
Volume 7 Issue 1 Article 3 

Wave Forces on a Large Structure in the Presence of a Current Wave Forces on a Large Structure in the Presence of a Current 

Sung-Shan Hsiao 
Associate Professor, Department of Harbor & River Engineering, National Taiwan Ocean University, 2 Pei-Ning Rd. 
Keelung, Taiwan. 

Ming-Chung Lin 
Professor, Department of Naval Architecture & Ocean Engineering, National Taiwan University, 73 Chow-Shan Rd. 
Taipei, Taiwan. 

Follow this and additional works at: https://jmstt.ntou.edu.tw/journal 

 Part of the Civil and Environmental Engineering Commons 

Recommended Citation Recommended Citation 
Hsiao, Sung-Shan and Lin, Ming-Chung (2009) "Wave Forces on a Large Structure in the Presence of a Current," 
Journal of Marine Science and Technology: Vol. 7: Iss. 1, Article 3. 
DOI: 10.51400/2709-6998.2508 
Available at: https://jmstt.ntou.edu.tw/journal/vol7/iss1/3 

This Research Article is brought to you for free and open access by Journal of Marine Science and Technology. It has been 
accepted for inclusion in Journal of Marine Science and Technology by an authorized editor of Journal of Marine Science and 
Technology. 

https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/vol7
https://jmstt.ntou.edu.tw/journal/vol7/iss1
https://jmstt.ntou.edu.tw/journal/vol7/iss1/3
https://jmstt.ntou.edu.tw/journal?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol7%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/251?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol7%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://jmstt.ntou.edu.tw/journal/vol7/iss1/3?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol7%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages


Journal of Marine Science and Technology,  Vol. 7, No. 1, pp. 17-25 (1999) 17

WAVE  FORCES  ON  A  LARGE  STRUCTURE  IN
THE  PRESENCE  OF  A  CURRENT

Sung-Shan Hsiao* and Ming-Chung Lin**

and slender cylinders, Iwagaki and Asano (1984) per-
formed flow visualization tests to examine the vortex
property around a circular cylinder in a wave-adverse
current coexisting field.  The hydrodynamic forces
acting on the cylinder are also discussed by them.  Based
on the linear wave theory, Li and Zhang (1990) investi-
gated forces on cylinders under the actions of both
regular waves and currents.  A series model tests of
regular and irregular wave-current forces on slender
circular cylinders were carried out by Li et al. (1991).

To investigate the interactions of wave-current
around a large structure, Zhao and Faltinsen (1988)
developed a theory to the first-order in wave amplitude
and current velocity.  An algorithm to solve the interac-
tion between waves and currents with a two-dimen-
sional body was also presented by them.  Lin and Hsu
(1991) proposed a numerical scheme to study the inter-
actions of wave-current around a large structure.  The
numerical scheme is based on the mild-slope wave
equation derived by Kirby (1984), where the effects of
wave refraction-diffraction, together with currents, on a
slowly varying topography were considered.  To verify
the validity of their numerical scheme, model tests in a
laboratory basin were also conducted by Lin et al.
(1990).  The hydrodynamic forces on a vertical cylinder
in current and waves were also analyzed by Matsui et al.
(1991).  The significant influence on hydrodynamic
forces of the cylinder due to the presence of a current is
reported.  You and Tao (1992) investigated the nonlin-
ear wave-current forces on large scale cylinders by
time-stepping method.  Isaacson and Cheung (1993)
presented a time-domain solution for wave-current
interactions with a two-dimensional body.  A numerical
model using finite/boundary element method was
proposed by Lin et al. (1994) to deal with wave refrac-
tion-diffraction in the presence of a current.  Lin
and Hsiao (1994) proposed a numerical approach for
wave-current interaction around a large structure.  The
distribution of wave height around a large cylinder
in a wave-current coexisting field was calculated and
compared with experimental results.  Wave height
variations around a large cylinder due to wave-current

Keywords: Wave forces,  Large Structure, Wave-current Coexisting Field.

ABSTRACT

The wave forces acting on a large structure in the presence of a
current  have been investigated numerically.  It is noted that the
velocity potential in a wave-current coexisting field can be separated
into an unsteady wave potential and a steady current potential.  The
unsteady wave potential with effects of both a uniform current and a
large structure was calculated by using boundary element method.
The steady current potential can be expressed as the sum of a uniform
current and a steady disturbance due to the existence of the structure.
This means that current velocity will be changed in the vicinity of the
structure.  The variation of current velocity around the structure was
then calculated by using a surface vorticity method.  Substituting both
unsteady wave potential and current velocity distribution into the
first-order dynamic pressure equation and integrating the pressure
over the body surface, the first-order wave forces on a large structure
in the presence of a current then can be obtained.  Comparison of the
present results with those of Matsui et al. (1991) are made.  The
agreement is satisfactory.  The numerical model proposed here has its
adaptability to the problem of waves, current and a large structure
interactions.

 INTRODUCTION

When waves propagate toward a large structure,
the existence of currents in ocean having different
characteristics complicates the problem concerning the
interactions between wave and current around the
structure.  With increasing engineering activities in
both coastal and offshore regions nowadays, accurate
predictions of wave forces and, thereby the responses of
large structures, in the presence of currents have be-
come progressively important.

To study the interactions between current, wave
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interactions were studied experimentally by Lin and
Hsiao (1995).  Both the cases of slowly varying topog-
raphy, as well as with constant water depth, were con-
sidered.

The general approach for the velocity potential of
a wave-current coexisting field is to separate the veloc-
ity potential into a steady current potential and an
unsteady wave potential.  The steady current potential
can be expressed as the sum of a uniform current and a
steady disturbance which resulted through the presence
of the structure in the flow field.  This then leads to
alteration of the current velocity in the vicinity of the
structure.  For a structure of arbitrary shape, it is diffi-
cult to find a closed form solution but a numerical
solution may be obtained by a direct application of an
integral equation method (Isaacson and Cheung, 1993).
In this paper, the surface vorticity method due to Lewis
(1991) was used to obtain the needed boundary integral
equation.  The variation of the current velocity due to
the existence of the structure was then directly found by
solving this equation numerically.  Boundary element
method was used to calculate the unsteady wave poten-
tial which resulted from the presence of a uniform
current and the structure.  Assuming that the wave is

small amplitude motion and the current velocity is
rather small, one can obtain a first-order dynamic pres-
sure equation. Substituting both the unsteady wave
potential and the current velocity into the equation and
integrating the pressure over the structure surface, the
first-order wave forces on a large structure in the pres-
ence of a current were obtained.

THEORETICAL FORMULATION

The problem of wave forces acting on a large
structure under the effect of a current is considered.
With reference to figure 1, the problem is defined with
a fixed coordinate system o-xyz, in which xy-plane is on
the still water level, o is at the center of the body, and z
is measured vertically upwards from the xy-plane.  The
seabed is assumed to be impermeable and horizontal
along the plane z = -h.  U is the current velocity and is
assumed to be uniform with depth, k is the wave number
of incident waves.  α  and β are, respectively, the incli-
nations of wave and current  to the x axis, θ = β - α is then
the angle between waves and current.

1. Velocity potential

Assuming fluid in the wave-current coexisting
field is incompressible and inviscid, and the flow
irrotational, the fluid motion can then be described by a
velocity potential Φ which satisfies the Laplace equation:

∇ 2Φ = 0, (1)

The potential Φ is also subjected to boundary conditions
on the seabed, the structure surface, and the free surface,
which are given, respectively, as

   ∂Φ
∂z

= 0,  z = -h (2)

   ∂Φ
∂n

= 0,  on S1 (3)

   ∂Φ
∂t

+ 1
2(∇Φ ⋅ ∇Φ ) + gz = c,   z = η (4)

Here,  ∂
∂n

 is the derivative, normal to S1, the surface
of the structure; t denotes time and g is the gravitational
constant; η  and c are, respectively, the water surface
elevation above the still water level and the Bernoulli’s
constant.

The potential Φ can be separated into a steady
current potential and an unsteady wave potential, as

Φ = φu + φw (5)

The current velocity in the vicinity of the structure
will be altered due to the presence of the object.  Thus,Fig. 1.  Definition sketch of the computational domain.
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the steady current potential φu can be expressed more
conveniently as the sum of a uniform current potential

   U ⋅ x and a steady disturbance potential φb caused by the
structure in the flow (Isaacson and Cheung,1993).

   φu = U ⋅ x + φb (6)

The unsteady wave potential φw in a wave-current
coexisting field is given by linear wave theory, as

   φw = –
igA
σ

cosh k(z + h)
cosh kh f e– iωt (7)

where A is amplitude of the incident wave, i is the
imaginary constant, and g is the gravitational constant,
ω and σ, denote, respectively, the absolute and relative
angular frequency in the wave-current coexisting field.
The wave number k and the angular frequency ω, σ are
related by the linear dispersion and Doppler relation
such as

   (ω – k ⋅ U)2 = gk tanh kh (8)

   σ = ω – k ⋅ U (9)

In equation (7), f denotes the surface potential
function.  It is noted that, using the diffraction theory
approach, f can be expressed as a linear combination of
surface potential functions resulting from both incident
and scattered waves:

f = f i + f s (10)

where fi  is surface potential function of the incident
wave, and can be expressed as

f i = exp[ik(x cos α  + y sin α)] (11)

Substituting equations (5), (6), (7), (10) and (11)
into equation (1), and applying boundary conditions
on the surface of the structure, as well as a far-field
radiation boundary condition, the surface potential func-
tion of the scattered wave f s in the analytical domain
satisfying Helmholtz equation is given by:

   ∇ h
2 f s + k2 f s = 0,   ∇ h = (∂/∂x, ∂/∂y) (12)

   ∂ f s

∂n
= –

∂ f i

∂n
,   on S1 (13)

   lim
r → ∞ r ∂

∂r
– ik f s = 0,   on S∞ (14)

Equations (13) and (14) are boundary conditions on the
surface of the structure, and the far-field radiation bound-
ary condition, respectively.

2. Wave forces

The wave forces acting on a body can be deter-
mined by carried out appropriate integration of the
pressure over the body surface.  In the present applica-
tion, the pressure in the fluid may be determined by the
Bernoulli equation :

   p = – ρ ∂Φ
∂t

+ 1
2(∇Φ ⋅ ∇Φ ) + gz (15)

where ρ is the fluid density, and t denotes time.  Substi-
tuting equation (5) into equation (15), and without
considering the hydrostatic pressure term ρgz, one can
obtain a dynamic pressure equation:

   
p = – ρ ∂φw

∂t
+ ∇ φu ⋅ ∇ φw + 1

2 ( ∇ φu
2

+ ∇ φw
2

(16)

Considering the case of small amplitude wave
motion and small current velocity in the wave-current
coexisting field, equation (16) can be rewritten into a
first-order dynamic pressure equation expressed as

   
p = – ρ ∂φw

∂t
+ ∇ φu ⋅ ∇ φw (17)

It should be noted that the term ∇ φu • ∇ φw is of first
order in wave amplitude, and accounts for the interac-
tion between waves and current.  Substituting equation
(7) into equation (17), the first-order dynamic pressure
equation is rewritten as:

   p =
ρgA
σ [ωf + i(∇ φu ⋅ ∇ f )]cosh k(z + h)

cosh kh e– iωt     (18)

The first-order wave forces acting on the body
under the effect of a current can be determined by the
integration of the first-order dynamic pressure equation
over the surface of the object and the water depth. i.e.

  
Fx =

– h

0
pdydz

S1

Fy =
– h

0
pdxdz

S1

(19)

where Fx, Fy represent, respectively, the first-order
force components in the x and y directions.

NUMERICAL PROCEDURE

1. Calculation of current velocity

Consider the case of a flow past a two-dimensional
body lying in the xy-plane. The object is assumed to be
immersed in a uniform current  which is inclined at an
angle β to the x axis (Fig. 2).  Applying the surface
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Here, for simplicity, the γ(sm)/2 term on equation (20)
has been absorbed into coupling coefficient K(m,n),
thus

  K(m,n) = K(sm,sm) – 1
2;n=m

= K(sm,sn)     ;n≠m (23)

Lewis (1991) showed that the coupling coefficient K(m,
n) acting upon itself is given by

K(m,m) = ∆θm/4π (24)

where ∆θm is the angle subtended by the curved element
∆sm (Fig. 3), and may be approximated by half the
change of the slope between adjacent elements, namely

   
∆θm = 1

2
dym – 1
dxm – 1

–
dym + 1
dxm + 1

(25)

A suitable discretization is achieved such that
equation (22) must be written for the pivotal point of
each element, resulting in a set of  N equations for N
unknown values of surface vorticity, γ(1), γ(2), ...,γ(N)
Equation (22) then can be written in the matrix form:

   K11 K1N

K21 K2N

KN1 KNN

γ (s1)
γ (s2)

γ (sN)

=

rhs1
rhs2

rhsN

(26)

with simplified notation Kmn = K(sm,sn) and the right
hand sides given by

   
rhsm = – U

dxm
dsm

cos β +
dym
dsm

sin β (27)

Solution of the above N linear equations then yield
directly the value of surface vorticity γ(sm).  The current
velocity close to the body surface (∇ φu)m is now imme-
diately known, being equal to the surface vorticity γ(sm)
(Lewis,1991).

vorticity method (Lewis, 1991), one can represent this
flow by a distributed vorticity sheet  clothing the whole
body but with initially unknown strength.  Making use
of the Biot-Savart law and boundary condition on  the
surface at m, a boundary integral equation can be
obtained.

   γ (sn)K(sm,sn)dsn – 1
2 γ (sm)

   
= – U

dxm
dsm

cos β +
dym
dsm

sin β (20)

where the last term is the component of U parallel to the
body surface.  K(sm,sn) is a coupling coefficient whose
value is that of the velocity at  parallel to the body
surface, induced by a unit vorticity located at sn, namely

   
K(sm,sn) = 1

2π
– (xm – xn)(dym / dsm) + (ym – yn)(dxm / dsm)

(xm – xn)2 + (ym – yn)2

(21)

Equation (20) is to be satisfied at all points on the
body surface.  A practical approach to approximate this
would be to divide the body surface into N discrete
elements ∆sn, and pivotal points are selected at the mid-
points of the elements (Fig. 3), whereupon, equation
(20) may be expressed as a linear equation of the form:

   
γΣ

n = 1

N

(sn)K(m,n)∆sn = – U
dxm
dsm

cos β +
dym
dsm

sin β

(22)

Fig. 2. Surface vorticity model for potential flow past a two-dimensional
body. Fig. 3.  Boundary element geometry.
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2. Calculation of wave potential function

Application of Green’s second identity, and with
the boundary condition on  (equation (14)) to equation
(12) leads to the following boundary integral equation :

   
Ci fi

s = (
S1

f s∂ f *

∂n
– f *∂ f s

∂n
)ds

  
Ci =

1 in the analytical domain D1
1
2 on the boundary S1

(28)

where ∂/∂n is the normal derivative, directed outward
from the fluid region at the structure surface.  f * is the
fundamental solution of the Helmholtz equation.  Ex-
pressing the fundamental solution in terms of the Hankel
function of the first kind of zero order, one has

  f * = – i
4H0

(1)(kr) (29)

where r is the distance from the source point to the point
under consideration.  For the discretization of equation
(27), constant elements on the boundary are used.  Equa-
tion (28) can then be approximated and rewritten as

   Σ
j = 1

N

fj
s

s j

∂ f *

∂n
ds – Ci fi

s = Σ
j = 1

N ∂ fj
*

∂n
f *

s j

ds (30)

This equation is to be satisfied at all points of the
surface S1.  The resulting simultaneous equations writ-
ten in matrix form can be expressed as

  [Hij][Fj] = [Gij][Fj
* ] (31)

where

   Hij =
s j

∂
∂n

( – i
4H0

(1)(kr))ds (32)

  Gij =
s j

( – i
4H0

(1)(kr))ds (33)

   
Fj

* =
∂ fj

s

∂n
= –

∂ fj
i

∂n
(34)

From equation (31), the unknown quantities of the
scattered wave potential function [Fj] on boundary S1

are solved by matrix inversion.  Then the surface wave
potential function f = f i + f s is obtained.

RESULTS  AND  DISCUSSION

To examine and illustrate the present method, the
special case of a large circular cylinder with radius a in
constant water depth (h) is considered.  The incident

waves are progressive in the positive x direction.  For
numerical computation, the ratio of water depth to the
radius of the cylinder h/a = 1.0, the Froude number Fr =
U/  ga  = 0.05, 0.10, and different angles (θ = 0°, 45°,
90°, 135°, 180°) between waves and current are chosen
respectively.  The wave number k of a linear wave
interacting with the current U is obtained from the linear
dispersion relation (equation (8)) with the value of ω
(ω2 = gk′  tanh k′h, where k′  is the zero-current wave
number) (Thomas, 1981).  With the value of ka, the
first-order wave forces can be obtained from equation
(19).  Plotting them against ka, the variation of wave
forces under the effect of a current can be seen clearly.
For a large structure discussed in this study, the value of
2a/L (L is the incident waves length) must be large than
0.2 (Brebbia,1979).  Therefore, the region of ka ≤ 0.2π
can be out of consideration.

To verify the validity of this numerical model,
wave forces on the cylinder without current effect (i.e.
Fr = 0) were calculated firstly.  Figure 4 shows the
calculated results together with the analytical solutions
of MacCamy and Fuchs (1954).  The agreement is rather
satisfactory.  A comparison is also made of the present
numerical results for Fr = 0.10 with those of Matsui et
al. (1991) in figure 5.  It indicates that the present results
are in good agreement with those of Matsui et al. (1991)
except for ka = 1.5~2.0.

Variation of wave forces under the effects of
following and opposing current with parameter ka is
presented in figure 6.  It demonstrates that wave forces
increase with increasing value of Froude number in the
small wave number region (ka < 1.0), but decrease with
increasing value of Froude number in the large wave
number region (ka > 1.0).  Wave forces are larger than

Fig. 4. Comparison of wave forces in absence of current between the
numerical and exact solution.



Journal of Marine Science and Technology, Vol. 7, No. 1 (1999)22

are 45° and 135°, waves will be refracted due to the
influence of current.  Therefore, the wave forces acting
on the cylinder under the effect of a current have force
components in the y-direction, besides in the x-direction.
Figures 7 and 8 show the relationship between wave
forces component in the x-direction and the diffraction
parameter ka.  From these figures, it can be seen that, (a)
with waves propagating on a favorable current (θ <
90°), wave forces in the x-direction become smaller
compare to that of no current present in the large wave
number region, and also decrease as the value of Fr

increases, (b) with waves propagating on an adverse
current (θ > 90°), an opposite trend is found.  Figure 9
demonstrates that wave force components in the y-
direction increases as the value of Fr increases.  It means
that the wave force components in the y-direction in-
creases with increasing velocity of current.

Fig. 5. Comparison of  present results with those of Matsui et al. (1991) for
Fr = 0.10 .

Fig. 6. Variation of wave forces with ka under the effects of both following
and opposing current.

Fig. 8. Variation of wave forces in the x-direction with ka for θ = 135° and
different Froude numbers.

Fig. 7. Variation of wave forces in the x-direction with ka for θ = 45° and
different Froude numbers.

that of no current present in the small wave number
region for Fr > 0 (i.e. under the effect of a following
current), but smaller for Froude number Fr < 0 (i.e.
under the effect of an opposing current).  An opposite
trend can be observed in the large wave number region.
This phenomenon can be due to the fact that the curve of
the wave forces with no current present  has a positive
slope in the small wave number region, but has a nega-
tive slope in the large wave number region.  For the
reason of increasing wave length under the effect of a
following current, i.e. the value of ka is smaller than the
relative diffraction parameter k′a of zero-current, so
that the wave forces larger than that of current-free case
in the small wave number region, but smaller in the
large wave number region.  The opposite trend is true
for the case of an opposing current.

When the angles (θ) between waves and current
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Fig. 9. Variation of wave forces in the y-direction with ka for θ = 45° and
different Froude numbers.

Fig. 10. Variation of wave forces in the x-direction with ka for θ = 90° and
different Froude numbers.

Fig. 11. Variation of wave forces in the y-direction with ka for θ = 90° and
different Froude numbers.

Fig. 12. Variation of wave forces in the x-direction with ka for Fr = 0.10 and
different angles between waves and current.

Fig. 13. Variation of wave forces in the y-direction with ka for Fr = 0.10 and
different angles between waves and current.

When the angle between waves and current is
equal to 90°, the velocity of current has no component
in the direction of the incident wave, so that the wave
length will not be affected by current.  Therefore, no
matter what the value of Fr is, the wave forces in the x-
direction are the same as no current present (Fig. 10).
Nevertheless, the wave force components in the y-
direction are still affected by the existence of a current,
and increase as the velocity of current increases
(Fig. 11).

Figures 12 and 13 show the plots of wave forces in
the x and y-directions respectively, for different angles
between waves and current, but with the same value of
Fr (i.e. the same current magnitude).  Figure 12 reveals
that the wave forces in the x-direction decrease with
increasing angle between waves and current in the small
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wave number region, but increase as the angle (θ)
increases in the large wave number region. This is the
fact that waves travel with current for θ < 90°, whereas,
it travels against the current for θ > 90°.  It can be
therefore concluded that, the wave forces for the case of
a following current is smaller than that without current
in the large wave number region, but with an opposing
current, a completely opposite trend can be detected.  In
Figure 13, it is found that the wave forces in the y-
direction have a maximum value for θ = 90°, and have
the same value for θ = 45° and θ = 135°.  The reason for
this is because that the velocity component of current in
the y-direction has a maximum value when θ = 90°, and
has the same value for θ = 45° and θ = 135°.

CONCLUSIONS

In this study, the surface vorticity method and
boundary element method are combined to investigate
the first-order wave forces on a large structure in the
presence of a current.  For the validity of this numerical
model, comparison of the present results with the ana-
lytical solutions of MacCamy and Fuchs (1954) for
zero-current, and with those of Matsui et al. (1991) for
Fr = 0.10 are made.  The agreement is satisfactory. The
numerical model proposed here has its adaptability to
the problem of waves, current and a large structure
interactions.

The following conclusions can be drawn from the
numerical results :
1. Wave forces on a large body are larger than that of no

current present in small wave number region for the
incident waves travel with current, but smaller for the
incident waves travel against current, and also in-
crease with increasing value of Froude number.  An
opposite trend can be observed in the large wave
number region.

2. When the intersection angle between waves and
current is not equal to 0° or 180°, it exists wave forces
component in the y-direction.  The wave forces in-
crease as the velocity of current increases.

3. When the angle between waves and current is equal to
90°, the wave length will not be affected by current,
the wave forces component on the x-direction are the
same as that with no current present, nevertheless the
wave forces component in the y-direction are still
affected by the existence of  a current, and increase as
increasing current magnitude.

4. For a fixed current velocity (the value of Froude
number is constant), but with different angles
between waves and current, the wave forces in the
x-direction increases as the angle increases in the
large wave number region.  An opposite trend can be
observed in the small wave number region.  Whereas

the wave forces in the y-direction increase as the
angle increases until the angle is equal to 90°, then
decrease while the angle still increases.  It means that
the wave forces have a maximum value for θ = 90°,
and have the same value for the angles of inflow are
symmetric to the y-direction (for example θ = 45° and
θ = 135°).
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