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ABSTRACT

The main purpose of this paper is to express a general formula-
tion for the theoretical analysis of longitudinal elastic wave propaga-
tion through a general and in particular the T and� junctions.  The bar
joint is modeled as a rigid block.  The bars are assumed to be all of the
same thickness but may differ in width and may be of different
materials.  Elementary theory is applied to investigate the propagation
of longitudinal wave. The present study indicates that for a T junction
there would be no transmission of the longitudinal elastic wave.  For
a �junction there would be no transmission of the longitudinal elastic
wave into the perpendicular branches but the transmission into the
horizontal bar was happened.

INTRODUCTION

Welding is used extensively in steel structures,
space shuttles, aircraft, ships, cars, locomotives and
offshore platforms. When these structures are subjected
to a sudden seismic or aerodynamic disturbance, the
energy of longitudinal elastic wave should be absorbed
by the structural joints if structural damage is to be
prevented.  The fate of longitudinal elastic waves as
they propagate through welded intersection joint is thus
a very important consideration in structural design for
dynamic loading conditions.

Mandel et al. [1] have studied the problem of
stress-wave propagation through a rigid right-angle joint
by using the method of characteristics, and also experi-
mentally verified their theoretical result.  They found
that tension and shear in the horizontal bar becomes

shear and tension in the vertical bar. Desmond [2] found
that when a longitudinal stress wave impinges on a
junction of three elastic bars where two bars are col-
linear and the third is noncollinear to the others, a
longitudinal stress wave and a flexural (shear) wave are
reflected back along the first bar, and stress waves of
both types are transmitted into the second and third
bars.  Simha and Fourney [3] have presented a general
formulation for the analysis of stress wave propagation
through a junction of rectangular bars, and the dynamic
photoelasticity measurement was used for their experi-
mental investigation.  They concluded that a longitudi-
nal stress wave in the horizontal bar is not transmitted
into the perpendicular branch.  It is worth pointing out
that there exist a lot of mistakes in the theoretical
analysis of Simha and Fourney [3].  The theoretical
derivation using the method of Laplace's transform is
incorrect at there, such as Eqs. (8), (9), (10), (11), (12),
(13) and Appendix A in the paper of Simha and Fourney
[3].  The inverse Laplace transform is also not used in
Simha and Fourney [3].  The experimental results do not
clarify the theoretical result.  Wu and Lundberg [4] dealt
with harmonic elastic waves in a uniform bar with a
straight semi-infinite input section, a bend with con-
stant radius of curvature and a straight semi-infinite
output section.  The effects of rotary inertia and shear
deformation were both neglected.  They found that for
a sharp 99.9° bend, an incident extensional wave does
not produce a transmitted longitudinal wave at any
frequency.  For a sharp right-angle bend, the energy flux
of the transmitted extensional wave is up to 4% of the
incident extensional wave, depending on the frequency.
For a straight bar, the extensional wave is totally
transmitted.

In order to correct the formulas derived by Simha
and Fourney [3] , this paper again presents a general
formulation for the theoretical analysis of longitudinal
elastic wave propagation around a general junction.
First, the theoretical derivation is introduced.  Then
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both T and �geometrical cases are calculated for check-
ing the theoretical analysis. Finally, the conclusions are
made.

THEORETICAL DERIVATION

In this section, the structures of the derivation is
divided into three parts:

I. Transverse waves, II. Longitudinal waves, and
III.  The special case of welded bars with T-geometry.
As for parts I and II, the method of Laplace’s transform
is applied.  As to part III, it is the application of parts I
and II.

I. Transverse waves

Consider a junction of three elastic plates as shown
in Fig. 1.  Assume that the steel plate is elastic.  For
transverse waves, the following equations (Atkins and
Hunter [5]) should be satisfied:

   ∂4yj

∂xj
4 +

ρ j A j

E j I j

∂2yj

∂t2 = 0, (j=1,2,3),  yj(xj,0)=0,

 ∂
∂t yj(xj,0)=0, (1)

where yj, Ej, Ij, ρj and Aj represent the displacement,
Young′s modulus, moment of inertia, mass density and
cross-sectional area, respectively, and x and t stand for
space and time coordinates, respectively.

Let    C j
2 =

E j
ρ j

, Aj = 2Ljtj, and 
  

I j =
2t j L j

3

3 , , where tj is

the thickness of the steel plate, 2Lj is width, and Cj is
wave speed.  Then Eq. (1) can be written as

   ∂4yj

∂xj
4 + 3

C j
2L j

2

∂2yj

∂t2 = 0, yj(xj, 0) = 0,  ∂
∂t

yj(xj, 0) = 0 (2)

The definition of the Laplace transform is

   L[yj(xj, t)] = y(xj, p) =
0

∞
e– ptyj(xj, t)dt (3)

After applying the Laplace transform, Eq. (2) be-
comes

  d4yj

dx j
4 +

3p2

C j
2L j

2 yj = 0 (4)

Substituting    β j
4 = 3

4C j
2L j

2  and i2 = −1, the solution of
Eq. (4) is

   
yj(xj,p) = A j(p)e– (1 + i)β j p X j + Bj(p)e– (1 – i)β j p X j   

+ C j(p)e(1 + i)β j p X j + D j(p)e(1 – i)β j p X j     (5)

For the boundedness of the solution, let Cj(p) = Dj

(p) = 0.  Thus, Eq. (5) becomes
   

yj(xj,p) = A j(p)e– (1 + i)β j p X j + Bj(p)e– (1 – i)β j p X j  (6)

The moments and shear forces are given by

  
M j = E j I j

d2yj

dx j
2

x j = 0

(7)

and

  
Q j = E j I j

d3yj

dx j
3

x j = 0

(8)

Using Eqs.(7) and (8) yields

   
A j(p) = 1

4E j I jβ j
2

Q j

β jp
3 23 2

+ (1 – i)
M j
p (9)

   
Bj(p) = 1

4E j I jβ j
2

Q j

β jp
3 23 2

+ (1 + i)
M j
p (10)

There are three unknowns, X, Y and θ as shown in
Fig. 2, where X is the horizontal displacement, Y is the
vertical displacement and θ is the rotational angle,
which should satisfy the following equations:

   dyj

dx j x j = 0

= – θ (11)

   yj x j = 0
= – Xsin θ j – Ycos θ j – θd j (12)

where θj is the bar angle, and dj is the moment arm of
shear force Qj (see Fig. 2).  Substituting Eqs. (9) and
(10) into Eqs. (12) and (11) yield

   1
2E j I jβ j

2

Q j

β jp
3 23 2

+
M j
p = – Xsin θ j – Ycos θ j – θd j

(13)Fig. 1.  General sketch of a trifurcated welded bar.



Journal of Marine Science and Technology, Vol. 7, No. 1 (1999)10

   1
2E j I jβ j

Q j

β jp
+ 2

M j

p = θ (14)

II. Longitudinal waves

Similarly, the longitudinal waves should satisfy
the following equations (Atkins and Hunter 1975, Simha
and Fourney [3]):

   ∂2U j

∂xj
2 – 1

C j
2

∂2U j

∂t2 = 0 (15)

with the initial conditions Uj(xj, 0) = 0 and    ∂U j(xj,0)
∂t = 0,

where Uj is the displacement of longitudinal waves.
As illustrated in Fig. 1, φI and φR indicate,

respectively, the incident and reflected longitudinal
waves in bar 1; φ2 and φ3 denote the transmitted longi-
tudinal waves in bar 2 and bar 3, respectively.  Their
relationships to each other can be expressed as

   U1(x1,t) = φI t +
x1
C1

+ φR t –
x1
C1

(16)

   U2(x2,t) = φ2 t –
x2
C2

(17)

   U3(x3,t) = φ3 t –
x3
C3

(18)

Applying the Laplace transform to Eq. (15) gives

  d2U j

dx j
2 –

p2

C j
2 U j = 0 (19)

The solution of Eq. (19) is
  

U(xj,p) = C1(xj,p)e
p

C j
x j + C2(xj,p)e

–
p

C j
x j        (20)

For the boundedness of the solution, let C1(xj, p) =
0.  Thus,

  

U(xj,p) = C2(xj,p)e
–

p
C j

x j (21)

The Laplace transform of the joint boundary con-
ditions is

   U j x j = 0
= – Xcos θ j + Ysin θ j (22)

Substituting Eq. (22) into Eq. (21), we obtain
   

U(xj,p) = ( – Xcos θ j + Ysin θ j)e
–

p
C j

x j (23)

The substitution of Eq. (16) into Eq. (22) yields

   φ1 + φR = – X (24)

Inserting Eqs. (17) and (18) into Eq. (22) leads to

   φj = – Xcos θ j + Ysin θ j, ( j = 2,3) (25)

The relationship of stress and internal force can be
expressed as

   
Tj = E j A j

∂U j

∂xj
, ( j = 1,2,3) (26)

where Aj = 2Ljtj, Aj is area, and tj is thickness.  Differen-
tiating Eq. (23) with respect to xj and substituting the
resultant into Eq. (26) yields

   Tj = – 2pρ jC j L jt jφj, ( j = 1,2,3) (27)

Since the horizontal force, the vertical force and
the moment (see Fig. 2) are in equilibrium, we get

   (Σ
j = 1,2,3

Tjcos θ j – Q jsin θ j) + mp2X = 0 (28)

   (Σ
j = 1,2,3

Tjsin θ j – Q jcos θ j) – mp2Y = 0 (29)

   (Σ
j = 1,2,3

M j + e jTj + d jQ j) – Ip2θ = 0 (30)

where ej is the moment arm of axial force Tj, m = 4ρL2

is the mass of per unit length of the joint and    I =
16ρt5

3
is the moment of inertia of the welded joint.  Finally, the
15 unknowns can be solved from 15 equations obtained
from Eqs. (13), (14), (24), (25), (27), (28), (29) and
(30).

III. The special case

Now, consider the case of welded bars with T-
geometry (see Fig. 3).  Assume each bar is constituted

Fig. 2. Free-body diagram and systems of coordinates of a trifurcated
welding bar.
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of the same material and has the same material proper-
ties as listed in Table 1.

Let coefficient   α = 3
2  (see Atkins and Hunter

[5]), substituting the appropriate values (see Fig. 4) into
Eqs.(13) and (14) and Eqs. (24)~(30) gives:

   
φR +

T1

4ρCpL2 = φI (31)

   
φ2 +

T2

4ρCpL2 = 0 (32)

   
φ3 +

T3

4ρCpL2 = 0 (33)

   T1 – Q2 + Q3 + 8ρL3p2X = 0 (34)

   Q1 – T2 + T3 + 8ρL3p2Y = 0 (35)

   
M1 + M2 + M3 – L(Q3 + Q2 – Q1) +

16ρL5p2θ
3 = 0

(36)

   3
8EL4

CL
αp

3 23 2
Q1 + CL

αp M1 = – Y – Lθ (37)

   3
8EL4

CL
αp

3 23 2
Q2 + CL

αp M2 = – X – Lθ (38)

   3
8EL4

CL
αp

3 23 2
Q3 + CL

αp M3 = X – Lθ (39)

   3
8EL4

CL
αp Q1 + 2 CL

αp
1 21 2

M1 – θ = 0 (40)

   3
8EL4

CL
αp Q2 + 2 CL

αp
1 21 2

M2 – θ = 0 (41)

   3
8EL4

CL
αp Q3 + 2 CL

αp
1 21 2

M3 – θ = 0 (42)

   φ2 – Y = 0 (43)

   φ3 + Y = 0 (44)

and    – φR – X = φI (45)

Fig. 3. Free-body diagram of the T-type steel plate.  Q1,2,3 represent the
shear forces, T1,2,3 the axial forces and M1,2,3 the moment . θ1 = 0°,
θ2 = 90°, θ3 = 270°, (see Fig. 1 for an explanation of θ).

Fig. 4. T-type steel plate dimensions.  The plate is 0.025m thick.  Other
dimensions are as follows: a = 1.2m, b = d = 0.025m, c = e = 1.2m.
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The incident wave φI is known.  Thus from Eqs.
(31)~(45), the values of    M1,M2,M3,Q1,Q2,Q3,T1,T2,T3,φR,

   φ2,φ3,X,Y  and θ  can be determined and the following
equations can thereby be derived (see Appendix)

  φ3 = – φ2 (46)

  φ2 = 0 (47)

Since   φ2 = φ3 = 0 , the inverse Laplace transform
need not be used.  We know that for a T junction there
would be no transmission of the longitudinal stress
wave in the vertical bar, because boundary conditions
are satisfied the condition of compatibility and both bar
2 and bar 3 are symmetrical.  Thus, the coupling action
is occurred and the infinitesimal values of transmitted
longitudinal wave in the vertical bar does not exist.

In this paper, we adopt the bar with finite length
as example.  The first single received from sensor
was taken for analysis.  The longitudinal wave is only to
be discussed.  As to the action time, we take the time
when the first incident wave is not yet arrived at the end
point of bar.  Thus, the interference due to the other
reflection waves and diffraction waves can be avoided
for analysis.

EXTENDED APPLICATION OF THE MODEL

In engineering practice, multiple bars are usually
welded together.  In this section, the T geometry case
developed above is extended to the � geometry case
(see Fig. 5 and Fig. 6).

Extending Eqs. (13) and (14)and Eqs. (24)~(30),
the following equations can be added for j = 4:

   
φ4 +

T4
2pρ4C4L4t4

= 0 (48)

   1
2E4I4β 4

2

Q4

β 4p3 23 2
+

M4
p + Xsin θ4 + Ycos θ4 + θd4 = 0

(49)

Table 1.  Physical characteristics of the steel plate

material unit weight density Young's modulus shear modulus Poisson's ratio
properties γ ρ E G v

unit (kN/m3) (kg/m3) (Gpa) (Gpa) -
values 77 7850 200 80 0.3

Fig. 6. Free-body diagram of the �-type steel plate.  Q1,2,3,4 represent the
shear forces, T1,2,3,4 the axial forces and M1,2,3,4 the moment  θ1 =
0°, θ2 = 90°, θ3 = 270°, θ4 = 180°, (see Fig. 1 for an explanation of
θ).

Fig. 5. �-type steel plate dimensions.  The plate is 0.025m thick.  Other
dimensions are as follows: A = 1.2m, B = 0.025m, C = 1.2m, D =
0.025m, E = 1.2m, F = 1.2m.
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   1
2E4I4β 4

2

Q4

β 4p + 2
M4

p – θ = 0 (50)

   φ4 + Xcos θ4 – Ysin θ4 = 0 (51)

Substitution of the appropriate values (see Fig. 5
and Fig. 6) into Eqs. (13) and (14), Eqs. (24)~(30) and
Eqs. (48)~(51) yields

   
φR +

T1

4ρCpL2 = φI (52)

   
φ2 +

T2

4ρCpL2 = 0 (53)

   
φ3 +

T3

4ρCpL2 = 0 (54)

   
φ4 +

T4

4ρCpL2 = 0 (55)

   T1 – Q2 + Q3 – T4 + 8ρL3p2X = 0 (56)

   Q1 – T2 + T3 – Q4 + 8ρL3p2Y = 0 (57)

  M1 + M2 +M3 + M4 – L(Q3 + Q2 – Q1 – Q4)

   
+

16ρL5p2θ
3 = 0 (58)

   3
8EL4

CL
αp

3 23 2
Q1 + CL

αp M1 = – Y – Lθ (59)

   3
8EL4

CL
αp

3 23 2
Q2 + CL

αp M2 = – X – Lθ (60)

   3
8EL4

CL
αp

3 23 2
Q3 + CL

αp M3 = X – Lθ (61)

   3
8EL4

CL
αp

3 23 2
Q4 + CL

αp M4 = Y – Lθ (62)

   3
8EL4

CL
αp Q1 + 2 CL

αp
1 21 2

M1 – θ = 0 (63)

   3
8EL4

CL
αp Q2 + 2 CL

αp
1 21 2

M2 – θ = 0 (64)

   3
8EL4

CL
αp Q3 + 2 CL

αp
1 21 2

M3 – θ = 0 (65)

   3
8EL4

CL
αp Q4 + 2 CL

αp
1 21 2

M4 – θ = 0 (66)

   φ2 – Y = 0 (67)

   φ3 + Y = 0 (68)

   φ4 – X = 0 (69)

   – φR – X = φI (70)

Since φI is given, from Eqs. (52)~(70), the un-
knowns    M1,M2,M3,M4,Q1,Q2,Q3,Q4,T1,T2,T3,T4,φR,φ2,φ3,

  φ4,   X,Y  and θ can be calculated.  Here we are concerned
with the values of   φ2,φ3  and  φ4  for the transmitted
longitudinal elastic waves.  As before, the following
equations can be derived (see Appendix):

  φ3 = – φ2 (71)

  φ2 = 0 (72)

   φ4 = – W(p)pφI (73)

where

   
W(p) =

CL
αp

3 23 2

4
3CL2 +

Lp2

C
CL
αp

3 23 2
+ CL

αp
3 23 2

(74)

For convenience, the original positive x1 direction
of φI is reversed.  Thus, Eq. (73) becomes

   φT = W(p)pφI (75)

Fig. 7. Values of transmitted longitudinal elastic waves in the horizontal
welded bar for the �-type steel plate.
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Applying the convolution integral to Eq. (75) yields

   φT = W
0

t
(t – t')

dφI(t')
dt' dt' (76)

where

   W(t) ≡ L– 1[W(p)] (77)

   dφ
dt ≡ δ(t) (78)

   τ = α
CL (79)

   W(t) = X( t
τ ) (80)

and    X( t
τ ) = X(x) (81)

Using the Laplace transform on Eq. (81) gives

   X(s) = X
0

∞
(x)e– sxdx

   = CLαs1 21 2

s1 21 2 CL3s2 + CL2s3 23 2 + α 2

  = s– 1 21 2Q(s1 21 2) (82)

Applying the inverse Laplace transform to Eq.
(82) gives

   X(x) = 1
(πx)

1 21 2 0

∞
e

– u2
4x Q(u)du

  = 0.8663e1598.9762x(1 – erf (39.9872 x))
  + 55.582e0.3878x(1 – erf (0.6227 x))
  – Re [(18.07 + 32.276i)W(0.8481 x + 0.4936 xi)]
  – e– 0.4756x(36.14cos 0.8372x + 64.552sin 0.8372x)

(83)

Finally, the substitution of Eq. (82) into Eq. (76)
yields

   φT = X
0

t
[(t – t') / τ ]

dφI(t')
dt' dt' (84)

Following Achenback [6], we have

   
h

a

b
(x)δ(n)(x – x')dx' = hn(x), x ∈ (a,b)

0, x ∉ (a,b)
(85)

The x term in Eq. (83) is simply replaced by t:

  X(t) = 0.8663e1598.9762t(1 – erf (39.9872 t))
  + 55.582e0.3878x(1 – erf (0.6227 t))
  – Re [(18.07 + 32.276i)W(0.8481 t + 0.4936 ti)]
  – e– 0.4756x(36.14cos 0.8372t + 64.552sin 0.8372t)

(86)

Table 2.  Values of transmitted longitudinal elastic waves in �-type steel plate

Action time The transformed The values of transmitted longitudinal elastic waves
t(sec) action time t/τ(sec) (φ2) (φ3) (φ4)

2.42×10-4 0.0176 0 0 0.9909
2.50×10-4 0.0182 0 0 0.9815
2.58×10-4 0.0188 0 0 0.9722
2.66×10-4 0.0194 0 0 0.9630
2.74×10-4 0.0200 0 0 0.9538
2.82×10-4 0.0205 0 0 0.9446
2.90×10-4 0.0211 0 0 0.9354
2.98×10-4 0.0217 0 0 0.9263
3.06×10-4 0.0223 0 0 0.9172
3.14×10-4 0.0229 0 0 0.9081
3.22×10-4 0.0235 0 0 0.8990
3.30×10-4 0.0240 0 0 0.8900
3.38×10-4 0.0246 0 0 0.8809
3.46×10-4 0.0252 0 0 0.8719
3.54×10-4 0.0257 0 0 0.8630
3.62×10-4 0.0264 0 0 0.8540
3.70×10-4 0.0270 0 0 0.8451
3.78×10-4 0.0275 0 0 0.8362
3.86×10-4 0.0281 0 0 0.8273
3.94×10-4 0.0287 0 0 0.8185
4.02×10-4 0.0293 0 0 0.8097
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Substituting the t values into Eq. (86) and using
Table 1 and the appropriate formulas in Abramowitz
and Stegum [7] yields Table 2.  From Table 2, Fig. 7
can be plotted. It is obvious that there is no transmission
into the vertical welding bars.  However, the maximum
values of the longitudinal elastic wave transmitted
into the horizontal bar are about 99% (See Table 2 and
Fig. 7).  This result is very close to the result obtained
by Wu and Lundberg[4].

CONCLUSIONS

The incorrect formulas, such as Eqs.(8), (9), (10),
(11), (12) and  (13), derived by Simha and Fourney [3]
now have been corrected as Eqs. (9), (10), (11), (12),
(13) and (14) in this paper,repectively.

When a horizontal force is applied to the horizon-
tal bar in a T geometry configuration (Figs. 3 & 4), the
longitudinal elastic wave is not transmitted along the
vertical bars.  This phenomenon is due to the boundary
conditions which are satisfying the condition of com-
patibility and both bar 2 and bar 3 symmetrical.  Thus,
the coupling action is happened and the infinitesimal
values of transmitted longitudinal wave in vertical bar
is not existent.  In the case of welded bars with�-
geometry (Figs. 5 & 6), again there is no transmission
into the vertical welding bars.  However, the maximum
values of the longitudinal elastic wave transmitted into
the horizontal bar are about 99%.  This result is very
close to the result obtained by Wu and Lundberg[4].

In this paper, we apply the theory to illustrating the
bar with finite length.  The phenomena of longitudinal
wave propagation is merely to be discussed.  Since the
propagation velocity of longitudinal waves is larger
than the transverse waves , the longitudinal waves cer-
tainly arrive at the end point of bar before the transverse
waves.  Furthermore, the longitudinal waves result in
both the reflection and refraction waves in the bar.
Therefore, if we want to consider the situation of trans-
verse wave propagation in the bar with finite length, the
more detail investigation is needed.

The values for the transmitted longitudinal waves
  φ2,φ3  and  φ4 are derived out in the present paper.  Using

the same method it would also be possible to derive
values for other unknowns including  φR (the reflected
wave) and φj where j refers to the jth welded bar at a
junction at angle θj to the incident wave.

APPENDIX

The derivation process of Eqs. (46), (47), (71),
(72), (73) and (74) is described as follows:

From Eq. (43), we obtain

   φ2 = Y (A-1)

It follows from Eq. (44) that

   φ3 = – Y (A-2)

From Eqs. (A-1) and (A-2), we acquire

  φ3 = – φ2 (A-3)

It is worth noticing that Eq. (A-3) is Eq. (46).  The
substitution of Eq. (A-3) into Eq. (33) yields

   T3 = 4ρCpL2φ2 (A-4)

Similarly, we procure

   T2 = – 4ρCpL2φ2 (A-5)

   T1 = 4ρCpL2(φI – φR) (A-6)

From Eqs. (40), (41), and (42), we obtain, re-
spectively,

   
Q1 = αP

CL
8EL4

3 θ – CL
αp

1 21 2
M1 (A-7)

   
Q2 = αP

CL
8EL4

3 θ – CL
αp

1 21 2
M2 (A-8)

   
Q3 = αP

CL
8EL4

3 θ – CL
αp

1 21 2
M3 (A-9)

Using Eqs. (A-1)~(A-3) and Eqs. (A-8) and (A-9)
and substituting the values of   Q1,Q2,Q3,Y  and  X,  into
Eqs. (37), (38) and (39), we get

   

M1 = αP
3CL 8EL4 φ2 + L + CL

αp
1 21 2 θ    (A-10)

   

M2 = αP
3CL 8EL4 L + CL

αp
1 21 2 θ – φI – φR

(A-11)

   

M3 = αP
3CL 8EL4 L + CL

αp
1 21 2 θ + φI + φR

(A-12)
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The substitution of Eqs. (A-10), (A-11) and (A-12)
into Eq. (36) leads to

   

θ =
8EL4 2L – CL

αp
1 21 2

EL4 6L2 + 7L CL
αp

1 21 2
+ CL

αp + 2ρL5P2 CL
αp

3 23 2

φ2

(A-13)

Putting Eq. (A-13) into Eq. (35) yields

   

φR = –

6ρL3P2 CL
αp

3 23 2
– 2ρCPL2 CL

αp
3 23 2

+ 8EL4

6ρL3P2 CL
αp

3 23 2
+ 3ρCPL2 CL

αp
3 23 2

+ 8EL4

φI

(A-14)

The substitution of Eq. (A-14) into Eq. (35) yields

  φ2 = 0 (A-15)

It is worthy to point out that Eq. (A-15) is Eq. (47).
In the same manner, we can prove Eqs. (71)~(74)as
follow

  φ3 = – φ2 (A-16)

  φ2 = 0 (A-17)

   φ4 = – W(p)pφI (A-18)

where

   
W(p) =

CL
αp

3 23 2

4
3CL2 +

Lp2

C
CL
αp

3 23 2
+ CL

αp
3 23 2

(A-19)

It is deserving to point out that Eqs. (A-16)~
(A-19) is Eqs. (71)~(74), respectively.
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