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ABSTRACT

This paper presents the results of a study in which a method is
developed for estimating maximum turbulent wind drag force acting
on a floating offshore structure with low natural frequency.  In
evaluating the drag force, forces associated with turbulent wind
speeds are considered using both the linear and nonlinear reliability
analysis approaches. A mathematical wind spectral density formula-
tion is employed.  The probability density function applied for the
maximum turbulent wind-induced drag force analysis is considered as
a random process. The maximum wind force is analytically developed
by using an approximate single term expression for the functional
relationship between the wind speed and the associated turbulent drag
force.  At last, the probable maximum and the design maximum values
are estimated by applying maximum value statistics and reliability
analysis.

INTRODUCTION

Estimation of the magnitude of wind-induced
loading (drag force) on offshore structures provides
information vital for the design and operation of the
structures; in particular for floating structures in a
seaway.  The wind-induced drag force referred to in the
present study is that associated with turbulent winds
consisting of various frequencies which span a very
wide range.  The frequency ω may vary from nearly zero
to l.5 rps or higher.

Although many studies have been carried out
evaluate turbulent wind-induced forces on offshore struc-
tures [Ref. l to 14 ], it is common practice to assume that
the wind-induced drag force increases linearly with
increase in wind fluctuating speed; neglecting the higher
order term of the force which is proportional to the

square of turbulent wind speed.  The approximation
appears to be acceptable for evaluating forces on
buildings on land, but its use is highly questionable for
evaluating the forces on marine structures.  This is
because some natural frequencies of motions of floating
offshore structures are very small; on the order 0.01 to
0.02 Hz for the surging motion of a tension-leg platform,
which is the domain where turbulent wind energy over
a seaway is extremely high.

Thus, in evaluation turbulent wind-induced drag
force on offshore structures in a seaway, significant
questions arise as to the assurance with which predic-
tions can be made when the estimations are obtained (i)
by neglecting higher order drag force, and (ii) by using
turbulent wind spectral formulations which are devel-
oped based on wind data measured primarily on land.

The results of a recent study on turbulent wind
spectra have indicated that the measured wind spectral
densities over a seaway are much larger at low frequen-
cies than those computed by any of the currently
available spectral formulation [9].

It may be well to elaborate on the low frequency
turbulent winds.  Figure l taken from Ref. [2] shows an
example of a time history of wind speed.  As demon-
strated in the figure, the turbulent winds consist of
several frequencies. In other words, the high frequency
fluctuating winds are most discernible; however, the
energy density of these high frequency components in
the turbulent wind spectrum is relatively small over the
seaway.  Instead, the mean value of the time history as
indicated by the dotted line in the figure and compo-
nents with frequencies lower than those shown by the
dotted line have extremely large energy densities.  Since
the response frequencies of offshore structures are low,
extreme care must be taken in evaluating wind force on
the structures when a substantial amount of wind energy
exists at low frequencies.

This paper presents the results of a study in which
a method is developed for estimating low frequency
turbulent wind drag force (including maximum values)
acting on a floating offshore structure.  In evaluating the
drag force, forces associated with turbulent wind speeds
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are considered using both the linear and nonlinear
(squared term) approaches.  The probability density
function applicable for the peaks of the turbulent wind-
induced drag force is analytically developed.  Further,
the probable extreme and the design extreme values are
estimated by applying extreme value statistics.

WIND-INDUCED DRAG FORCE ACTING ON
OFFSHORE STRUCTURES

Turbulent Wind-Induced Drag Force

The wind-induced drag force acting on offshore
structures over a seaway can be evaluated, in general, by
applying the following fundamental equation of drag
force in aerodynamics:

   FD(T) = 1
2

ρC DAU2(t) (1)

where ρ = air density
CD = drag coefficient
A = projected area of a structure
U(t) = incident wind speed.

The incident wind speed, U(t), consists of two
components; one a constant wind speed depending on
the height above the sea level, denoted by U ; the other
a randomly fluctuating turbulent wind speed, denoted
by w(t).  That is,

  U(t) = U + w(t) (2)

Thus, from Egs. (l) and (2), the wind-induced drag

force, FD(t) can be written as follows:

   FD(t) = 1
2

ρC DA{U + w(t)}2

   = 1
2

ρC DAU 2 + ρC DAUw(t) + 1
2

ρC DAw(t) w(t)
(3)

Here, the squared wind velocity is expressed as
w(t)|w(t)| so that the direction of drag force is in line
with wind velocity.

The first term of Eq. (3) is called the mean drag
force, denoted by   FD,  which is constant for a given
mean wind speed.  That is,

   FD = 1
2

ρC DAU 2 (4)

The second and third terms of Eq. (3) are the forces
associated with turbulent winds, denoted by ∆FD.  By
applying the relationship given in Eq. (4), ∆FD(t) can be
expressed in terms of mean wind speed and associated
drag force as follows:

   ∆FD(t) =
2FD

U
w(t) +

FD

U 2
w(t) w(t)

  = aw(t) + bw(t) w(t) (5)

where a and b are constants for a given mean wind speed
U .  These are,

  
a =

2FD

U
  and  

  
b =

FD

U 2
(6)

In evaluating the wind-induced force on structures,
the second term of Eq. (5)  is generally neglected.
However, as discussed in the Introduction, the linear as
well as the nonlinear terms of turbulent winds in Eq. (5)
are considered in the present study for evaluating the
magnitude of forces acting on offshore structures.

It is assumed that the fluctuation of turbulent wind
speed w(t) is a Gaussian random process with zero
mean.  That is, for a given time t, the probability density
function of w is given by,   

f(w) = 1
2πσ

e
– w 2

2σ2   −∞ < w < ∞ (7)

where σ2 = variance of turbulent winds
By applying the technique for changing random

variables, it can be derived that the probability density
function of w|w| = z becomes the following x2-distribu-
tion with one degree of freedom:   

f(z) = 1
2σ 2π z

e
–

z

2σ 2    −∞ < z < ∞ (8)

Since the random variable ∆FD is the sum of two
dependent random variables,  aw and bw|w|, the prob-

Fig. 1.  Example of time history of wind speed.
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ability density function of bw|w| is somewhat compli-
cated to derive.  Furthermore, the analytical derivation
of the probability density function of the peaks of the
random process ∆FD cannot be achieved in closed form
following Eq. (5).

One way to overcome this difficulty is to approxi-
mately express the functional relationship given in
Eq. (5) by expressing wind speed by a single term
having the fol1owing exponential form:

   
w =

α[1 – exp { – β∆FD}] for ∆FD ≥ 0
– α[1 – exp {β∆FD}] for ∆FD ≤ 0

     (9)

Here, α  and β are constants to be determined such
that the mean square difference between the drag forces,
∆FD, computed from Eqs. (5) and (9) is minimal.

As a numerical example, computations are carried
out to evaluate the drag force at 30 meter height above
the mean sea level on an offshore structure having a
projected area A = 2 × 103 m2 .  The mean wind speed
used in the computations is 44.7 m/sec (87 knots) at
30 m height, which is 38.5 m/sec (75 knots) at 10 meter
height above the water surface.  The drag coefficient,
CD, is taken as unity, while the air density, ρ, is taken as
1.20 kg/m3.  With these values, Eq. (6) yields α  =
107.l × 103 and b = 1.20 × 103, and there by α  = 81.0
and β = 0.11 × 10-6 are chosen so that Eq. (9) represents
Eq. (5)with sufficient accuracy.

Figure 2 shows a comparison of drag forces ∆FD

computed for various turbulent wind speeds, w, by Eqs.
(5) and (9).  Included also in the figure is the first term

of Eq. (5) which is equivalent to the linear assumption,
As can be seen in the figure, Eq. (9) represents well the
drag force given by Eq. (5).  The significance of the
nonlinear term in evaluating the drag force induced by
turbulent winds is also apparent.

By applying the functional relationship given in
Eq. (9), to the probability density function of the wind
speed given in Eq. (7), the probability density function
of the turbulent drag force, including the nonlinear term
can be derived as follows:   

f(∆FD) =
αβ

σ 2π
exp { – [α

2

2σ (1 – exp {

   – (sgn∆FD)(β∆FD)})2 + (sgn∆FD)β∆FD]},

   – ∞ < ∆FD < ∞ (10)

If we consider only the linear term of Eq. (5), then
the probability density function of the drag force be-
comes from Eq. (7) as follows,

   

f(∆FD) = 1
2πaσ

exp –
(∆FD)2

2a 2σ 2
(11)

The probability density function f(∆FD) derived in
Eqs. (10) and (11) are shown in figure 3.  As can be seen
in the figure, the probability density function given in
Eq. (10) substantially deviates from normal distribution
in that the probability density is greater for the larger
forces than is the case for the normal distribution.

Fig. 2.  Turbulent wind-induced drag force as a function of wind speed. Fig. 3. Probability density functions of peak drag forces evaluated through
linear and nonlinear approaches( = 44.7 m/sec., 87 knots).
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Energy Spectrum of Drag Force

Since the wind-induced drag force is expressed as
the sum of forces associated with linear and nonlinear
(squared) terms of wind speed as shown in Eq. (5).  Both
terms are considered to be independent and the energy
spectral density function of drag force may be expressed
as

S∆FD(ω) = a2Sw(ω) + b2Sw|w|(ω) (12)

where Sw(ω) = turbulent wind spectrum
Sw|w|(ω) =spectrum for the squared wind velocity

w|w|
a, b = constants given in Eq. (6)

For the turbulent wind spectrum, Sw(ω), the fol-
lowing spectral formulation developed based on wind
data obtained from measurements over a seaway is used
for this study [7]:

   

S(f *) =

583f * for 0 ≤ f * ≤ 0.003

420f *
0.70

(1 + f *
0.35)

11.5
for 0.003 ≤ f * ≤ 0.1

838f *

(1 + f *
0.35)

11.5
for f * ≥ 0.1

  (13)

where f* = dimensionless frequency =    ωz / 2πU z
S(f*) = dimensionless spectrum =    ωS(ω) / (2πu *

2)
 U z  = mean wind speed at height z

u* = friction velocity
From Eq. (l3), the dimensional turbulent wind

spectrum as a function of frequency ω can be written as,

   

S(ω) =

3314u *
2zω / U z for 0 ≤ ω ≤ 0.028

116u *
2(z / U z)

0.70

ω0.30[1 + {ωz / (2πU z)}
0.35]

11.5
for 0.028 ≤ ω ≤ 0.936

133u *
2z

U z[1 + {ωz / (2πU z)}
0.35]

11.5
for 0.936 ≤ ω

(14)

For evaluating the mean wind speed at height z
above the sea level,  U z , and the friction velocity, u*, the
following formulae are used:

  U z = U 10 + 2.5u *ln (z / 10)

  u * = C 10U 10 (15)

where   U 10 = mean wind speed at 10 m height
C10 = surface drag coefficient evaluated from

wind measurements at 10 m height.
The surface drag coefficient, C10, depends on mean

wind speed,   U 10, as shown in Fig. 4.  Among others[7],
Wu’s results are based on data obtained for a wide range
of wind velocities over a seaway; hence, his results
shown in Figure 4 are used in the present study.

The turbulent wind spectrum, Sw(ω), for a mean
wind speed of 44.7 m/sec (87 knots) at a 30 m height
above the sea level is shown in Figure 5.  This mean
wind speed is equivalent to 38.5 m/sec (75 knots) at a

Fig. 4. Wind drag coefficient, C10, as a function of mean wind speed at 10
meter height.

Fig. 5. Spectral density functions of turbulent wind Sw(ω) and Sw|w|(ω) for

  U 30 = 44.7 m/sec, 87 knots.
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10 m level.
The spectral density function of the squared wind

speed, Sw|w|(ω) can be evaluated by the following
formula:

   S w w = 2{Rw(0)}2δ(ω) + 1
π2

S w(ω) * S w(ω) (16)

where Rw(0) = auto-correlation function of wind speed
with t = 0 , which is equal to the variance
of the turbulent wind speed

δ(ω) = delta function
The second term in Eq. (16) is the convolution

integral of the turbulent wind spectrum and is evaluated
numerica1ly.

The spectral density function of Sw|w|(ω) is also
shown in Fig. 5.  As can be seen, the spectral energy
densi ty  S w |w |(ω)  i s  much greater  than Sw(ω) .
Nevertheless, the contribution of the energy density of
the squared wind speed, Sw|w|(ω), to the energy of the
turbulent drag force is neg1igible, since the value of b2

in Eq. (l2) is extremely small in comparison with a2.
Thus, it may safely be concluded that as far as the
energy spectrum of turbulent drag force is concerned,
the nonlinear term of the wind speed can be omitted.

PROBABILITY DISTRIBUTION OF WIND-
INDUCED DRAG FORCE

Joint Probability Distribution of Drag Force

In order to obtain the probability distribution of
the low frequency peaks (or maximum) of the wind-
induced drag force, it is necessary to obtain the joint
probability distribution of drag force and its derivatives
which in turn can be derived from the joint distribution
of wind speed and its derivatives.

It is assumed that the turbulent wind speed, w(t), is
a Gaussian random process with zero mean; hence, the
joint probability density function of w(t) and its time
derivatives,   w(t) and   w(t), is given by the following
trivariate norma1 distribution:

   f(w,w, w) = 1

(2π)3 / 2 Σ
exp – 1

2
W'Σ– 1

W

(17)

where   W' = (w,w, w)
Σ = covariance matrix of W

Since w(t) is a Gaussian random process with zero
mean, the covariance matrix, Σ, is given by

   
Σ =

m 0 0 – m 2

0 m 2 0
– m 2 0 m 4

(18)

where mj = j-th moment of wind energy spectrum, Sw(ω)
From Eqs.(l7) and (l8), the joint probability den-

sity function becomes
   

f(w,w, w) = 1
(2π)3 / 2(m 2∆)1 / 2   

× exp –
m 4w

2 + (∆ / m 2)w
2 + m 0w

2 + 2m 2ww
2∆

(19)

where ∆ = m0m4 − m2
2

Next, the joint probability density function of the
wind-induced drag force is derived by using the func-
tional relationship between the turbulent wind speed
and drag force as given in Eq. (9).  For brevity, hereafter
the drag force ∆FD associated with turbulent winds and
its derivatives are denoted by D, D , and D .  Then, by
applying the technique for changing random variables,
the joint probability density function of the drag force
can be written as

f(D, D , D ) = [f(w, w , w )]•|J| (20)

w = h1(D,D , D )
w' = h2(D,D , D )
w'' = h3(D,D , D )

where 

   

J =

∂h 1

∂D
∂h 1

∂D

∂h 1

∂D
∂h 2

∂D
∂h 2

∂D

∂h 2

∂D
∂h 3

∂D
∂h 3

∂D

∂h 3

∂D

= (αβ)3exp { – 3βD}

and for D ≥ 0

   h 1(D, D, D) = α(1 – exp { – βD}]
   h 2(D, D, D) = αβDexp { – βD}
   h 3(D, D, D) = αβDexp { – βD} – αβ 2D 2exp { – βD}

Thus, the joint probability density function of the
wind-induced drag force and its time derivatives be-
comes   

f(D, D, D) =
(αβ)3

(2π)3 / 2(m 2∆)1 / 2
exp { – 3βD}

   

× exp –
m4α 2(1 – e– βD)

2
+ ∆

m2
α 2β2D 2e– 2βD + m0α 2β2(D

– βD 2)e– 2βD + 2m2α 2β(D – βD 2)e– βD(1 – e– βD)
/ 2∆

(21)
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Probability Distribution of Peaks of Drag Force

As stated in previous section, the analytical deri-
vation of the probability density function of peaks
(maximum) of the drag force induced by turbulent winds
is the major area of concern of the present study.  In
particular, we are interested in turbulent winds, which
have several local peaks during a half-cycle; thus being
considered as a non-narrow-band random process.
Hence, the probability density function of the peak of
the drag force will be derived based on a non-narrow-
band random process.  Following the concept originally
developed by Rice (1945), the probability density func-
tion of the local positive peaks of drag force, denoted by
f(ξ), is given by

   

f(ξ) =
– ∞

0
D f(ξ , 0, D)dD

0

∞

– ∞

0
D f(D, 0, D)dDdD

(22)

It is noted that the formula given in Eq. (22) is
applicable for the sample space −∞ ≤ D ≤ ∞.  Since the
analysis in this section is carried out for the sample
space 0 ≤ D ≤ ∞, f(ξ) will be normalized later so that it
satisfies the condition required for the probability den-
sity function.

The joint density function   f(D, 0, D) can be writ-
ten from Eq. (2l) as follows:

   
f(D, 0, D) =

α 3β3e – 3βD

(2π)3 / 2(m 2∆)1 / 2

 × exp{−[m4α2(1

− e−βD)2 + m0α2β2   D 2e−2βD

+ 2m2α2βD (1 − e−βD] / (2∆)} (23)

We first evaluate the numerator of Eq. (22), de-
noted by M(ξ).  From Eq. (23), M(ξ) can be expressed in
the following form:   

M(ξ) = Ke– 3βξ

– ∞

0
D e – {P(ξ)D 2 + 2Q(ξ)D 2 + R(ξ)}dD

(24)

where    K = (αβ)3 / {(2π)3 / 2(m 2∆)1 / 2

   P(ξ) = (αβ)2m 0e
– 2βξ / (2∆)

   Q(ξ) = α 2βm 2e
– βξ(1 – e – βξ) / (2∆)

   R(ξ) = α 2m 4(1 – e – βξ)2 / (2∆)
By carrying out the integration with respect to  D,

Eq. (24) yields

   
M(ξ) = 2π∆K

(αβ)2m 0

exp { – βξ}exp – α 2

2m 0
(1 – e – βξ)2

   
× 1

2πexp –
(αm 2)
2m 0∆

(1 – e – βξ)2

   
+

αm 2

(m 2∆)1 / 2
(1 – e – βξ)Φ αm 2

(m 2∆)1 / 2
(1 – e – βξ)

(25)
where    K = (αβ)3 / (2π)3 / 2(m 2∆)1 / 2

∆ = m0m4 - m2
2

   Φ(u) =
– ∞

u
(1 / 2π)exp { – u 2 / 2}du

Since the first term in the bracket of Eq. (25) is
much smaller than the second term, we may simply
write M(ξ) as follows:

   
M(ξ) =

2πm 2K∆1 / 2

αβ 2m 0
3 / 2

exp – α 2

2m 0
(1 – e – βξ)2

   × (e – βξ – e – 2βξ)Φ –
αm 2

(m 0∆)1 / 2
(1 – e – βξ)    (26)

For evaluating the denominator of Eq. (22), de-
noted by N, integration with respect to D  is first carried
out followed by the integration with respect to D.  We
may write N in the following form:

   
N = K

– ∞

0

0

∞
D e – 3βD

   ⋅ exp { – G(Ae – 2βD + 2Be – βD + C)}dDdD        (27)

where K = (αβ)3 / {(2π)3 / 2(m2∆)1 / 2}
G = α2 / 2∆

   A = m 4 + m 0β
2D 2 – 2m 2βD

   B = m 2βD – m 4

  C = m 4

   ∆ = m 0 ⋅ m 4 – m 2
2

After much lengthy mathematical manipulation,
we have

   N = 2K∆2 / (C 2α 4β3m 0m 4) (28)

where C2 = constant, 0.2
Thus, from Eqs. (26) and (27),  can be derived as

follows:

   
f(ξ) =

2πC 2α 3βm 2m 4

2 m 0∆3 / 2
exp – α 2

2m 0
(1 – e – βξ)2

   × (e – βξ – e – 2βξ)Φ αm 2

(m 0∆)1 / 2
(1 – e – βξ) (29)
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Since βξ is small, on the order of less than 0.4, the
following approximation may be used:

   e – βξ – e – 2βξ ≅ βξ – 3
2

(βξ)2

   1 – e – βξ ≅ βξ (30)

Then, Eq. (29) becomes,

   
f(ξ) =

2πC 2α 3βm 2m 4

2 m 0∆3 / 2
βξ – 3

2
(βξ)2

   × exp – α 2

2m 0
(βξ)2 Φ αm 2

(m 0∆)1 / 2
βξ (31)

Next, as stated in connection with Eq. (22),  f(ξ)
should be modified so that it satisfies the condition
required for the probability density function.  For this,
by integrating  from 0 to ∞, we have:

   
f

0

∞
(ξ)dξ =

2πC 2α 3m 2m 4

2 m 0∆3 / 2
L (32)

where

   
L =

m 0

2α 2
1 +

m 2

(m 0m 4)
1 / 2

–
9 2πm 0

3 / 2

8α 3
–

3m 2(m 0∆)1 / 2

2 2πα 3m 4

   
+

3{π – tan– 1(m 2 / ∆1 / 2)}m 0
3 / 2

2 2πα 3
(33)

By dividing Eq. (3l) by Eq. (32), the probability
density function applicable for the peaks of the drag
force can be derived as follows:

   f(ξ) = 1
L

β βξ – 3
2

(βξ)2

   ⋅ exp – α 2

2m 0
(βξ)2 Φ αm 2

(m 0∆)1 / 2
βξ (34)

where L is defined in Eq. (33)
Fig. 6 shows the probability density function of the

peaks of the turbulent wind-induced drag force com-
puted by Eq. (34) on an offshore structure having a
projected area A = 2 × 103 m2, The mean wind speed is
44.7 m/sec (87 knots) at a 30  meter height above the
water surface, and its spectrum is shown in Figure 5.
Included also in the figure is the probability density
function of the peaks evaluated by considering the drag
force to be linear; (that is, by neglecting the 2nd term of
the turbulent wind speed given in Eq. 5).  In this case,
the probability density function is the Rayleigh prob-
ability distribution.  In these computation, the moments
m2 and m4 are computed by integration the spectrum up
to the frequency w = l.2 rps in order to avoid an unreal-
istic increase in the value of the 4th moment.

As can be seen in Figure 6, by taking the higher
order turbulent wind speed into consideration, the prob-
ability density function of the peak drag force shifts
toward larger values.  In other words, the nonlinear
approach yields higher probability density for large
drag forces than the linear approach.

ESTIMATION OF MAXIMUM WIND-INDUCED
DRAG FORCE

For the design of offshore structures, it is highly
desirable to estimate the extreme wind-induced drag
force, which the system will experience in a specified
time period for a specified mean wind speed.  For this,
we first evaluate the number of peaks in a specified time
period and then apply extreme value statistics.  The
number of peaks per unit time for a non-narrow-band
random process is given by

   
N = 1

4π
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m 0

+
m 4
m 2

(35)

Then, the probable extreme drag force which is
most likely to occur in T-hours, denoted by   ξ n, can be
obtained as a solution of the following equation:

   1
1 – F(ξ n)

=
(60)2T
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= (60)2TN  (36)

Fig. 6. Probability density functions of peak drag force evaluated through
linear and nonlinear approaches.
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where F( ) = cumulative distribution function of the
peaks of drag force

Equation (35) implies that the probability that the
probability that the peak drag force  ξ n  exceeds the
probable extreme value   is once in (60)2TN peaks.

It is known, however, that the probability that the
extreme value will exceed the probable extreme value is
theoretically l − e−l = 0.632.  Since this value is very
high, the probable extreme value cannot be considered
as a design value.  For design consideration we may
choose an extreme value for which the probability of
being exceeding is a preassigned very small value α ,
called the risk [8].  The design extreme value, denoted
by   ξ n, can then be evaluated as a solution of the follow-
ing equation:

   1
1 – F(ξ n)

=
(60)2TN

α (37)

Figure 7 shows a comparison of extreme values
evaluated through both the linear and nonlinear approach.
The nonlinear approach yields an 8.0 percent increase in
the probable extreme drag force, and a 6.0 percent
increase in the design extreme drag force for the present
example.

CONCLUSIONS

This paper presents the results of a study to statis-
tically estimate low frequency turbulent wind drag force
(including extreme values) acting on a floating offshore
structure.  In evaluating the drag force, forces associ-
ated with turbulent wind speeds are considered using
both the linear and nonlinear (squared term) approach.
From the results of the analysis, the following conclu-
sions are drawn:

The probability density function of the turbulent
drag force including the nonlinear term substantially
deviates from a normal distribution in that the probabil-
ity density is greater for the larger forces than is the case
for the normal distribution.

The probability density function of the peak drag
force shifts toward larger values by taking the higher
order turbulent wind speed into consideration.  In other
words, the nonlinear approach yields higher probability
density for large drag forces than the linear approach.

In evaluating the variance of the turbulent wind-
induced drag force from a wind spectrum, it is necessary
to consider the spectrum of the squared wind speed.  The
spectral density function of the squared wind speed,
Sw|w|(ω), is very large in comparison with the spectrum
of wind speed, Sw(ω), however, the contribution of the
former to the variance of the drag force is extremely
small.

Extreme wind-induced drag forces are evaluated
through both the linear and nonlinear approach on an
offshore structure having a projected area of 2,000 m2

for a wind speed of 44.7 m/sec (87 knots) at a 30 m
height.  The wind spectral formulation developed broad
on wind data obtained from measurements over a sea-
way is used in the computations.  The results of the
computations show that the nonlinear approach yields
an 8.0 percent increase in the probable extreme drag
force, and a 6.0 percent increase in the design extreme
drag force.
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