3, The unit hydrograph of 10 mm excess
rainfall with one hour duration at the Feitsui damsite
will be adopted to verify its acceptability.  Further, the
values in Table 3 are regarded as the initial value of state
vector as shown in Eq. 18.

In order to evaluate the performance of the rain-
fall-runoff model, some criteria are adopted as follows.

Coefficient of Efficiency:   CE =
S 0 – S 1

S 0

Mean Square Error:
   

MSE = Σ
t = 1

M (Y t – Ft)
2

M

Mean Absolute Deviation:
   

MAD = Σ
t = 1

M Y t – Ft

M

Mean Relative Error:

   
MRE =

Σ
t = 1

M Y t – Ft

Ft

M

Volume Error:

   
VE =

Σ
t = 1

M
Y t – Ft

Σ
t = 1

M
Y t

Peak Time Error: PTE = PT(Yt) − PT(Ft)

Peak Value Error:
  

PVE =
peak(Y t) – peak(Ft)

peak(Y t)

in which,

   S 0 = Σ
t = 1

M
(Y t – µ)2

   S 1 = Σ
t = 1

M

(Y t – Ft)
2

and
Yt : observed flow
Ft : predicted flow
M : number of data applied in verification

period
µ : mean value of Yt

Table 2.  Falling body in a constant field with untrue state transition matrix

k x1(k) x2(k) y(k) x1(k|k − 1) x2(k|k − 1) P11(k|k − 1) P22(k|k − 1) x1(k|k) x2(k|k) P11(k|k) P22(k|k) K1(k) K2(k)

0 100.0 .0 95.00 1.00 10.00 1.00
1 99.5 -1.0 100.0 104.50 .00 371.00 1.00 100.01 -.23 1.00 .03 1.00 .05
2 98.0 -2.0 97.9 97.21 -1.23 92.22 .03 97.89 -1.23 .99 .03 .99 .01
3 95.5 -3.0 94.4 85.14 -2.23 80.74 .03 94.29 -2.23 .99 .03 .99 .00
4 92.0 -4.0 92.7 71.51 -3.23 81.21 .03 92.44 -3.23 .99 .03 .99 .00
5 87.5 -5.0 87.3 59.64 -4.23 81.36 .03 86.96 -4.23 .99 .03 .99 .00
6 82.0 -6.0 82.1 44.16 -5.23 81.36 .03 81.64 -5.23 .99 .03 .99 .00
7 75.5 -7.0 75.4 28.84 -6.23 81.36 .03 74.83 -6.23 .99 .03 .99 .00
8 68.0 -8.0 68.8 12.03 -7.23 81.36 .03 68.11 -7.23 .99 .03 .99 .00
9 59.5 -9.0 59.0 -4.69 -8.23 81.36 .03 58.23 -8.23 .99 .03 .99 .00
10 50.0 -10.0 50.6 -24.57 -9.23 81.36 .03 49.69 -9.23 .99 .03 .99 .00
11 39.5 -11.0 39.4 -43.11 -10.23 81.36 .03 38.40 -10.23 .99 .03 .99 .00
12 28.0 -12.0 28.3 -64.40 -11.23 81.36 .03 27.17 -11.23 .99 .03 .99 .00
13 15.5 -13.0 14.5 -85.63 -12.23 81.36 .03 13.28 -12.23 .99 .03 .99 .00
14 2.0 -14.0 2.1 -109.52 -13.23 81.36 .03 .74 -13.23 .99 .03 .99 .00

xi(k): true values;  i = 1 (position), i = 2 (velocity); y(k) : position observations
xi(k|k − 1): predicted state; xi(k|k): updated state; Ki(k): Kalman gain
Pii(k|k − 1): predicted error variance; Pii(k|k): updated error variance
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PT(Yt) : occurrence time of observed peakflow
PT(Ft) : occurrence time of predicted peakflow
peak(Yt): observed peakflow
peak(Ft): predicted peakflow

Figs. 1-4 present the various hydrographs devel-
oped by unit hydrograph with/without the Kalman filter
for the selected events (Table 4).  Clearly, the
hydrographs generated by the type of unit hydrograph
without Kalman filter die out quickly.  It might imply
that fixed unit hydrograph is not appropriate.  After
applying the Kalman filter technique and changing the
related parameters of the unit hydrograph correspond-
ing to the circumstances, the accuracy of flow simula-
tion is obviously improved.  During the flood period the
most important factor is to know the happening of flow
and its volume in advance to avoid probable flood
damage.  But Table 5 reveals the unfiltered unit
hydrograph does not fit well, based upon the related
indicators.  In contrast, the modified type of unit
hydrograph combined with the Kalman filtering tech-
nique improves the efficiency of the rainfall-runoff
model dramatically, as seen in Table 6.  The usefulness
of the Kalman filtering technique while facing a
nonstationary series of input such as typhoon-borne

rainfall seems to be approved.  However, is it actually
unmistakable?

It is seen that the Kalman filter is excellently
applicable to the navigation system while in launching
missiles, aircraft and cruisers to reach their targets. In
navigation, how to reach an intended target accurately
is  most critical, and the system model can be adjusted
by a Kalman-like filter  after starting the filtering process.
The cruise missile, for example, is equipped with both
an inertial guidance system and a computer and radar to
keep up its preprogrammed flight path.  Of course, the
filter performance  will be improved promptly, as the
measurement interval is shorter.

In reality, imminent flood can be likened to an
oncoming missile, and flood routing is similar to estab-
lishing an anti-missile system.  The goal aiming to
destroy approaching missiles has been likened to ‘hit-
ting a bullet with a bullet’, a technical challenge as yet
unfulfilled.  It’s still challenging to predict the arrival

Fig. 1.  Rainfall-runoff modeling by unit hydrograph (ORA).

Fig. 2.  Rainfall-runoff modeling by unit hydrograph (PERCY).

Fig. 3.  Rainfall-runoff modeling by unit hydrograph (JUNE).

Table 3. Unit Hydrograph of 10 mm Excess Rainfall with 1-hr
Duration at Feitsui Damsite

hour discharge (m3/s) | hour discharge (m3/s)

1 12 | 8 50
2 36 | 9 28
3 77 | 10 14
4 149 | 11 7
5 206 | 12 4
6 161 | 13 2
7 92 | 14 1
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Fig. 4.  Rainfall-runoff modeling by unit hydrograph (CLARA).

Table 4.  Selected Typhoons for the  Rainfall-Runoff Modeling

typhoon occurrence

ORA Oct.  11-15 1978
PERCY Sept. 16-20 1980
JUNE June  20-23 1981
CLARA Sept. 20-24 1981

time and volume of oncoming flood precisely.  Similar
to the aforementioned example for a falling body, both
measurement devices (radar/satellite) for catching a
threatening missile and a proper system model for posi-
tion prediction are needed.  Inferior formulation of a
system model, such as Eq. 11 or Eq. 13, leads prediction
into deficient outcomes.  In those cases, the observa-
tions cannot upgrade the prediction efficiency but check
the real-time position of missile (falling body) or vol-
ume of flood only.

In addition, there is an essential distinction be-
tween navigation system and hydrology system.  The
former has given objectives, whereas the latter has not
any predetermined objectives within the process.  In
flood routing, we are considerably anxious about the
variation of hydrograph at a specific site, in particular

the magnitude of the peakflow and its arrival time.  The
hydraulic method of flood routing can be applied to
determine the velocity and the water surface profile
along a stream, based on the given hydrograph at an
upstream site.  In this case, any specific peakflow
(objective) which may cause damage to a downstream
point could be explored.  Based upon a sequence of
observations of the upstream point, the velocity of
peakflow propagation moving through a channel reach
may be detected.  Thereafter, the arrival time of the
peakflow to the specified downstream point might be
predicted in advance.  In contrast, flood routing by
using hydrologic method cannot visualize any specific
peakflow (objective) in advance until it is observed at
the downstream site.  In this situation, the Kalman filter
becomes ineffective in flood prediction during the fil-
tering process.  As seen in Table 6, the results seem
remarkable, by changing model parameters with the
Kalman filter, but the predicted flows still cannot catch
the real values but   follow the traces of the real
hydrograph, as displayed in Figs. 1-4.  The predicted
time for peakflow usually arrived after a delay of at least
one step.  Based on the aforementioned interpretation,
the application of the Kalman filter to hydrology is

Table 6.  Diagnostic Checking of Rainfall-Runoff Model Unit Hydrograph Associated with Kalman Filter

typhoon MSE MAD MRE VER PVE PTE CE

ORA 43720.00 133.82 -1.274 -0.254 -0.032 -2 0.724
PERCY 2987.75 46.42 -0.656 -0.170 0.004 -1 0.897
JUNE 20509.80 58.93 -0.240 0.065 -0.096 -1 0.907
CLARA 3849.25 35.32 -2.293 -0.039 -0.028 -1 0.909

MSE: Mean Square Error MAD: Mean Absolute Deviation
MRE: Mean Relative Error VER: Volume ERror
PVE: Peak Value Error PTE: Peak Time Error
CE: Coefficient of Efficiency

Table 5.  Diagnostic Checking of Rainfall-Runoff Model Unit Hydrograph with Constant Parameters

typhoon MSE MAD MRE VER PVE PTE CE

ORA 49822.63 159.60 -0.195 0.389 0.243 6 0.673
PERCY 20287.45 104.93 0.144 0.375 -0.007 -2 0.303
JUNE 44422.10 135.79 -0.456 0.110 -0.115 -2 0.800
CLARA 27656.86 119.95 -2.566 -0.066 -0.656 1 0.347
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inappropriate.

CONCLUDING REMARKS

Approaching flood can be likened to a nearing
missile, and flood routing is regarded as to settle an anti-
missile system. In practical use, the applications of the
Kalman filter to hydrologic models are not appropriate.
The Kalman filter fails to give totally satisfactory pre-
dictions in the hydrologic routing by the fact that any
specific objective (peakflow) cannot be designated in
advance, as compared to the control system design.
Without predetermined objectives, the predicted flows
cannot seize the real values but chase the traces of the
actual hydrograph.
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