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TRAVERSED BY MOVING LOADS
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ABSTRACT

The purpose of this research is to apply the finite element method for
dynamic analysis of Timoshenko beams traversed by moving loads. When
an elastic structure is subjected to moving loads, the induced displacements
and stresses are much higher than those of static loading conditions. Due to
the prevalence of high speed machinery and the use of light and flexible
structures to reduce the material cost, structural weight, and space require-
ment, dynamic analysis of such systems becomes crucial to ensure structural
safety and required accuracy. In this study, the shear effect and rotary inertia
were included for the analysis of short, sturdy beams and structures with
higher modes being excited. This research will be applicable for dynamic
analysis of bridges and rail roads subjected to moving vehicle loads, high speed

machining, and structures supporting high speed moving objects, etc.

INTRODUCTION

The analysis of moving loads on an elastic structure
has been a topic of interest for well over a century. Interest
in this problem originated in civil engineering for the
design of railroad bridges and highway structures. The
problem arose from the observations that as a structure
is subjected to moving loads, the dynamic deflection, as
well as stresses, can be significantly higher than those
for static loads. Most of the previous analysis work in
this area were directed at the dynamic behavior of a simple
structure, such as a simply supported beam, subjected to
asimpleloading, e.g. aconcentrated force [1-3]. Different
types of loading conditions for simple structures are well
documented in [4]. The case of a rotating beam subjected
to deflection dependent moving forces was studied by
Katz et al. [5]. It was found that instability may occur
for structures excited by a sequence of moving loads.
The first attempt to solve the moving load problem with
an undamped two-axle moving system was made by
Wen [6]. The governing equations were derived using
Lagrange’s equation. The support beam was simply
supported and the moving system was assumed to travel
at a constant velocity. Discussion of the experimental
verification of the theory developed in Ref. [6] was pre-

sented in [7, 8]. To handle more complex situations many
researchers have applied the finite element method to
study the dynamic behavior of structures under moving
loads [9-11]. Galerkin’s method was used to derive the
governing equations. A review on the use of finite el-
ement method for moving load problem is given in [12].
Dynamic analysis and experimental model verification
for a general moving load problem concerning a com-
plex industrial high speed drilling machine were reported
[13, 14]. The analyses were valid for long, slender beam
structures. For more accurate analysis, the effects of
rotary inertia and shearing deformations need to be consid-
ered for short, sturdy beam structures or systems with
higher modes being excited. Some research work has
also been conducted regarding Timoshenko beams sub-
jected to a moving force [15-18]. However, the analyses
were performed for beams with simple boundary con-
ditions so that analytical derivatibn was possible using
simple functions. For more complex systems with general
boundary conditions, finite element analysis technique
is ideal for engineering analysis.

TIMOSHENKO BEAM DYNAMICS

For short, sturdy beams, the shear effect can not be
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neglected as in conventional analysis using Bernoulli-
Euler’s beam theory. The situation occurs when the the
cross section of the beam is relatively large in comparison
with the beam span. Note that although the correction for
shear effect may yield results only a few percent more
accurate in frequency prediction than those from classical
beam theory for a moderately thick beam, the accuracy
improvement may be quite profound when performing
dynamic response analysis.

A straight forward energy minimization approach
was reported in Ref. [19] for static analysis, which yields
correct finite element characteristics without using addi-
tional finite element nodal degrees of freedoms when
transverse shear effect is included. A traditional cubic
polynomial can still be used to describe the transverse
displacement. Constant shear strain within an element
cross-section is assumed and is described as:

oW _
r=5,9 M

where ‘w’ denotes transverse displacement of the beam,
‘@’ the cross section rotation, and ‘Y the shear strain.

The following shape functions for both the transverse
displacement and cross-section rotation can be obtained
from a straightforward derivation:
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and [N] and [N] denote 1 x 4 row vectors representing
shape functions, {d}, the element nodal degrees of free-
dom vector including transverse displacements and
rotations, ‘a’ the beam element length, EI the bending
rigidity, k the shear coefficient, G the shear modulus, A
the cross-section of the beam element, and ‘x’ the coordi-
nate along the longitudinal direction of the beam element.

The strain energy including the shear effect for a
beam element of length, a, can be described as:

D O Y. lf" 2
| Lg_,_2LEI(ax)dx+2okGAydx ©)

The stiffness matrix can be obtained directly from
the description of strain energy. Substitution of Egs. (1)
and (2) into Eq. (6), we get
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representing the bending effect and
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describing the shear effect, thus

[kl=lky ]+ kL ®

and can be written as:
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which is the element stiffness matrix including the tradi-
tional bending effect with the addition of shear effect.
Note that if ‘g’ is zero, which represents an infinite shear
rigidity, the matrix reduces to the classical element stiff-
ness matrix using Bernoulli-Euler’s beam theory.

Eq. (9) was availablé in [19], in which only the static
analysis of short beams considering the effect of shearing
deformations was presented. For dynamic analysis of a
short, sturdy beam traversed by moving loads considering
both the effects of shearing deformations and rotary
inertia, the mass matrix including these effects needs
to be determined in addition to the previous development.
Using the shape functions described previously, the
kinetic energy of the beam can be written as:

r=1["pA2y ars a@ya o

substituting the shape functions and knowing that they are
functions of x only, we obtain

=1 (dY (| PAINT IN1d) (d )43 (Y]
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where [m,], represents the traditional mass matrix
for transverse inertia effect, whereas [m,], describes the
additional rotary inertia effect. These two matrices com-
bined to form the element mass matrix to be shown subse-
quently.

Eq. (11) shows the correct description for consider-
ing both the transverse and rotary inertia. They are com-
bined to form the mass matrix as:

[ml=[m]1,+[m,], (12)

Aftertedious algebra work performed by this author,
the elements within the matrices are shown below:

with
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The element mass and stiffness matrices have been
derived to include the effects of shear and rotary inertia
without using additional degrees of freedom at the node.
This facilitates analysis for complex structural system
without creating difficulties in treating the connection
of dissimilar elements. Modal analysis or forced response
can then be performed using this more accurate finite
element formulation.

To examine the validity and characteristics of the
finite element model developed in this paper, standard
eigenvalue problem was solved. The comparison of
normalized frequency parameters for a simply supported
rectangular Timoshenko beam using the finite element
formulation with those obtained using exact analysis
[20] and Bernoulli-Euler’s beam theory is tabulated in
Table 1, with 32 elements being used. The slenderness
ration r/L is 0.015, where ‘r’ is the radius of gyration of
the cross section and ‘L’ the beam length. This is a rela-
tively thin beam. The shear coefficient, k =0.85, was used,
which was derived by Cowper [21] by integrating the
three-dimensional elasticity equations. Since a simply
supported beam can exhibit two separate spectrums, that
is, two distinct natural frequencies for each mode shape
[22], the frequency type is denoted as low or high to
indicate which spectrum the mode belongs to. As can be
seen in Table 1, the finite element method yields very
good results, whereas the results from Bernoulli-Euler
beam theory have large errors, especially for higher modes.

The results for larger slenderness ratio for /L =
0.045 and 0.075 are tabulated in Tables 2 and 3, respec-
tively. In Table 2, mode 9 was identified as shear mode,

which is not shown from the exact [20] analysis. It was
calculated using the formula given in [22]. This mode
represents a rotation of the cross-section without tran-
sverse displacement as will be shown in the mode shape
plots to be discussed later. The finite element formula-
tion is able to predict this mode with sufficient accuracy.
The tenth mode is shown to be the first high mode which
depicts a mode with no nodal point between the beam
supports. The Bernoulli-Euler’s beam theory still
predicts a mode with nine nodal points and is completely
erroneous in describing the dynamic behavior of the
beam system. In Table 3, the fifth mode is identified as
the shear mode, whereas the first high mode shows up at
the seventh mode. The error of frequency prediction
from the Bernoulli-Euler’s beam theory has been quite
unacceptable for analysis of this relatively thick beam,
whereas the finite element formulation still performs
satisfactorily.

As just discussed previously, a simply supported
beam exhibits two spectrums. Fig. 1 illustrates the mass
pormalized mode shape plots for the first ten modes for
/L = 0.015. The beam is relatively thin and higher spec-
trum does not show up in the frequency range analyzed.
Therefore, the mode shapes look similar to those obtained
from classical analysis.

From Fig. 2, for t/L = 0.045, the first 8 modes appear
to be quite normal. However, as shown in Table
2, the ninth mode is the shear mode and no transverse
displacement is found in this mode. The tenth mode is
the first mode in the higher spectrum and no nodal
point within the beam span is present.

Fig. 3 depicts the first ten mode shapes for t/L =
0.075, a relatively thick beam. The shear oscillation ap-
pears at the fifth mode and shows no transverse dis-
placement. Mode 7 is the first mode in the higher spectrum
and has no nodal points between the beam span, where as
mode 9 is the second mode in the higher spectrum and

4

Table 1. Comparison of frequency parameters Wy, B% for a simply supported Timoshenko beam for v = 0.3, k = 0.85,

and 7 =0.015.
Mode Freq. type Exact [24] FEM (%Error) B.-E(% Error)
(low or high)

1 1Low 9.8255e+00 9.8255e+00(0) 9.8696e+00 (0.45)
2 2 Low 3.8790e+01 3.8791e+01(0.00) 3.9478e+01 (1.78)
3 3 Low 8.5474e+01 8.5471e+01(0.02) 8.8826e+01 (3.92)
4 4 Low 1.4785e+02 1.4793e+02(0.06) 1.5791e+02 (6.80)
5 5 Low 2.2361e+02 2.2391e+02(0.14) 2.4674e+02(10.34)
6 6 Low 3.1049e+02 3.1131e+02(0.26) 3.5530e+02(14.44)
7 7 Low 4.0640e+02 4.0823e+02(0.45) 4.8361e+02(19.00)
8 8 Low 5.0956e+02 5.1314e+02(0.71) 6.3165e+02(23.96)
9 9 Low 6.1847e+02 6.2485¢+02(1.03) 7.9943e+02(29.26)

10 10 Low 7.3191e+02 7.4244e+02(1.44) 9.8696¢+02(34.85)
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4
Table 2. Comparison of frequency parameters %, \ / pé_;‘ for a simply supported Timoshenko beam for v = 0.3, k = 0.85,

r
and I = 0.045.
Mode Freq. type Exact [24] FEM (%Error) B.-E(% Error)
(low or high)
1 1 Low 9.49 1e+00 9.4973e+00(0.03) 9.8696e+00 (3.96)
2 2 Low 3.4499¢+01 3.4508e+01(0.03) 3.9478e+01 (14.43)
3 3 Low 6.8719e+01 6.8797e+01(0.12) 8.8826e+01 (29.26)
4 4 Low 1.0763e+02 1.0792¢+02(0.27) 1.5791e+02 (46.72)
5 5Low 1.4878e+02 1.4956e+02(0.52) 2.4674e+02 (65.84)
6 6 Low 1.9093e+02 1.9258e+02(0.86) 3.5530e+02 (86.09)
7 7 Low 2.3346e+02 2.3649¢+02(1.30) 4.8361e+02(107.15)
8 8 Low 2.7606e+02 2.8109e+02(1.82) 6.3165¢+02(128.81)
9 Shear mode 2.8236e+02 2.8421e+02(0.66) 7.9943e+02(183.12)
10 10 Low 2.9345e+02 2.9559¢+02(0.73) 9.8696e+02(236.33)

4
Table 3. Comparison of frequency parameters wy, \ / % for a simply supported Timoshenko beam for v = 0.3, k = 0.85,

r
and = 0.075.
Mode Freq. type Exact [24] EM (%Error) B.-E(% Error)
(low or high)

1 1 Low 8.9444e+00 8.9449e+00(0.01) 9.8696e+00 (10.34)
2 2 Low 2.9276e+01 2.9293e+01(0.06) 3.9478e+01 (34.85)
3 3 Low 5.3561e+01 5.3662e+01(0.19) 8.8826e+01 (65.84)
4 4 Low 7.8934e+02 7.9259e+02(0.41) 1.5791e+02(100.05)
5 Shear mode 1.0165¢+02 1.0189e+02(0.24) 2.4674e+02(142.74)
6 5Low" 1.0448e+02 1.0524e+02(0.73) 3.5531e+02(240.08)
7 1 High 1.1216e+02 1.1251e+02(0.31) 4.8361e+02(331.18)
8 6 Low ‘ 1.2993e+02 1.3140e+02(1.13) 6.3165e+02(386.15)
9 2 High 1.3707e+02 1.3776e+02(0.50) 7.9943e+02(483.24)

10 7 Low 1.5520e+02 1.5773e+02(1.63) 9.8696e+02(535.93)

Magnitude

Magnitude

Magnitude
)

o 01 02 03 04 05 06 07 08 09 1
X/L

Fig. 2. The first en mode shape plots for a Timoshenko beam with v =

Fig. 1. The first ten mode shape plots for a Timoshenko beam with v =
0.3,k =085, and 7 =0.045.

0.3,k =0.85 and % =0.015.
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Fig. 3. The first ten mode shape plots for a Timoshenko beam with v=
0.3,k=085and 7 =0.075.

has only one nodal point. Mode 10, supposed to have nine
nodal points in classical analysis, is the seventh mode in
the lower spectrum and hence has only six nodal points as
is evident in Fig. 3.

It is apparent from the above analysis that the
Timoshenko beam model developed here is valid and
hence can be used to analyze the moving load problem
to be presented in the following section. Note that the
model developed in this paper retains the classical one
element four degrees of freedom formulation without
using additional nodal degrees of freedom as reported in
[23, 24] which may experience difficulties for analyzing
complex structures due to compatibility requirement at
the nodes.

MOVING FORCE ON A TIMOSHENKO BEAM

Fig. 4 shows a beam subjected to a moving co-
ncentrated force. When the finite element method is used
to solve this class of problems, the governing structural
equation can be written as:

fo

L ]

Fig. 4. A beam subjected to a moving concentrated force.

[M1{d}+[CI{d }+[K1{d}={f)=INTf, (14)

where

[M] : structural mass matrix including rotary inertia

effect

[C]: structural damping matrix

[K] : structural stiffness matrix including shear ef-

fect

[N]” : transposition of the shape functions evaluated

at the position of the force, i.e. x in Fig. 4

Jo: magnitude of the concentrated force

and {d},{d }, and {d }, denote displacement, veloc-

ity, and acceleration vectors respectively. Note that

shape functions shown in Eq. (3) should be used for
analysis of Timoshenko beams.

Eq. (14) is a system of second order linear differen-
tial equations. It should be noted that [N] is a vector with
zero entries except those corresponding to the nodal
displacements of the element on which the load is acting.
Thus for a beam element with 4 degrees of freedom,
the number of non-zero entries within the n by 1 vector
will be four, where n is the total number of degrees of
freedom of the beam model. This 4 by 1 “sub-vector” is
time dependent as the load moves from one position to
another within one element. As the load moves to the
next element, this sub-vector will shift in position corre-
sponding to the degrees of freedom of the element
where the load is positioned. Fig. 5 shows the equivalent
nodal loads at the nodal points when a beam element is
loaded by a concentrated force, where f;, M, fz, and
Mg, denote the equivalent force and moment at the left
and right node of the beam element respectively. The
equivalent nodal loads are expressed as a 4 x 1 vector and
are obtained by multiplying the transpose of the shape
functions with the concentrated force, as given on the right .
hand side of Eq. (14), where the shape functions are
evaluated at the position of the given load. When the

fL i
(r i i * '5 Equivalent Loading
Mp z Mz
L
|
fL
1}41' = |N]fo evaluated at z
R
fo Mr
1 Actual Loading
T
L
3 1

Fig. 5. Equivalent nodal loads for a beam element loaded by a force.
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concentrated force moves to the other position from its
current location, the numerical values of the shape
functions will change and consequently the equivalent
nodal loads will vary accordingly. It should be noted
when the concentrated force moves to the other element,
the shape functions corresponding to the new element
must be used, and this results in a position shift of the
equivalent nodal loads within the structural load column
vector. Either the modal superposition or the direct
step by step integration can be applied to solve the govern-
ing equations. However, for this moving force problem,
since the system is linear and time invariant, modal
superposition will be more efficient than the direct step
by step integration and the solution scheme is discussed
below.

Eq. (14) can be transformed to modal coordinate so
that a set of decoupled equations is obtained. Note that
proportional damping is assumed in the present analysis
and the mode shapes have been normalized with respect
to the structural mass matrix.

G+ 28 Wy G+ W g= (15)

fori=1,2,...,n,where q;, §; ,and g; represent the modal
displacement, velocity, and acceleration, respectively, &;
the percent modal damping, w,, undamped circular natu-
ral frequency for the i-th mode, and f; the modal force
obtained from pre-multiplication of the original force
vector by the transposition of corresponding modal
vector. Since the modal force is time dependent, Duhamel
integral can be used to solve for the response and the
piecewise-constant solution to Eq. (15) can then be written
as:

q‘.,j= [1 e~ 5ni®% { cos (wye At;)

N

&t n,

W

sm(wd At ) H

+e Snit { g, ; cos(wyrAL;)
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wdi
and
Flf Wy 2.2
g =L e Gty (14 ;v’:f')
ni di

sin(wysAt;)+wy e Eiwni At

X {-g; j_1sin(wye At;)

+4’i,j—1+E..iWn,-qi,j—1

wdi

cos(wyrAt;)

_ giwni

dj

[g; j-1c08(wyp AL))

+‘?z,j-1+§iwn;‘1i,j—1

wdi

sin(wyeA%;)1) 17

where the subscript ¢j” denotes the j-th time position in the
solution process, g; jand ¢; ; the i-th modal displacement
and velocity respectively at the j-th time step, F; ; the i-th
modal force at the j-th time step, w,, the damped natural
frequency for the i-th mode, and Ay; the time step. After
the moving force leaves the beam span, the beam under-
goes free vibration and exact expression is used rather
than using Egs. (16) and (17) which requires the solution
from the previous time step. This alleviates possible
error accumulation. The analysis results for the above
formulation are presented in the following section.

SIMULATION RESULTS

Dynamic displacement ~

Magnitude

®

Fig. 6. A simply supported Timoshenko beam subjected to a moving
force with 7¢7=0.1, v=0.3,k=0.85, and -Z— =0.075 (a) dynamic
displacement at the beam center (b) Free response FFT for
dynamic displacement at the beam center with logrithmic scale.

05

0
| M\///\N\/\M/W\/\/WV\/\NWWWWMAMNWWWM
S LS i

EH
§
=

Fig. 7. A simply supported Timoshenko beam subjected to a moving
force with T/’c =0.1, v=0.3,k=0.85,and = =0.075 (a) dynamic
moment at the beam center (b) Free response FFT for dynamic
moment at the beam center with logrithmic scale.
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Figs. 6 and 7 illustrate the dynamic response, mo-
ment, and the corresponding modal participation in
the free response, respectively, at the beam center with
/L =0.075, Tdt=0.1, where T is the fundamental period
of the support beam and 7 is the time required for
the moving force to leave the beam span. The frequency

pAL

axis is normalized with A=w, g1+ Thirty-two

Timoshenko beam elements were used in this analysis.
As can be seen from the analysis results, the funda-
mental mode is undoubtedly the dominant one. In
Fig. 6, modes 1, 3, 6, 7, and 10 are clearly shown with
the first mode being the dominant one. The other modes
have no contribution for displacement response at the
beam center since they are anti-symmetric modes (see
Table 3 and Fig. 3). It might be expected that modes
5 and 9 would have contribution to the response at the
beam center as in the ordinary analysis for Bernoulli-
Euler’s beams. However, in the present study, mode 5
corresponds to the shear mode, which has no transverse
displacement, whereas mode 9 is the second high mode,
which is an anti-symmetric mode. Although it does not
seem to be the same case for the dynamic moment
analysis as shown in Fig. 7, with all modes being
present. This is simply because the computation of
moment requires information from one additional node
in addition to the node at the beam center. If more ele-
ments are used, the anti-symmetric modes will have little
effect.

Figs. 8 and 9 depict the dynamic displacement and
moment responses, respectively, for a Timoshenko beam
traversed by a moving force with various moving speeds.
The static case is also shown for comparison. It can be
seen that at lower speed such as T/t =0.1 and 0.5, the
response oscillates about the static curves. For these
two cases, the traveling time T is 10 and 2 times, respec-
tively, the fundamental period of the beam and hence
the dominant lowest mode has enough time to complete
10 and 2 vibration cycles respectively. The moment
response curves appear to be not as smooth as those for

1-Ty/r=01 05 1 15 2 f :

static

Dynamic moment
ax. static moment

05k

-1.5,

Fig. 8. Dynamic displacement at the beam center for a simply supported
Timoshenko beam subjected to a moving force with various
moving speeds, v=0.3, k = 0.85, and 7 =0.075.

_Tf/r:O.l 05 1 15 2

static

Dynamic displacement

0 05 1 15 2 25 3
X/L

Fig. 9. Dynamic moment at the beam center for a simply supported
Timoshenko beam subjected to a moving force with various
moving speeds, v=10.3, k = 0.85, and % =0.075.

displacement response. This is because the moment solu-
tion converges slower in terms of higher modes since it
involves second derivatives of displacement. Dynamic
amplification, defined as the ratio between the maximum
dynamic response and the maximum static response, with
respect to the number of modes being used in the solution
process is tabulated in Tables 4 through 6 for three dif-
ferent slenderness ratios with various moving force
speeds. The effect of damping, with&; = 2% and &, = 5%,
is shown in the last column with the first ten modes used
for computing response. The mode participation can be
clearly seen from these tables. It appears that moment
calculation requires more modes for accurate analysis
than the displacement computation does. As can be
seen from Table 4 through 6, as far as dynamic displace-
mentis concerned, the use of the fundamental mode yields
sufficient accuracy. However, when accurate dynamic
stress is required, which calls for precise computation of
bending moment, more modes may have to be used de-
pending on the moving load speed and the slenderness
ratio, r/L. For instance, for r/L = 0.015 and Tyt = 0.1 the
difference for dynamic moment amplification between
one mode and ten mode solution is 14.7%, while the
difference is only 3% for T/‘t =2. However, for t/L =
0.075 and Tyt = 2 the difference reaches 11.2%. It can
also be seen that higher moving speed does not neces-
sarily induce larger dynamic impact to the support beam.
For the amount of beam damping given in this study, its
effect on reducing the dynamic impact on the support
beam due to amoving load is quite limited since the process
is of the transient type.

CONCLUSIONS

This work has examined dynamic finite element
analysis for Timoshenko beams subjected to a moving
force. It was illustrated that for thick beam structures,
the use of Bernoulli-Euler’s beam theory yields poor re-
sults and the inclusion of shear and rotary inertia effects
is crucial for accurate analysis. For the moving force
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Table 4. Dynamic amplification for displacement and moment at the beam center for a simply supported Timoshenko beam
subjected to a moving force v= 0.3, k = 0.85, and i =0.015.

Tit ‘ No. of modes used £ =2%
1 2 3 4 5 6 7 8 9 10 &y =5%
D; - 10330 1.0330 1.0454 1.0454 1.0470 1.0470 1.0476 1.0476 1.0478 1.0478  1.0258
0.1
D, 0.8515 0.8516 09398 09399 09694 09696 0.9873 0.9876 0.9985 0.9988  0.9783
D, 1.7045 17045 17025 17025 17008 1 7008 1.7003 1.7003  1.7003 1.7003  1.6568
1.0
D, 1.4051 14049 14260 14256 14226 14221 14114 14111 1.4010 14012 1.3491
D, 1.5456  1.5456 1.5502 1.5502 1.5494 1.5494 15497 1.5497 1.5496 1.5496 14979
2.0

D, 1.2741 12742 13108 1.3105 1.3081 1.3077 13107 13107 1.3138 13138  1.2552

. Table 5. Dynamic amplification for displacement and moment at the beam center for a simply supported Timoshenko beam
subjected to a moving force v=0.3, k = 0.85, and % =0.045.

Tit ‘No. of modes used & =2%
1 2 3 4 5 6 7 8 9 10 & =5%
D, 1.0218 1.0218 1.0387 1.0387 1.0419 1.0419 1.0433 1.0433 1.0433 1.0433  1.0218
0.1
D, 08524 0.8525 09446 09451 09771 09828 1.0016 1.0017 1.0017 1.0009  0.9797
Dy, 1.6860 1.6860 1.6828 1.6828 1.6794 1.6794 1.6871 1.6871 1.6871 1.6871  1.6367
1.0 .
D,, 14065 14051 1.4225 14207 14187 14169 14043 14036 14035 14020  1.3595
Dy, 1.5289  1.5289 1.5354 1.5354 = 1.5353 1.5353 1.5356 1.5356 1.5356 1.5357  1.4805
2.0

D, 12754 1.2763 1.3109 1.3122 13241 13246 13298 1.3301 1.3282 1.3280  1.2446

Table 6. Dynamic amplification for displacement and moment at the beam center for a simply supported Timoshenko beam
subjected to a moving force v= 0.3,k = 0.85, and % =0.075.

Tt No. of modes used t & =2%
1 2 . 3 4 5 6 7 8 9 10 &=5%

D, 1.0028 1.0028 1.0270 1.0270 1.0270 1.0331 1.0333 1.0333  1.0333 10366  1.0126
0.1 ' '

D, 0.8569  0.8573 0.9563 09572 09572 09949 09897 0.9909 0.9904 1.0121 09710

D, 1.6547 1.6547 1.6547 1.6547 1.6547 1.6500 1.6502 1.6502  1.6502 1.6066  1.6064
1.0

D, 1.4139 14106 14105 14078 14078 14177 14129 14102 14112 14132 1.3767

D, 1.5005 1.5005 1.5134 1.5134 15134 15190 15188 1.5188 1.5188 1.5212 1.4527
2.0

D, 1.2821  1.2866 . 1.3902 1.3908 1.3908 14268 14258 14259 14276 14438  1.2638
problem, modal superposition was used to solve the sys- putation for dynamic response can be achieved by con-
tem equations efficiently. The participation of modes on sidering the particular dynamic characteristics of a

the structural response was illustrated. Efficient com- Timoshenko beam with low and high spectrums being
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present.
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LIST OF SYMBOLS
a: beam element length
A: cross-sectional area of a beam

[C]: structural damping matrix of a beam
{d}: structural nodal displacement vector
{d}: structural nodal velocity vector
{d}: structural nodal acceleration vector
{d},: element nodal displacement vector
{d},: element nodal velocity vector

{d }e: element nodal acceleration vector

D, dynamic amplification for displacement

D,: dynamic amplification for bending moment

E: Young’s modulus of a beam

Jo: magnitude of a concentrated force

F; 7 modal force of the i-th mode at the j-th time step
fu equivalent force at the left node of a beam element
Jr: equivalent force at the right node of abeam element
G: shear modulus

I: area moment of inertia

[K]: structural stiffness matrix of a beam

k: shear coefficient

L: length of a beam

[M]: structural mass matrix of a beam

M;: equivalent moment at the left node of a beam
element

Mp:  equivalent moment at the right node of a beam
element

[N]: arow vector denoting shape functions

[N]”: transposition of the shape functions

[NV],: first derivative of the shape functions with respect
tox

g;: the i-th modal displacement

g;j: the i-th modal displacement at the j-th time step

g,;;  the i-th modal velocity at the j-th time step

g;: the i-th modal acceleration

r: radius of gyration of a beam

T; fundamental period of a support beam

w: vertical displacement of a beam as a function of
space and time

x: distance between the contact position of a moving
system and the left node of a beam element

X: distance between the contact position of a moving

system and the left end of a support beam
damped natural frequency of the i-th mode

W,  undamped natural frequency of the i-th mode

&: percent modal damping of the i-th mode of a beam
T time required for amoving systemto travel from left

end of a beam to the right end
mass density of a beam

shear strain

Poisson’s ratio

S=SR
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