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INVESTIGATION OF LONGITUDINAL ELASTIC

WAVE PROPAGATION THROUGH

INTERSECTING

WELDED BARS

Ming-Te Liang* and Chiou-Jenn Chen**

Keywords: Incident wave, Reflection, Transmission.

ABSTRACT

The main purpose of this paper is to express a general formula-
tion for the theoretical analysis of longitudinal elastic wave propaga-
tion through a general and in particular the T and-f- junctions. The bar
jointismodeled as arigid block. The bars are assumed to be all of the
same thickness but may differ in width and may be of different
materials. Elementary theory is applied to investigate the propagation
of longitudinal wave. The present study indicates that for a T junction
there would be no transmission of the longitudinal elastic wave. For
atjunction there would be no transmission of the longitudinal elastic
wave into the perpendicular branches but the transmission into the
horizontal bar was happened.

INTRODUCTION

Welding is used extensively in steel structures,
space shuttles, aircraft, ships, cars, locomotives and
offshore platforms. When these structures are subjected
to a sudden seismic or aerodynamic disturbance, the
energy of longitudinal elastic wave should be absorbed
by the structural joints if structural damage is to be
prevented. The fate of longitudinal elastic waves as
they propagate through welded intersection joint is thus
avery important consideration in structural design for
dynamic loading conditions.

Mandel et al. [1] have studied the problem of
stress-wave propagation through arigid right-angle joint
by using the method of characteristics, and also experi-
mentally verified their theoretical result. They found
that tension and shear in the horizontal bar becomes
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shear and tension in the vertical bar. Desmond [2] found
that when a longitudinal stress wave impinges on a
junction of three elastic bars where two bars are col-
linear and the third is noncollinear to the others, a
longitudinal stress wave and a flexural (shear) wave are
reflected back along the first bar, and stress waves of
both types are transmitted into the second and third
bars. Simha and Fourney [3] have presented a general
formulation for the analysis of stress wave propagation
through ajunction of rectangular bars, and the dynamic
photoel asticity measurement was used for their experi-
mental investigation. They concluded that a longitudi-
nal stress wave in the horizontal bar is not transmitted
into the perpendicular branch. It is worth pointing out
that there exist a lot of mistakes in the theoretical
analysis of Simha and Fourney [3]. The theoretical
derivation using the method of Laplace's transform is
incorrect at there, such as Egs. (8), (9), (10), (11), (12),
(13) and Appendix A in the paper of Simha and Fourney
[3]. Theinverse Laplace transform is also not used in
Simhaand Fourney [3]. The experimental results do not
clarify the theoretical result. Wu and Lundberg [4] dealt
with harmonic elastic waves in a uniform bar with a
straight semi-infinite input section, a bend with con-
stant radius of curvature and a straight semi-infinite
output section. The effects of rotary inertia and shear
deformation were both neglected. They found that for
a sharp 99.9° bend, an incident extensional wave does
not produce a transmitted longitudinal wave at any
frequency. For asharp right-angle bend, the energy flux
of the transmitted extensional wave is up to 4% of the
incident extensional wave, depending on the frequency.
For a straight bar, the extensional wave is totally
transmitted.

In order to correct the formulas derived by Simha
and Fourney [3] , this paper again presents a general
formulation for the theoretical analysis of longitudinal
elastic wave propagation around a general junction.
First, the theoretical derivation is introduced. Then
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both T and }-geometrical cases are calculated for check-
ing the theoretical analysis. Finally, the conclusions are
made.

THEORETICAL DERIVATION

In this section, the structures of the derivation is
divided into three parts:

I. Transverse waves, I1. Longitudinal waves, and
I11. The special case of welded bars with T-geometry.
Asfor parts | and I, the method of Laplace’s transform
isapplied. Asto part Ill, it isthe application of parts |
and II.

|. Transver se waves

Consider ajunction of three elastic plates as shown
in Fig. 1. Assume that the steel plate is elastic. For
transverse waves, the following equations (Atkins and
Hunter [5]) should be satisfied:

o'y, p; A0,
ax4] ) aZJ =0, (j=1,2,3), ;(x,0)=0,
ﬁyj(xj,0)=0, (1)

where y;, Ej, I;, p; and A represent the displacement,
Y oung's modulus, moment of inertia, mass density and
cross-sectional area, respectively, and x and t stand for
space and time coordinates, respectively

E, 2t
Let C7= p, = 2L, and | =

the thickness of the steel plate, 2L; is width, and C; is
wave speed. Then Eq. (1) can be written as

3 ,,W eret is

4
u +_ 3 yJ _
oxt  C2L? a2

=0, yj(x, 0) =0, %yj(xj, 0)=0(2)

The definition of the Laplace transform is

barl,dy, dg, P
’¢3,p3

welded joint

Fig. 1. Generad sketch of atrifurcated welded bar.

LLy;(x;, t)] e ptyj(le t)dt (3

= y(xj! p) = 0

After applying the Laplace transform, Eq. (2) be-
comes

d4y p
dx] CZLZyJ @
3 o .
Supstltutlng ﬁj = aC2L2 and i = —1, the solution of
Eq. (4) is iti

~ (1 +DBj/PX] (1-)BjvPX|
yi0GP) = Ay(pe [ U + By(pe T F’X
+ Cy(p)e™ 7P 4 D (p)e ) ®)

For the boundedness of the solution, let C(p) = D
(p) = 0. Thus, Eq. (5) becomes

¥i(x;,p) = Aj(p)e g OBy Bj(p)e_(l‘i)ﬁjmxi (6)

The moments and shear forces are given by

2,
Yi
M;=Ejl de (7
Xj=0
and
_ ddy.
Q=E;l Kﬁ (8)
) Xj=0
Using Egs.(7) and (8) yields
Q M|
=1 1> ya-i)yy 9
J(p) AE. I‘B? ij3/2 ( i) P 9
Q N
= +(A+D) 10
J(p) AE. |,B] ij3/2 ( i) P (10)

There are three unknowns, X, Y and 8 as shown in
Fig. 2, where X is the horizontal displacement, Y isthe
vertical displacement and 6 is the rotational angle,
which should satisfy the following equations:

dy;

=_9 (11)
dx] =0
[yJ]X]:O=—XS|n QJ—YCOSGI—QdJ (12)

where 6 is the bar angle, and d; is the moment arm of
shear force Q; (see Fig. 2). Substituting Egs. (9) and
(10) into Egs. (12) and (11) yield

—Xsin 9, —Ycos 0, - 9dj

(13)
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Q,
e
M, @

Qj:bar angle

di:the moment arm of shear force Q;

Fig. 2. Free-body diagram and systems of coordinates of a trifurcated
welding bar.

1 lQJ 2— 0 (14)

2E; I],B] B;

I1. Longitudinal waves

Similarly, the longitudinal waves should satisfy
the following equations (Atkins and Hunter 1975, Simha
and Fourney [3]):

0%U; 1azuj_0 15

¢ cZoat? (15)
) L . _ 0U;(x,0) _
with theinitial conditions Uj(x;, 0) =0 and —x— =
where U; is the displacement of longitudinal waves.

As illustrated in Fig. 1, ¢ and ¢r indicate,
respectively, the incident and reflected longitudinal
waves in bar 1; ¢ and ¢; denote the transmitted longi-
tudinal waves in bar 2 and bar 3, respectively. Their
relationships to each other can be expressed as

Us(xy,t) = (H(t te | TR 1) (16)
Ua(Xo)t) = (Pz( —%22) (17)
Us(Xgt) = (Ps,( —%33) (18)

Applying the Laplace transform to Eq. (15) gives

,
Ui [Py =0 (19)
ax? |c?)!

The solution of Eq. (19) is

0(x;,p) = (_‘,1(xj,p)e(C£j)Xj + C2(xj,p)e_(C£J)Xj (20)

For the boundedness of the solution, let C,(x;, p) =
0. Thus,

£
00x,p) = Colx.p)e |61 )1 (21)

The Laplace transform of the joint boundary con-
ditionsis

[Uj]xj:():—XCOS 6, +Ysin 6, (22)
Substituting Eqg. (22) into Eq. (21), we obtain

U(x;,p) = (— Xcos 6 + Ysin ej)e‘(f%)xi (23)
The substitution of Eg. (16) into Eq. (22) yields
(@ +@)=-X (24)
Inserting Egs. (17) and (18) into Eqg. (22) leads to
@ =—Xcos g, +Ysin 6, (j =2.3) (25)

The relationship of stress and internal force can be
expressed as

ouU
T, =E; A( ) (=123 (26)
where A; = 2L;t;, Aj isarea, and tj isthickness. Differen-
tiating Eq. (23) with respect to x; and substituting the
resultant into Eq. (26) yields
Ti=-2ppCiLit;@, (j=123) (27)

Since the horizontal force, the vertical force and
the moment (see Fig. 2) are in equilibrium, we get

%g(TCOSQ -Q;sin6) +mp?X =0 28)
J:

| &, (TjSin 6= Q,c0s 6) ~mpY =0 (29)
(2, (M T +diQ) ~1p°6=0 (30)

where g is the moment arm of axial force Tj, m = 4pL?
16pt°
3

is the mass of per unit length of the joint and | =

isthe moment of inertia of the welded joint. Finally, the
15 unknowns can be solved from 15 equations obtai ned
from Egs. (13), (14), (24), (25), (27), (28), (29) and
(30).

[11. The special case

Now, consider the case of welded bars with T-
geometry (see Fig. 3). Assume each bar is constituted
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(@)
A

F—> a «<—P> b €
P — ¥
Oy > A
welded joint \/

05

Fig. 4. T-type steel plate dimensions. The plateis 0.025m thick. Other
dimensionsare asfollows. a=1.2m, b=d=0.0256m,c=e=1.2m.

I .~ .. 16pL%p%0
My + M, + M- L(Qs+ Q= Q) + 5P o =0
(36)
b
[96) 3/ )
3 |[CL)\"%n, +(CL M,[=—-Y-L
N 2 (@)
Fig. 3. Free-body diagram of the T-type steel plate. Q3 represent the 3
shear forces, Ty, 3 the axial forcesand My 5 3 the:nzo3ment. 6,=0°, % (%) /2Q2 + (%)MZ =—X-L0@ (38)
6, =90°, 63 =270°, (see Fig. 1 for an explanation of 6). 8EL |
3 _ .
of the same material and has the same material proper- @ (%) 2Q3 + (C—'ﬁ)M3 =X-L6 (39)
tiesas listed in Table 1. s
Let coefficient a="3 (see Atkins and Hunter [ 1 ]
[5]), substituting the appropriate values (see Fig. 4) into % (%)Ql + 2(%) M,|-86=0 (40)
Egs.(13) and (14) and Egs. (24)~(30) gives: : |
- T\ 3 |(CL\6. + of CL) 21 | _ g =
= o 4L ALY “M. 1= 9=
O (4pCpL2) 4 (31) 8EL4( P)Q2 ( P) 2 o=0 1)
- T, |\_ 3 7CL7+ CL\"21 | _p=
= o 4L ALY “M.l—9=
o (4pCpL2) 0 (32) 8EL4( P)Q3 ( P) y o=0 (42)
o+l =0 (33) %-Y=0 (43)
4pCpl.2
T, —Q,+Q3+8pL%p2X =0 (34) @;+Y=0 (44)

Q,-T,+T;+8pL3p2Y =0 (35) and —gr—-X=q (45)
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Table 1. Physical characteristics of the steel plate

material unit weight density Y oung's modulus shear modulus Poisson'sratio
properties y P E G v
unit (KN/m°) (kg/m®) (Gpa) (Gpa) -
values 77 7850 200 80 0.3
<
0|V
T @
F—> A <> B T QT—
(I)R<— * T,
g — -
O —» A % MW
» = e ]
welded joint l E Q
T (|)3 X ’—>T1 17 X T T4“‘ —x,
1 Ve

Fig.5. +-typested plate dimensions. The plateis 0.025m thick. Other
dimensionsare asfollows: A =1.2m, B =0.0256m,C=1.2m,D =
0.025m, E=1.2m, F = 1.2m.

The incident wave ¢ is known. Thus from Egs.
(31)~(45), the values of M;,M,,M3,Q,,Q,,Q35,T1,T5,T5,k,
@,0,X,Y and 6 can be determined and the following
equations can thereby be derived (see Appendix)

n=-0 (46)
»=0 (47)

Since @ = @, =0, the inverse Laplace transform
need not be used. We know that for a T junction there
would be no transmission of the longitudinal stress
wave in the vertical bar, because boundary conditions
are satisfied the condition of compatibility and both bar
2 and bar 3 are symmetrical. Thus, the coupling action
is occurred and the infinitesimal values of transmitted
longitudinal wave in the vertical bar does not exist.

In this paper, we adopt the bar with finite length
as example. The first single received from sensor
was taken for analysis. The longitudinal waveisonly to
be discussed. As to the action time, we take the time
when the first incident wave is not yet arrived at the end
point of bar. Thus, the interference due to the other
reflection waves and diffraction waves can be avoided
for analysis.

M| EN%

Fig. 6. Free-body diagram of the 1-type steel plate. Q>34 represent the
shear forces, Ty 234 the axial forcesand My 34 the moment 6, =
0°, 6,=90°, 6;=270°, 6, =180°, (see Fig. 1 for an explanation of
).

EXTENDED APPLICATION OF THE MODEL

In engineering practice, multiple bars are usually
welded together. In this section, the T geometry case
developed above is extended to the + geometry case
(see Fig. 5 and Fig. 6).

Extending Egs. (13) and (14)and Egs. (24)~(30),
the following equations can be added for j = 4:

_ T,
I D V S P 48
@ (ZPP4C4L4t4) 9
1 Q4 +& +X§n94+YC0594+9d4:0

2E,) 85| Bap?2 P

(49)
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1.00

\

0.80 —
0.60 —
040 —

020 —

0.00 T T T T T ‘ T ‘

2.400E-4 2.800E-4 3.200E-4 3.600E-4

Time (sec)

4.000E-4

4.400E-4

Fig. 7. Values of transmitted longitudinal elastic wavesin the horizontal

welded bar for the +-type steel plate.

1 lQ4 + M, _9=0

2E4|4ﬂi P

>+ 2
Bsp  “VP

@+ Xcos8,—Ysn6,=0

(50)

(51)

Substitution of the appropriate values (see Fig. 5
and Fig. 6) into Egs. (13) and (14), Egs. (24)~(30) and

Egs. (48)~(51) yields

|, ls =@
4pCpl.2

Ty —Q,+ Q= T, +8pL°p?X =0
Qu—T,+T3—Q,+80L°p?Y =0
M;+ My +M3+ My —L(Q3+ Qy— Q1 —Qy)

527
+16pl_3p 9:

(6 0u (8w

0

3

eEL =-Y-L6

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

2B (G- xose
=2 RIET
8 e B fv0
R IR S
e LS R
Bl ASh) |-0=0 o0
e LR R
-Y=0 (67)
@+Y=0 (68)
@-X=0 (69)
-R-X=4 (70)

Since ¢ is given, from Egs. (52)~(70), the un-
@, X,Y and 8 can be calculated. Here we are concerned
with the values of @,@, and ¢, for the transmitted
longitudinal elastic waves. As before, the following
equations can be derived (see Appendix):

B==0 (71)
®»=0 (72)
@ =—W(p)p@) (73)
where
e B
W(p) = . s , (74)
%CLZ +L%(%) /2+ (%) 2

For convenience, the original positive x; direction
of @ isreversed. Thus, Eq. (73) becomes

@ =W(p)pg (75)
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Applying the convolution integral to Eq. (75) yields

X(x) =1 A e_%Q(u)du

t ' 1
o= J W(t —t')dqgt(.t)dt' (76) (9 ¥2Jo
0 = 0.8663e15%8.9762(1 — erf (39.9872/X))
where +55.582e0-3878x(1 — erf (0.6227/X))
—Re[(18.07 + 32.276i)W(0.8481/X + 0.4936/Xi)]
W(t) = L~ W(p)] (77) — e~ 04756X(36,14c0s 0.8372x + 64.552sin 0.8372X)
do (83)
ot =9 (78)
Finally, the substitution of Eq. (82) into Eq. (76)
T= & (79) yields
t , dg(t) ..
W(t) = X(%) (80) o= ’0 X[(t-t)/1] (glt( )dt (84)
and X(LT) =X(X) (81) Following Achenback [6], we have
Using the Laplace transform on Eq. (81) gives b ) /0, x 0 ()
. h(x) 3V (x — x)dx = 0.x 0 (ab) (85)
X = ’O X(x)e S a xUa

The x term in Eq. (83) is simply replaced by t:

_ CLas"2
51/2(0L382 +CL%s% + 012) X(t) = 0.8663e15%9762/(] _ erf (39.9872/T))
e + 55.582603878(1 _ erf (0.62271))
=5 72Q(s"%2) (82) — Re[(18.07 + 32.276()W(0.8481/t + 0.4936/fi)]
— e-04756(36,14c0s 0.8372t + 64.552sin 0.8372Y)
Applying the inverse Laplace transform to Eq. (86)

(82) gives

Table 2. Valuesof transmitted longitudinal elastic wavesin =-type stedl plate

Action time The transformed The values of transmitted longitudinal elastic waves
t(sec) action time t/7(sec) (@) () ()
2.42x10* 0.0176 0 0 0.9909
2.50x10* 0.0182 0 0 0.9815
2.58x10* 0.0188 0 0 0.9722
2.66x10* 0.0194 0 0 0.9630
2.74x10* 0.0200 0 0 0.9538
2.82x10* 0.0205 0 0 0.9446
2.90x10* 0.0211 0 0 0.9354
2.98x10* 0.0217 0 0 0.9263
3.06x10™ 0.0223 0 0 0.9172
3.14x10" 0.0229 0 0 0.9081
3.22x10™ 0.0235 0 0 0.8990
3.30x10" 0.0240 0 0 0.8900
3.38x10™ 0.0246 0 0 0.8809
3.46x10™ 0.0252 0 0 0.8719
3.54x10™ 0.0257 0 0 0.8630
3.62x10" 0.0264 0 0 0.8540
3.70x10™ 0.0270 0 0 0.8451
3.78x10™ 0.0275 0 0 0.8362
3.86x10™ 0.0281 0 0 0.8273
3.94x10" 0.0287 0 0 0.8185
4.02x10"* 0.0293 0 0 0.8097
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Substituting the t values into Eq. (86) and using
Table 1 and the appropriate formulas in Abramowitz
and Stegum [7] yields Table 2. From Table 2, Fig. 7
can be plotted. It is obvious that there is no transmission
into the vertical welding bars. However, the maximum
values of the longitudinal elastic wave transmitted
into the horizontal bar are about 99% (See Table 2 and
Fig. 7). Thisresult isvery close to the result obtained
by Wu and Lundberg[4].

CONCLUSIONS

The incorrect formulas, such as Egs.(8), (9), (10),
(12), (12) and (13), derived by Simha and Fourney [3]
now have been corrected as Egs. (9), (10), (11), (12),
(13) and (14) in this paper,repectively.

When a horizontal force is applied to the horizon-
tal bar in a T geometry configuration (Figs. 3 & 4), the
longitudinal elastic wave is not transmitted along the
vertical bars. This phenomenon is due to the boundary
conditions which are satisfying the condition of com-
patibility and both bar 2 and bar 3 symmetrical. Thus,
the coupling action is happened and the infinitesimal
values of transmitted longitudinal wave in vertical bar
is not existent. In the case of welded bars with-+-
geometry (Figs. 5 & 6), again there is no transmission
into the vertical welding bars. However, the maximum
values of the longitudinal elastic wave transmitted into
the horizontal bar are about 99%. This result is very
close to the result obtained by Wu and Lundberg[4].

In this paper, we apply the theory to illustrating the
bar with finite length. The phenomena of longitudinal
wave propagation is merely to be discussed. Since the
propagation velocity of longitudinal waves is larger
than the transverse waves , the longitudinal waves cer-
tainly arrive at the end point of bar before the transverse
waves. Furthermore, the longitudinal waves result in
both the reflection and refraction waves in the bar.
Therefore, if we want to consider the situation of trans-
verse wave propagation in the bar with finite length, the
more detail investigation is needed.

The values for the transmitted longitudinal waves
®,@; and @ are derived out in the present paper. Using
the same method it would also be possible to derive
values for other unknowns including ¢ (the reflected
wave) and ¢ where j refers to the j" welded bar at a
junction at angle 6 to the incident wave.

APPENDI X
The derivation process of Eqgs. (46), (47), (71),

(72), (73) and (74) is described as follows:
From Eg. (43), we obtain

»=Y (A-1)
It follows from Eq. (44) that

®=-Y (A-2)
From Egs. (A-1) and (A-2), we acquire

B=-0 (A-3)

It isworth noticing that Eq. (A-3) isEq. (46). The
substitution of Eqg. (A-3) into Eqg. (33) yields

T5=4pCpL2g, (A-4)
Similarly, we procure

T,=—4pCpL>p, (A-5)

T, =4pCpL* (@ — @) (A-6)

From Egs. (40), (41), and (42), we obtain, re-
spectively,

ol Ho-@ ) e
ol o m)  w
@ ol m|

Using Egs. (A-1)~(A-3) and Egs. (A-8) and (A-9)
and substituting the values ofQ;,Q,,Q5,Y and X, into
Egs. (37), (38) and (39), we get
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The substitution of Egs. (A-10), (A-11) and (A-12)
into Eq. (36) leads to

8EL( beﬁ)
9=
ELY L2+ 7L( G )1/2 +( Gh) +2pL5P(C'-)/2

(A-13)

Putting Eqg. (A-13) into Eq. (35) yields

6pL3P2(C ) %2 _2pchL ( 5)364-8EL4

ap
== ]
6 L3P%£1J%é+3 CPL%QlJ@é+8EL4
P p) TP p
(A-14)

The substitution of Eq. (A-14) into Eq. (35) yields
®»=0 (A-15)
It isworthy to point out that Eq. (A-15) is Eq. (47).

In the same manner, we can prove Egs. (71)~(74)as
follow

B=-¢ (A-16)
=0 (A-17)
@ =—W(p)p@ (A-18)
where
(CL 3h
- ap
W(p) = (A-19)

%CLZ p( 5)3/2 (Tb)%

It is deserving to point out that Egs. (A-16)~
(A-19) is Egs. (71)~(74), respectively.
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