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ABSTRACT

Based on the concept of variable structure control,
this paper investigates the upper bound covariance
assignment with H∞ norm and variance constrained
problem for perturbed stochastic systems.  Because of
the invariance property of variable structure systems,
the matched perturbation of the system disappears on
the sliding mode.  With the aid of Ito-formula, the
controller u(t) is proposed.  Combining the sliding
phase and hitting phase of the system design, the control
feedback gain matrix G is derived to achieve upper
bound covariance assignment with H∞ norm and vari-
ance constraints.

INTRODUCTION

As one knows that how certain control objectives,
robust stability and noise attenuation, will be achieved
if certain H∞ bounds are achieved (see [18]).  Hence,
there has been lots of papers for the feedback controller
design with H∞ norm constraints (see [1], [17] and [29]).
In practice, we always require to develop some ways for
designing controllers to achieve multiobjectives.  There
are some papers (see [2] and [28]) discussing the H∞
norm and variance constrained problem simultaneously.
However, the Riccati equation approach applied by [2]

and [28], which minimizes a scalar cost index, does not
ensure to satisfy the individual variance constraints.  A
more straightforward methodology (namely, covariance
control) for designing controllers to achieve variance
constraints of individual states has been developed in
[11, 12, 19] and [27].  In [19], the authors do not
consider the presence of system perturbations, hence,
the system may become unstable when it is suffered
from perturbations.  An improved control method, which
we call upper bound covariance control (UBCC) here,
for satisfying variance constraints with perturbations
was proposed in [11, 12] and [27].  Using the direct
UBCC approach, the state feedback gain designed in
[11, 12] and [27] will become very large when the
systems are suffering from large perturbations.  It is
well known that a too large feedback gain is not encour-
aged in practical application.

As above mentioned, it is hard to design the state
feedback control for perturbed stochastic system by
using UBCC method directly.  Owing to the simple
design, easy implementability and insensitivity to
system perturbations, variable structure control (VSC)
has become a successful synthesis method and has been
applied to many complex systems (see [16, 20, 21, 23,
24] and [25]).  The main advantage of VSC system is
that the system dynamics in the sliding mode are invari-
ant if parameter uncertainties and/or perturbations
satisfy a certain matching condition.  Using the concept
of VSC, the authors have discussed the stochastic
large-scale systems [6, 7] and stochastic model
reference systems [8, 9] and [26].  In [5], the authors
have successfully extended the above approach to linear
perturbed systems.  Moreover, for a practical application,
the authors have successfully extended this combined
technique to deal with the perturbed ship steering
yaw-motion systems [10].

In this paper, based on the VSC concept and with
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the aid of UBCC, an improved design method will be
developed in this paper for achieving H∞ norm and
individual variance constraints.  Consequently, we will
use VSC approach to show that if a proper switching
function is chosen, the controlled system in the sliding
mode is insensitive to the perturbation (i.e., the system
has an ability to reject the perturbation) and can be
represented as a nominal linear feedback form (i.e., the
system can be simplified).  Then, based on the UBCC
approach, the H∞ norm and individual variance con-
straints can be achieved on the sliding mode.  Therefore,
our propose has the ability of perturbation rejection,
noise attenuation and robust stability that are our major
contributions.  Note that the upper bound covariance
control solutions presented in this paper are indepen-
dent to the system perturbations.  Hence, the present
solution forms will be more concise and efficient than
that in [11, 12] and [27].

This paper is organized as follows. Section 2 de-
scribes the system statement and problem formulation.
In section 3, the switching function and sliding phase
for VSC method are presented.  Moreover, the hitting
phase property of controller u(t) is discussed in section
4.  In section 5, the H∞ norm and variance constrained
design problems will be considered and the necessary
and sufficient conditions for the existence of control
feedback gain matrix G is stated.  A numerical example
is given to demonstrate the control effect of the present
method in section 6. Finally, some conclusions are
made in section 7.

SYSTEM DESCRIPTION AND PROBLEM
FORMULATION

Consider a linear time-invariant perturbed sto-
chastic system established on a filtered probability space
(Ω, F, (Ft)t∈ R+, P)and the system is described as

   x(t) = (A + ∆A)x(t) + Bu(t) + Dw(t), (1a)

y(t) = Fx(t), (1b)

where x(t), B, and D ∈  Rn; F ∈  R1 × n; A and ∆A ∈  Rn × n;
u(t) ∈  R1; w(t) ∈ R1 is a white noise input. Here, the
white noise w(t) of (1) satisfies (2)

E(w(t)) = 0, E(x(0)w(t)) = 0, E(w2(t)) = 1,       (2)

where x(0) denotes the initial state, (•)T denotes the
transposition of (•).  Suppose that (A, B) is a stabilizable
pair, and the perturbation, ∆Ax(t), satisfies the perfect
matching condition, i.e.,

rank [B:∆A] = rank [B]. (3)

Moreover, we also assumption that the range space
of matrix B intercepts the range space of matrix D only
at the origin.  The goals of this paper are as follows: how
to design the controller u(t) for the system such that
(i) The individual steady state variance constraints are

satisfied, i.e.,

   [X] ii = Var (xi) ≤ [X] ii ≤ σ i
2,   i = 1, 2, ...n, (4)

where Var(xi(t)) and σi denote the variance value and
root mean square (RMS) constraints for the i-th state of
the system,   [X] ii denotes i-th diagonal element of upper
bound covariance matrix X  and [X]ii denotes the i-th
diagonal element of matrix X.  Here, we define X as
follows .

   X = lim
t → ∞

E(x(t)xT(t)). (5)

(ii)In the sliding mode, the H∞ norm of transfer function
from w(t) to y(t) is less than a fixed scalar for system
robust stability.

The goal (i) is called the UBCC problem and the
goal (ii) can be seen as a H∞ norm constrained problem.
The presence of ∆Ax(t) will make the UBCC problem
with state feedback control be much more difficult.  In
order to avoid the difficulty from ∆Ax(t), the invariance
property of VSC is a nice choice for us to handle the
perturbed system.  Consequently, the concept of VSC
will be utilized to carry out the UBCC with H∞ norm and
variance constrained problem in this paper.

SLIDING PHASE OF THE SYSTEM

First we define the switching function S(t) corre-
sponding to x(t) as follows

   S(t) = Cx(t) – (
0

t
CA + CBG)x(τ )dτ , (6)

where C and G ∈  R1 × n are constant matrices to be
designed.  C is chosen such that CB is nonsingular, CD
= 0 and G is the control feedback gain matrix to be
determined so that the state covariance can fit the re-
quirement in the sliding mode.  The switching function
in (6) is well defined for the solution x(t) of the system
(1) (see [13] and [22]).

In the sliding mode, the states satisfy the equation

   S(t) = Cx(t) – (
0

t
CA + CBG)x(τ )dτ = 0. (7)

Differentiating equation (7) with respect to time,
we obtain

  S(t) = Cx(t) – CAx(t) – CBGx(t) = 0. (8)
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Substituting (1a) into (8), we can get the equiva-
lent control as follows

ueq(t) = Gx(t) − (CB)-1C(∆Ax(t) + Dw(t)) (9)

Therefore, the equivalent dynamics of (1) in the
sliding mode, S(t) = 0, can be obtained by substituting
(9) into (1) as

   x(t) = (A + BG)x(t) + (I – B(CB)– 1C)(∆Ax(t) + Dw(t)),
(10a)

y(t) = Fx(t), (10b)

where I denotes the identity matrix.  The invariance
property (see [16]) had been known to be insensitive to
perturbation in the sliding mode and it exists because of
the perfect matching condition (3).  Therefore, the
dynamics (10) is insensitive to the perturbation ∆Ax(t)
and is thus reduced to,

  x(t) = (A + BG)x(t) + Dw(t), (11a)

y(t) = Fx(t), (11b)

where D=(I − B(CB)−1C)D.  If we choose CD = 0 then
  D = D.   Therefore, (11) can be rewritten as follows

  x(t) = (A + BG)x(t) + Dw(t), (12a)

y(t) = Fx(t). (12b)

Then how to design a controller u(t) to guarantee
the existence of the sliding mode and to choose the
control feedback gain matrix G so that the specified
upper bound covariance matrix can be achieved in the
sliding mode are our next works.

A CONTROLLER DESIGN FOR HITTING
MOTION

Now, this section tries to find a controller u(t) such
that the states of the system (1) can be driven onto the
sliding surface.  Let us define a Lyapunov function

V(S(t)) = S2(t) (13)

The following theorems will be given.

Theorem 1

Consider the system (1) with the solution x(t).  If
a Lyapunov function V(S(t)) is designed as (13) and
white noise w(t) with intensity 1 is satisfied as (2) and

CD = 0 is chosen, then we have

  d
dtV(S(t)) = 2S(t)S(t). (14)

Proof:

Suppose that x(t) is a solution of (1) then x(t) is a
semimartingale ([13] and [22]).  Since S(t) is defined as
(6), then S(t) is also a semimartingale.  From (13), and
by Ito-formula ([13] and [22]), we can obtain

  d
dtV(S(t)) = 2S(t)S(t) + d

dt S,S
t
, (15)

where   S,S
t
 is an operation called bracket of S(t) ([13]

and [22]). Then we have

   
S, S

t
= Cx – C

0
(A + BG)x(τ )dτ ,

   
Cx – C

0
(A + BG)x(τ )dτ

t

(16)

  = Cx, Cx
t
, (17)

   = CDB, CDB
t
, (18)

   = (CD)2 B, B
t
, (19)

= (CD)2t, (20)

= 0(since CD = 0). (21)

where B is the Brownian motion, i.e.,     B(t) = w
0

t
(τ )dτ .

Substituting (21) into (15), we obtain (14).  The proof is
completed. ❒

Remark 1

The sliding mode dynamics of the system (12) is
independent of the vector C.  The choice of C to satisfy
CD = 0 is very easy and does not affect the sliding phase
of (12).

Theorem 2

For the system (1), if CD = 0 and let the controller
u(t) be

u(t) = Gx(t) − (CB)−1[k1||C||||x(t)|| + α]sgn(S(t)),
(22)

where k1 > ||∆A||, α  is an arbitrary positive number; ||x
(t)||, ||∆A|| and ||C|| denote the 2-norm of the vector x(t)
and the induced 2-norm of the matrices ||∆A|| and C,
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respectively.  Then the state of system will converge to
the sliding surface S(t) = 0 with probability 1.

Proof:

Differentiating (6) and choosing CD = 0 and mul-
tiplying it by S(t), we get

   S(t)S(t) = S(t)[CBu(t) + C∆Ax(t) – CBGx(t)].       (23)

Substituting (22) into (23) and, then (23) becomes

   S(t)S(t) = S(t)C∆Ax(t) – k 1 C x(t) ⋅ S(t) – α S(t) .
(24)

Therefore, (14) becomes

 d
dtV (S(t)) = 2S(t)C∆Ax(t) − 2k1||C||•||x(t)||•|S(t)|

− 2α|S(t)| (25)

≤ 2|S(t)C∆Ax(t)| − 2k1||C||•||x(t)||•|S(t)|
− 2α|S(t)|, (26)

≤ 2||C||•||∆A||•||x(t)||•|S(t)| − 2k1||C||
•||x(t)||•|S(t)| − 2α|S(t)|. (27)

If k1 > ||∆A|| holds then (27) satisfies

   d
dtV(S(t)) ≤ – 2α S(t) < 0. (28)

That means the state x(t) will converge to S(t) = 0
with probability 1.  The proof is completed. ❒

Remark 2

If CD ≠ 0, (14) becomes   d
dtV(S(t)) = 2S(t)S(t) +

  (CD)2.   That will make the control design of u(t) be

much more difficult.

Remark 3

For alleviating the phenomenon of chattering on
the sliding mode, the boundary layer or sliding sector
approach may be used to smooth out the control input
(see [4], [14] and [15]).  By using these methods, the
robustness of control systems will be decreased and the
system states will only reach to practical stability.

In order to express the overall scheme of the
system (1) with the designed u(t) (22), a block diagram
of the system structure is shown in Fig. 1.

THE CONTROL FEEDBACK GAIN MATRIX G
DESIGN WITH H∞ NORM AND VARIANCE

CONSTRAINTS

From the last two sections, the controller u(t) in
(22) forces the state to hit the sliding surface (7).
According to the matching condition (3), the invariance
property exists in the sliding mode and the sliding mode
dynamics is (12).  The left problems are that does the
matrix G exist and how to get it to achieve the goals (i)
and (ii)?

Now, consider the system dynamics (12) in the
sliding mode. The transfer function H(p) from noise
input w(t) to output y(t) is ,

   H(p) ∆= F(pI – A – BG)– 1D, (29)

where p is the Laplace operator.  Therefore, the goal (ii)
can be rewritten as (30)

||H(p)||∞ ≤ γ, (30)

for some prescribed positive constant γ.
For the moment, let us consider a useful lemma

which was presented in the Reference [2].

Lemma 1 [2]

Consider the system (12).  Let G be given, H(p) ∈
RH∞, γ > 0 and assume there exits a positive definite

matrix X  satisfying

   (A + BG)X + X(A + BG)T + γ – 2XRX + DDT = 0, (31)

where   R = FTF, then

   (A + BG, [γ – 2XRX + DDT]1 / 2)  is stabilizable,(32)

if and only if (A + BG) is asymptotically stable. In this
case,

Fig. 1.  The structure of the system (1) with the designed controller u(t).
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||H(p)||∞ ≤ γ, (33)

and

   X ≤ X. (34)
❒

Proofs of Lemma 1 are found in [2].  Note that if
the matrix X  is positive definite, then the equation (32)
is stabilizable.  Hence, the purpose of this section may
be restated as follows.

Given a positive scalar γ and a symmetric positive
definite matrix X  which satisfies the constraints    [X]ii ≤

   [X] ii ≤ σ i
2.  Determine the control feedback gain matrix

G such that the equation (31) is satisfied for the speci-
fied γ and  X.

In the following lemma, we will introduce a method
to check whether the H∞ norm constraint (33) of the
system (12) is satisfied.  The proofs of Lemma 2 can be
found in [3].

Lemma 2 [3]

Consider the system (12).  There exists a positive
scalar γ to satisfy ||H(p)||∞ ≤ γ, if and only if Mγ has no
eigenvalues on the imaginary axis, where

   
Mγ = A + BG γ – 1DDT

– γ – 1FTF – (A + BG)T
.

❒

It follows from Lemma 1 that the satisfaction of
(31) leads to (A +BG) is asymptotically stable; H∞ norm

bound γ, and an upper bound covariance matrix X  for the
state covariance matrix X.  Hence, in this section we will
first derive the conditions and solutions for which (31)
is satisfied.  Then, the controller solutions G will be
characterized by the UBCC which is based on the ap-
proach of singular value decomposition and the theory
of generalized inverse.

Theorem 3

Consider the system (12) Given an upper bound
covariance matrix   X = XT > 0,  then there exists a control
feedback gain matrix G such that X  solves (31), where

  G = B+(Q – X) + (I – B+B)Z, (35)

in which Z is an arbitrary matrix if and only if

  (I – BB+)(Q – X) = 0, (36)

and

   (A + Q)X + X(A + Q)T + X(γ – 2R – 2I)X + DDT = 0,
(37)

for some Q, where Q ∈  Rn × n and (•)+ denotes the Moore-
Penrose inverse of (•).

Proof:

Necessity : Suppose there exists a G satisfying (31) for
given   X > 0.  (31) can be rewritten as

   AX + XAT – XX – BGGTBT + γ – 2XRX + DDT + QQT

 = 0, (38)

where

  Q = BG + X. (39)

By assumption G satisfying (39) exists.  Hence,
(39) has to be solvable for G, which is guaranteed if and
only if

  (I – BB+)(Q – X) = 0. (40)

The solution G is given by

  G = B+(Q – X) + (I – B+B)Z, (41)

where Z is arbitrary matrix.  Substituting (41) into (38)
yields

   (A + Q)X + X(A + Q)T + X(γ – 2R – 2I)X + DDT = 0,
(42)

where we used the relation given by (40).  This com-
pletes the necessity of the existence of G satisfying (36)
and (37).
Sufficiency : Now suppose   X > 0  satisfies (36) and (37)
for some Q.  For suficiency, we will show that G given
by (35) solves (31).  From (35) and (36),

  BG = BB+(Q – X) = Q – X. (43)

Putting (43) into the left-hand side of (31) yields

   (A + BG)X + X(A + BG)T + γ – 2XRX + DDT

   = (A + Q)X + X(A + Q)T + X(γ – 2R – 2I)X + DDT.
(44)

But since (42) holds, the right-hand side of (44) is
zero.  Hence, (31) holds for G given by (35).  This
completes the suffiency of the existence of G satisfying
(36) and (37). ❒
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When the system (12) satisfies the necessary and
sufficient conditions of the Theorem 3, then there exits
a control feedback gain matrix G such that the specified
upper bound covariance matrix X  will be achieved for
the equation (31).

Let us summarize the above design procedure to be the
following steps.

Initial status: The system (1) is given with certain as-
sumptions in section 2.  An upper bound
covariance matrix X  is pre-specified.

Step 1: Choose C to satisfy CD = 0 and CB ≠ 0.
Step 2: Find some Q to satisfy (36) and (37), then get G

from (35).
Step 3: Get the switching function S(t) as (6).
Step 4: The controller (22) is obtained.

A NUMERICAL EXAMPLE

In this section, we consider a perturbed system as
(1) and it’s perturbation satisfies the matching condition.
We will use our proposed method and the method of
[27], respectively, to solve the problem and also make a
comparison between them. Now, consider a linear time-
invariant stochastic system (1) with the system param-
eters

  A = 0 1
– 2 – 4 , B = 1

– 1 , D = 0
1 ;

   ∆A = 10δ 1 – 0.8
– 1 0.8

, F = [1 1], (45)

where δ ∈  [0,  1]  is an uncertain parameter.  Here, we
suppose that the system is driven by initial states x(0) =
[x1(0)  x2(0)]T = [7  7]T and white noise w(t) which
satisfies (2) with identiy covariance.  The design goals
are to find the controller u(t) such that the steady state
of the system satisfies the following requirements.

||H(p)||∞ < 1, (46)

Var(x1(t)) < 1.5,  Var(x2(t)) < 3. (47)

Case (i): Using the present approach

If we pre-specify the upper bound covariance

matrix   X = 1 1
1 2 , which has diagonal elements satis-

fying the performance constraints (47).  Then, the pro-
posed design procedure may be obtained as follows.

Step 1: Choosing C = [1  0] such that CD = 0.  Clearly,
the perturbation ∆Ax(t) disappears on the slid-

ing mode.
Step 2: Substituting X  into Theorem 3, the conditions

(36)-(37) are satisfied with   Q = 0 – 1
2 4 .

Hence, from (35) we may obtain the control
feedback gain matrix as follows.

G = [−1  −2]. (48)

Step 3: From (6), the switching function has the follow-
ing form.

   
S(t) = [1 0]x(t) – [

0

t
– 1 – 1]x(τ )dτ . (49)

Step 4: A controller u(t) is obtained by choosing k1 =
18.5 and α  = 1 from Theorem 2.  Then, the
controller u(t) becomes

u(t) = [−1  −2]x(t) − [18.5||x(t)|| + 1]sgn(S(t)).(50)

For the comparison with UBCC technique in [27],
Table 1 shows the results of control effects (the indi-
vidual variances of state x1(t) and x2(t) and control
feedback gain G) with respect to uncertain parameter δ
(δ = 0.2, δ = 0.4, δ = 0.6, δ = 0.8, and δ = 1).

From the above design procedure, we can con-
clude that the upper bound covariance matrix X  will be
achieved if the system is driven by controller (50) to the
sliding mode.  In the simulation of case (i), δ is chosen
as a random number between 0 and 1.  The time response
of states x1(t) and x2(t) are given in Fig. 2 and Fig. 3,
respectively.  The time response of S(t) and u(t) are
shown in Fig. 4 and Fig. 5, respectively.  For stability,
the phase plane of (x1(t), x2(t)) is shown in Fig. 6.  It is
easy to check that the matrix Mγ which defined in
Lemma 2 has no imaginary eigenvalues, hence the H∞
norm constraint (46) is satisfied.  Moreover, the vari-
ances of x1( t) and x2( t) are 0.0521 and 0.1628,
respectively.  Therefore, the individual variance con-
straints (47) are also achieved.

Case (ii): Using the UBCC technique developed in [27]

Pre-specifying the upper bound covariance matrix

  X = 1 1
1 2  and using the UBCC approach of [27], we

can obtain the feedback controller G respect to ∆A.
Table 2 shows the individual variances of state x1(t) and
x2(t) and control feedback G due to different uncertain
parameters δ.

In Case (i) we can see that the feedback gain G is
independent of perturbation.  Therefore, if ∆A is in-
creased then G is still a constant gain.  However, the
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UBCC feedback gain G will become large if ∆A in-
creases in Case (ii).

CONCLUSIONS

This paper has provided a method to design a
controller u(t) to achieve the UBCC with H∞ norm and
variance constraints.  Based on the concept of VSC, we
can obtain the linear closed-loop system without

Table 1. State variances and control feedback gain using the
present method

δ = 0.2 δ = 0.4 δ = 0.6 δ = 0.8 δ = 1

Var(x1(t)) 0.0573 0.0542 0.0493 0.0539 0.0500
Var(x2(t)) 0.1539 0.1586 0.1684 0.1620 0.1686

G [−1  −2] [−1  −2] [−1  −2] [−1  −2] [−1  −2]

Fig. 2.  Time response of state x1(t).

Fig. 3.  Time response of state x2(t).

Fig. 4.  Time response of S(t).

Fig. 5.  Time response of u(t).

Fig. 6.  The phase plane of (x1(t), x2(t)).
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perturbation.  Since the utilization of VSC, the designed
control feedback gain matrix G not only achieve the H∞
norm and variance constraints but also determine the
sliding surface.  Furthermore, in order to satisfy the
hitting motion to the sliding surface, Ito-formula has
been used to solve the effect of white noise w(t).  This
paper is a new trial to combine VSC and UBCC for
achieving H∞ norm and individual variance constraints
for perturbed linear stochastic systems.
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