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RESEARCH ARTICLE

A Meshless Method with Radial Basis Function for
Solving Unsaturated Flow in Heterogeneous
Porous Media

Cheng-Yu Ku a,b, Chih-Yu Liu a,*, Wei-Po Huang a,b, Jing-En Xiao a

a Department of Harbor and River Engineering, National Taiwan Ocean University, Keelung, 20224, Taiwan
b Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung, 20224, Taiwan

Abstract

This paper presents a study for solving unsaturated flow in heterogeneous porous media using the meshless method
with the radial basis function (RBF). For modeling the nonlinear hydrological process in unsaturated zone, an expo-
nential model is introduced in the Richards equation such that we may obtain the linearized Richards equation. We
adopt the multiquadric function as the RBF in the meshless method for solving the linearized Richards equation. For
simulating the unsaturated flow problems in layered heterogeneous soils, the flux and the head must satisfy the con-
tinuity condition at the interface. Several examples are carried out for modeling the hydrological process in
multielayered unsaturated soils. The results demonstrate that we only discretize by a set of points without tedious mesh
generation and significantly enhance the applicability for solving unsaturated flow problems, especially in heteroge-
neous multielayered soils with extreme physical property contrasts.

Keywords: Unsaturated flow, Richards equation, Radial basis function, Meshless method, Heterogeneous porous media

1. Introduction

T he modeling of flow in vadose zone is often
encountered in a variety of groundwater flow,

hydrogeology, and geotechnical engineering appli-
cations [8,17]. Due to the characteristic of soil water
interaction as well as unsaturated soil permeability,
flow movement in unsaturated porous media is a
highly nonlinear hydrological process [6]. Based on
the continuous equation and DarcyeBuckingham
law, the nonlinear hydrological process in unsatu-
rated porous media may refer to the Richards
equation [35]. Since it is one of the most complicated
hydrological processes in nature, analytical solu-
tions of Richards equation only exist for simplified
examples [3,34]. Thus, practical engineering prob-
lems and applications require numerical solutions
in one, two or three dimensions [4,9,30].

Several numerical approaches based on the
meshebased methods to the modeling of flow
movement in unsaturated porous media have been
proposed, such as the boundary element method
[26], the finite difference method (FDM) [20,21], and
the finite element method [31,33]. Even though the
success of meshebased methods is effective and
easily implemented for dealing with unsaturated
flow problems, limitations still remain while utiliz-
ing the meshebased methods including
meshegeneration for complex geometries, or short
time interval for the numerical convergence. As a
result, several computational approaches based on
the meshless scheme have drawn considerable
attention and been proposed, such as the Trefftz
method [15], the method of fundamental solutions
[13], the spacetime collocation meshless method
[22], the local radial basis function (RBF) based

Received 17 April 2019; revised 21 November 2019; accepted 6 August 2020.
Available online 18 November 2021.

* Corresponding author.
E-mail address: 20452003@email.ntou.edu.tw (C-Y. Liu).

https://doi.org/10.514/2709-6998.2470
2709-6998/© 2021 National Taiwan Ocean University.

mailto:20452003@email.ntou.edu.tw


differential quadrature method [1,25], and the RBF
collocation method [11,16,19,23]. The meshless
method using RBF is probably one of the common
used methods for dealing with boundary or initial
value problems where the variables could be
expressed by using the function approximation
[12,18,29,37]. The RBF collocation method was firstly
proposed by Kansa for solving different kinds of
partial differential equation including elliptic,
parabolic, and hyperbolic partial differential equa-
tions [14]. Recently published works show that the
RBF collocation method is an efficient numerical
method to deal with the heat equation, wave equa-
tion, saturated and unsaturated flow problems. For
instance, Dehghan and Shokri have developed the
RBF collocation method for solving the nonlinear
KleineGordon equation [5]. The local RBF colloca-
tion method for linear thermoelasticity in two di-
mensions has also been proposed and applied for
dealing with compressible NaviereStokes equations
as well as advectionediffusion problems [23,25].
Moreover, the RBF collocation method for simu-
lating the unsaturated seepage problems have been
developed [35]. Generally, the hydrological process
in layered porous media is much more common
than homogeneous porous media [2,24]. Although
considerable research has been devoted to the
development of the RBF collocation method, rather
less attention has been paid to the modeling of
twoedimensional hydrological process in unsatu-
rated heterogeneous multielayered porous media.
In this article, we propose a study for solving

unsaturated flow in heterogeneous porous media
using the novel meshless method with the RBF. For
modeling the nonlinear hydrological process in
unsaturated zone, an exponential model is intro-
duced in the Richards equation such that we may
obtain the linearized Richards equation. We adopt
the multiquadric function as the RBF in the mesh-
less method for solving the linearized Richards
equation. For simulating the unsaturated flow
problems in layered heterogeneous soils, the flux
and the head must satisfy the continuity condition at
the interface. Numerical implementations including
onee and twoedimensional unsaturated flow
problems are established to validate the proposed
method. Several application examples are carried
out for modeling the twoedimensional hydrological
process in multielayered unsaturated soils.
The organization of the article is as follows. Sec-

tion 2 introduces the mathematical formulation of
unsaturated soil problems. We also demonstrate the
numerical method to describe the numerical ap-
proximations to the linearized Richards equation for

unsaturated flow problems in Section 2. In Section 3
and Section 4, numerical implementations and ap-
plications of unsaturated infiltration problems in
homogeneous and heterogeneous porous media are
conducted to give the accuracy, convergence and
stability of the proposed meshless method. Findings
are finally concluded in Section 5.

2. The meshless method for modeling
unsaturated flow

2.1. Formulation of Linearized Richards equation

Based on the continuous equation and
DarcyeBuckingham law, the nonlinear hydrological
process in unsaturated soils is governed by the
Richards equation, which can be expressed as

cðJÞvJ
vt

¼ v

vx

�
kxðJÞvJ

vx

�
þ v

vy

�
kyðJÞvJ

vy

�
þ v

vz

�
kzðJÞvJ

vz

�
þ vkzðJÞ

vz
;

ð1Þ

where J is the pressure head, t is the time, x points
down the ground surface, y points to the tangent of
the topographic contour passing through the origin,
z is the vertical coordinate, cðJÞ is the specific
moisture capacity function defined by cðJÞ ¼
vqðJÞ=vJ, qðJÞ is the moisture content, and kxðJÞ,
kyðJÞ, and kzðJÞ are unsaturated permeability
functions in three dimensions, respectively.
Eq. (1) is the unsaturated flow governing equation

in three dimensions for modeling the process of
flow movement. Since the unsaturated permeability
and the specific moisture capacity functions are
functions of the pressure head, the above equation
is highly nonlinear. If we consider the unsaturated
porous media to be isotropic and homogeneous, eq.
(1) can be rewritten as follows.

vqðJÞ
vt

¼ v

vx

�
kðJÞvJ

vx

�
þ v

vz

�
kðJÞvJ

vz

�
þ vkðJÞ

vz
: ð2Þ

Eq. (2) is the Richards equation governing
twoedimensional flow in unsaturated porous
media. We may normalize the permeability of un-
saturated porous media and obtain the following
equation.

kðJÞ¼krðJÞks; ð3Þ

where ks denotes the saturated permeability, and kr
denotes the relative permeability. Substituting eq.
(3) into eq. (2), we may find the following equation.
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1
ks

vqðJÞ
vt

¼ v

vx

�
krðJÞvJ

vx

�
þ v

vz

�
krðJÞvJ

vz

�
þ vkrðJÞ

vz
:

ð4Þ
To deal with the above nonlinear Richards

equation, the characteristic functions including the
characteristic curve of soil and water, the function of
specific moisture capacity, and the unsaturated
permeability function described the physical prop-
erty of unsaturated porous media may be required.
One of the frequently used characteristic models

to describe the physical property of unsaturated
porous media is the exponential model proposed by
Gardner, which can be expressed as follows [10].

krðJÞ¼ eaJ; ð5Þ

qðJÞ¼ðqs�qrÞeaJ þ qr ; ð6Þ
where a represents the pore size distribution
parameter of unsaturated porous media, qr denotes
the residual moisture content, and qs is the saturated
moisture content.
Substituting eqs. (5) and (6) into eq. (4), the line-

arized Richards equation in two dimensions is
obtained.

aðqs � qrÞ
ks

v bJ
vt

¼v2 bJ
vx2

þ v2 bJ
vz2

þ a
v bJ
vz

: ð7Þ
In the preceding equations, bJ ¼ eaJ � eaJd

which represents the linearized pressure head and
Jd is the linearized pressure head while the soil is in
dry condition. As a result, eq. (7) can be written as
follows.

v bJ
vt

¼ka
v2 bJ
vx2

þ ka
v2 bJ
vz2

þ kq
v bJ
vz

; ð8Þ

0¼ka
v2 bJ
vx2

þ ka
v2 bJ
vz2

þ kq
v bJ
vz

; ð9Þ

where kq ¼ ks
aðqs�qrÞ, and ka ¼ kq

a
. Eqs. (8) and (9) are

the twoedimensional transient and steadyestate
linearized Richards equations, respectively.

2.2. The meshless method with the RBF

In this section, the meshless method with the RBF
for solving unsaturated flow in heterogeneous soils
is introduced. We consider a dedimensional domain,
U3Rd, enclosed by the boundary, vU. The equation in
the unsaturated soil can be written as follows.

DJðxÞ¼ f ðxÞ in U; ð10Þ

JðxÞ¼gðxÞ on vU; ð11Þ

where D denotes a differential operator, x ¼ ðx; zÞ,
f ðxÞ represents the function value, and gðxÞ repre-
sents the boundary value. We assume N to be the
point number in U. The meshless method with the
RBF is applied by assuming the following
equation.

bJðxÞ¼
XN
j¼1

ljfjðxÞ; ð12Þ

where fjðxÞ represents the RBF, and lj represents
unknown coefficients to be determined. The RBF
approximation at the ith collocation point, bJðxiÞ,
may be expressed as follows.

bJðxiÞ¼
XN
j¼1

ljfj

�
xj
�
; ð13Þ

where xj represents an arbitrary point. The N points
with coordinates x1; :::; xN are collocated in the
computational domain. In the preceding equation,
we consider the multiquadratic RBF, which is
expressed as follows.

fj

�
xj
�¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðreÞ2 þ 1
q

; ð14Þ

where r represents the radius, r ¼ ��xi � xj
��, and e

represents the shape parameter. It is found that
some common RBFs in the infinitely differentiable
class depend on a shape parameter, e. The shape
parameter is a key factor in adopting multiquadratic
approximation in the RBF method, which may affect
the accuracy of the numerical solutions significantly
[27]. To determine the shape parameter, the adap-
tive residual subsampling algorithm proposed by
Driscoll and Heryudon is adopted in this study to
prevent the increase of the condition number of the
matrix [7].
Consequently, the following equations can be

obtained by collocating with the above equations at
the inner points and the boundary values at the
boundary points.

D bJðxiÞ¼
XN
j¼1

ljDfj

�
xj
�¼ f ðxiÞ; i¼ 1; :::;NI ;

j¼ 1; :::;N;

ð15Þ

bJðxiÞ¼
XN
j¼1

ljfj

�
xj
�¼ gðxiÞ; i¼ NI þ 1; :::;N;

j¼ 1; :::;N:

ð16Þ
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In the preceding equations, NI is the inner
point number. Substituting eq. (13) into eq. (16), we
may obtain the following equation.

bJðxiÞ¼
XN
j¼1

ljfj

�
xj
�¼XN

j¼1

lj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ri;je
�2 þ 1

q
: ð17Þ

We consider the second derivative to x of eq.
(17) as following equation.

We further consider the first derivative to z of eq.
(17) as following equation.

v bJ
vz

¼ v

vz

XN
j¼1

ljfj

�
xj
�¼XN

j¼1

lj
v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ri;je
�2 þ 1

q
vz

¼
XN
j¼1

lj
e2
�
zi � zj

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ri;je
�2 þ 1

q : ð19Þ

Substituting above equations into eq. (9), we
may obtain the following equation.

ka
XN
j¼1

lj
r2i;je

4 þ 2e2��
ri;je
�2 þ 1

	3=2
þkq

XN
j¼1

lj
e2
�
zi � zj

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ri;je
�2 þ 1

q ¼ 0:
ð20Þ

Finally, we collocate with the inner and
boundary points by using eqs. (15) and (16). To
determine the unknown coefficient, we impose the
approximate solution to satisfy the linearized
Richards equation with the boundary conditions at
any collocation points. We then achieve the
following system of linear equations.

Dfj

�
xj
�

fj

�
xj
� ��

lj
	¼
 f ðxiÞgðxiÞ

�
: ð21Þ

For simplicity, the above system of linear
equation can be written as

Bl¼F; ð22Þ

where l is the unknown coefficients to be evaluated,
which can be expressed as l ¼ ½l1;…; lN �T, F is the
known functions with the size of N� 1, B is a N� N

matrix. The above equation can be rewritten as
follows.

BI
BB

�
½l�¼



FI
FB

�
: ð23Þ

In the preceding equations, BI represents the
NI � N submatrix from the inner collocation points,
BB represents the NB � N submatrix from the
boundary collocation points, FI denotes the function

values at the inner points which is a NI � 1 vector,
FB denotes the function values at the boundary
points which is a NB � 1 vector, NB is the of
boundary point number, and N represents the total
number of points which can be expressed as N ¼
NI þ NB. Therefore, the above equation can be
rewritten as26666664
BI1;1 BI1;2 / BI1;N
« « / «
BINI ;1 BINI ;2 « BINI ;N

BB1;1 BB1;2 1 BB1;N

« « / «
BBNB;1 BBNB;2 / BBNB;N

37777775

26666664
l1
«
lNI

lNIþ1

«
lN

37777775¼
26666664
FI1
«
FINI

FBNIþ1

«
FBN

37777775;
ð24Þ

where FIi denotes the function values at the inner
points which is a NI � 1 vector, FBi denotes the
function values at the boundary points which is a
NB � 1 vector, BIi;j is a NI �N matrix, BBi;j denotes a
NB � N matrix and l1; :::; lN denote unknowns. In
the preceding equations, BIi;j and BBi;j may be found
using the following equation.

BIi;j¼ka
r2i;je

4 þ 2e2

½ðri;je
�2þ1�3=2

þ kq
e2
�
zi � zj

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ri;je
�2 þ 1

q ; i¼ 1; :::;NI and

j¼ 1; :::;N;

ð25Þ

BBi;j¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ri;je
�2 þ 1

q
; i¼ 1; :::;NB and j¼ 1; :::;N: ð26Þ

The unknowns for the twoedimensional prob-
lem may be found for solving eq. (24). To compute
the unsaturated pressure head field for the
twoedimensional problem, the inner points must be
collocated. The unsaturated pressure head field at
inner points may be computed using eq. (24).

v2bj
vx2

¼ v2

vx2
XN
j¼1

lj4j

 
xj

!
¼
XN
j¼1

lj
v2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ri;je
�2 þ 1

q
vx2

¼
XN
j¼1

lj
e2��

ri;je
�2 þ 1

	3=2: ð18Þ
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2.3. The RBF method for modeling flow in
heterogeneous soils

Since the appearance of layered heterogeneous
soils is usually easily found than homogeneous soils
in practice, we need to tackle the flow in heteroge-
neous soils. For the analysis of flow in
multielayered porous media, the domain decom-
position method (DDM) is utilized [36].
The DDM is commonly used to solve the problem

with different physical characteristics in each sub-
domain. We first split the domain into two sub-
domains which are intersected only at the interface.
Hence, each subdomain is regard as an independent
soil layer with its own permeability. The boundary
and inner collocation points are placed in each
subdomain. At the interface, the flux and the head
must satisfy the continuity condition.
In this article, we consider a rectangular domain,

U, which can be split into two intersected

subdomains, UA and UB, as depicted in Fig. 1. To
simulate the unsaturated flow in heterogeneous
soils, the rectangular domain is divided into G1, G2,
G3, …, G8. At UA subdomains, the subeboundaries
include G1, G2, G3 and G4; At UB subdomains, the
subeboundaries include G5, G6, G7 and G8. At the
interface, the subeboundaries, G4 and G6, are over-
lapped at the same position. Therefore, additional
boundary conditions are imposed on the boundary
points to ensure the flux and the head at the inter-
face must be equal.

bJjG4
¼ bJjjG6

; ð27Þ

v bJ
vn

jG4
¼v bJ

vn

����jG6
: ð28Þ

Eq. (28) can be written as

v bJðxÞ
vn

¼v bJðxÞ
vx

nx þ v bJðxÞ
z

nz: ð29Þ

where nx and nz are vectors in the normal direction
for x and z, respectively. Substituting eqs. (18) and
(19) into eq. (29), we may find the following
equation.

v bJðxÞ
vn

¼
XN
j¼1

lj
e2
�
xi � xj

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ri;je
�2 þ 1

q nx þ
XN
j¼1

lj
e2
�
zi � zj

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ri;je
�2 þ 1

q nz:

ð30Þ

3. Validation examples

3.1. Oneedimensional infiltration process in
unsaturated homogeneous soils

The first numerical example investigated is the
analysis of a oneedimensional infiltration problem
in the vadose zone [35]. The oneedimensional
unsaturated flow in the homogeneous isotropic
porous media is described by the Richards equa-
tion as

0¼ v

vz

�
krðJÞvJ

vz

�
þ vkrðJÞ

vz
: ð31Þ

The thickness of the soil is considered to be L.
At the top side of the unsaturated soil which is the
ground surface, the infiltration is remained by
keeping the pressure head to zero. On the bottom
side of the unsaturated soil, the boundary condition
is assumed to be in dry condition, Jd. Thus, the
boundaries on the top and bottom sides of the un-
saturated soil are considered to be Dirichlet
boundary condition, which are as follows.

Fig. 1. Illustration of twoedimensional infiltration problem in unsatu-
rated twoelayered porous media.
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Jðz¼LÞ¼0: ð32Þ

Jðz¼0Þ¼Jd: ð33Þ
Eqs. (32) and (33) denote the top and bottom

boundary conditions of the unsaturated soil,
respectively. The above equations can be converted
to linearized pressure head as following equations.

bJðz¼LÞ¼1: ð34Þ

bJðz¼0Þ¼0: ð35Þ
To describe the nonlinearity of relative

permeability, the exponential model is adopted
(Gardner, 1958). In this example, we assume the soil
thickness is 10 m, the soil type is sand, the pore size
distribution parameter is 1:5� 10�2, Jd is �100 m,
the saturated permeability to be 10�2 m/s, the
saturated moisture content to be 0.5, and the resid-
ual moisture content to be 0.1.
The analytical solution of oneedimensional infil-

tration process in unsaturated homogeneous porous
media can be obtained as follows [32].

bJðzÞ¼ð1� eaJÞea2 ðL�zÞ

264 sinh
�
az
2



sinh

�
aL
2

�
375: ð36Þ

In this study, only 2 boundary points and 8
inner points are collocated. The Dirichlet values are
imposed on the top and bottom boundary points.
The inner points are collocated in equal interval
within the domain. The shape parameter for this

analysis is 0.09. Fig. 2 shows the results using our
numerical method as well as the exact solution
developed by Ref. [32]. The computed results agree
very well with the exact solution. The validity of the
method is achieved in oneedimensional unsatu-
rated problem with only 10 collocation points.

3.2. Twoedimensional infiltration process in
unsaturated homogeneous porous media

Considering a twoedimensional unsaturated flow
in homogeneous soils, the flow in the isotropic and
homogeneous soils is described by the Richards
equation, which is expressed as follows.

v

vx

�
krðJÞvJ

vx

�
þ v

vz

�
krðJÞvJ

vz

�
þvkrðJÞ

vz
¼0: ð37Þ

In this example, the length a and the thickness
L are both set to 50 m, as shown in Fig. 3 (a). At the
top side of the unsaturated soil which is the ground
surface, the zero pressure head is at the central and
rapidly decreasing to negative pressure head, i.e.
dry conditions at both sides, as depicted in Fig. 3 (a).
On the left, bottom and right sides of the domain,
the boundary condition is assumed to be in dry
condition, Jd. Thus, the equations of boundary
values for the domain can be written as follows.

Jðx; z¼LÞ¼ 1
a
ln
�
eaJd þð1� eaJdÞ

�
�
3
4
sin
�px
a



�1
4
sin
�
3px
a

���
; ð38Þ

Jðx; z¼0Þ¼Jd; ð39Þ

Jðx¼0; zÞ¼Jd; ð40Þ

Jðx¼a; zÞ¼Jd: ð41Þ
Eqs. (38)－(41) denote the top, bottom, left as

well as right boundary conditions of the
twoedimensional unsaturated soil, respectively.
The analytical solution of twoedimensional infil-
tration process in unsaturated homogeneous porous
media can be obtained as follows [32].

bJðx; zÞ¼ð1� eaJdÞeaðL�zÞ
2

�
3
4
sin
�px
a


 sinhðb1zÞ
sinhðb1LÞ

�1
4
sin
�
3px
a

�
sinhðb3zÞ
sinhðb3LÞ

�
; ð42Þ

where b1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
g

4 þ
�
p
a


2r
and b3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
g

4 þ
�

3p
a

�2
s

.

To describe the nonlinearity of relative hydraulic
conductivity, the Gardner exponential model is alsoFig. 2. Result comparison for an oneedimensional infiltration problem.
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adopted. In this example, we assume the soil type to
be sand, the pore size distribution parameter to be
1:5� 10�2, Jd to be �100 m, the saturated perme-
ability to be 10�2 m/s, the saturated moisture con-
tent to be 0.5, and the residual moisture content to

be 0.1. 200 boundary points and 361 inner points are
collocated, as displayed in Fig. 3 (b). The shape
parameter for the analysis is 0.034. Fig. 4 shows the
results of our proposed method. Fig. 5 presents the
relative error of twoedimensional infiltration prob-
lem in unsaturated homogeneous porous media. It

Fig. 3. Illustration of example 3.2.

Fig. 4. The computed results for the twoedimensional infiltration
problem in unsaturated homogeneous porous media.

Fig. 5. The relative error of the numerical results for the infiltration
problem in two dimensions.
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is indicated that the accuracy of our proposed
method can reach up to the order of 10�5.
To examine the robust of the proposed approach,

we consider that the boundary data are contami-
nated by the random noise. The noised data on
accessible boundary can be represented as follows.

~Jðx; zÞ¼Jðx; zÞ � ð1þ s� randÞ; ð43Þ

where Jðx; zÞ is the exact boundary data, ~Jðx; zÞ is
the noised data on accessible boundary, rand is the
random number generated by the uniform distri-
bution in the range of [-1, 1], and s is the noise level.
The uniform probability density function has been
considered to generate noised data on accessible

boundaries. In this example, two different noise
levels with s ¼ 0:01, and s ¼ 0:05 are considered.
The maximum relative error for twoedimensional

unsaturated flow problems is illustrated in Fig. 6. It
is found that the maximum relative error may reach
to the order of 6:85� 10�3 and 1:17� 10�2 for the
noise level s ¼ 0:01, and s ¼ 0:05, respectively, as
shown in Fig. 6 (a), (b).

4. Application examples

4.1. Twoedimensional infiltration process in
unsaturated twoelayered soils

The first application example under consideration
is the analysis of the infiltration problems in an
unsaturated twoelayered soil. Fig. 7 (a) depicts the
profile of the unsaturated twoelayered porous
media for this example. The length and the height of
the soil are both considered to be 10 m. Both layer A
as well as layer B have the thickness of 5 m, as
shown in Fig. 7 (a) in which layer A has larger
permeability than that of layer B. The soil type for
the top soil (layer B) and the bottom soil (layer A)
are assumed to be silty loam and sand, respectively.
The saturated permeability in layer A and layer B
are 10�3 and 10�4 m/s, respectively. To describe the
nonlinearity of relative permeability, the Gardner
exponential model is adopted. The unsaturated soil
parameters including the pore size distribution
parameter, the saturated and residual moisture
contents for two soil layers are shown in Table 1.
The boundary conditions including G1, G2,…, G8

are shown in Fig. 7 (a). On the top side of the un-
saturated porous media, there is infiltration on the
ground surface where the pressure head set to zero.

bJðx; z¼LÞ¼ð1� eaJdÞ on G8: ð44Þ
On the bottom, the boundary is in dry condi-

tion, Jd ¼ � 1000 m, where the Dirichlet value is
given as

bJðx; z¼0Þ¼0 on G2; ð45Þ
The left and right sides are the Neumann

boundaries which can be written as follows.

v bJðx¼ 0; zÞ
vz

¼0 on G1 and G5; ð46Þ

v bJðx¼ a; zÞ
vz

¼0 on G3 and G7: ð47Þ
For the infiltration problems in an unsaturated

twoelayered soil, we have to consider the disconti-
nuities in the parameters that characterize the un-
saturated soil layers. At the interface between soil

Fig. 6. The relative error of the numerical results for the infiltration
problem in two dimensions.
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layers, the continuity of flux and the
DarcyeBuckingham law are required. The bound-
ary conditions are expressed as following equations.

bJjG4
¼ bJjG6

at G4 and G6: ð48Þ

v bJ
vn

jG4
¼v bJ

vn
jG6

at G4 and G6: ð49Þ
In this example, the shape parameter is 2:4�

10�3. The boundary and inner points are 80 and
162, respectively, as depicted in Fig. 7 (b). The
profile of the pressure head in a twoelayered un-
saturated soil is depicted in Fig. 8. Since there is

Fig. 7. Illustration of example 4.1.

Table 1. Unsaturated soil parameters.

layer layer A layer B

soil type sand silty loam
pore size distribution parameter (1/m) 4� 10�3 8� 10�3

hydraulic conductivity (m/s) 10�3 10�4

saturated moisture content 0.50 0.32
residual moisture content 0.11 0.03

Fig. 8. The computed pressure head for the twoedimensional infiltration
problem.
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infiltration on the ground level remaining the
constant pressure head, the hydrological process
may continue infiltrating to the unsaturated
twoelayered soil, as shown in Fig. 9. It is found
that the infiltration starts in the less conductive
layer (layer B). When the infiltration from the
ground surface reach the interface with the high
conductive soil (layer A), the amount of unsatu-
rated flows to layer A may be dissipated easily due
to the high conductivity of the layer A [28].
Liu et al. have applied the FDM to solve this

infiltration problem. We therefore compare the
computed results with that of the FDM, as depicted
in Fig. 9. The results agree very well with those of
the FDM [20].

4.2. Twoedimensional infiltration process in an
unsaturated threeelayered soil

The profile of the twoedimensional unsaturated
threeelayered soil including layer A, layer B, and
layer C for this example is shown in Fig. 10 (a). The

length and the height of the soil are considered to be
5 and 10 m, respectively. The thickness of layer A,
layer B, and layer C are considered to be 4, 2, 4 m, as
shown in Fig. 10 (a).
In this example, the soil type of layer A and layer

C are considered to be sand, where the saturated
permeability in layer A and layer C are 10�3 m/s.
The soil type of layer B is considered to be silty
loam, where the saturated permeability in layer B is
10�9 m/s. Other soil parameters including the pore
size distribution parameter, the saturated moisture
content, and the residual moisture content for two
soil layers adopted for this example are listed in
Table 2.
The boundary conditions including G1, G2,…, G12

are shown in Fig. 10 (a). On the top side of the un-
saturated porous media, the infiltration is main-
tained on the ground surface where the pressure
head set to zero. On the bottom, the boundary is
assumed to be dry condition, Jd ¼ � 1000 m. The
right and left boundaries are considered to be
noeflow Neumann boundary condition.

Fig. 9. The pressure head profiles for the twoedimensional infiltration problem.
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The Dirichlet boundary conditions at the top side
of the unsaturated soil, G12, and the bottom side of
the unsaturated soil, G2, are given as following
equations.

bJðx; z¼LÞ¼ð1� eaJdÞ on G12; ð50Þ

bJðx; z¼0Þ¼0 on G2: ð51Þ
At G1, G3, G5, G7, G9 and G11, the Neumann

boundaries are given as follows.

v bJðx¼ 0; zÞ
vz

¼0 on G1; G5 and G9; ð52Þ

v bJðx¼ a; zÞ
vz

¼0 on G3; G7 and G11: ð53Þ
At two interfaces, the boundary conditions are

expressed as following equations.

bJ��
G4
¼ bJ��

G6
;
v bJ
vn

��
G4
¼v bJ

vn

��
G6
at G4 and G6: ð54Þ

bJ��
G8
¼ bJ��

G10
;
v bJ
vn

��
G8
¼v bJ

vn

��
G10

at G8 and G10: ð55Þ
We consider the shape parameter is 2:4� 10�3.

The boundary and inner point numbers are 360 and
243, respectively as depicted in Fig. 10 (b). Fig. 11
demonstrates the profile of the computed pressure
head in a threeelayered unsaturated soil. In this
example, infiltration starts in the high permeable
soil layer (layer C). It is found that infiltration rea-
ches the top side of the less permeable soil layer
(layer B), the pressure head at the interface in-
creases rapidly so that infiltration can flow through
the less permeable soil layer (layer B). However,

Fig. 10. Illustration of example 4.2.

Table 2. Unsaturated soil parameters.

layer layer A layer B layer C

soil type sand clay sand
pore size distribution

parameter (1/m)
4� 10�3 8� 10�3 4� 10�3

Permeability (m/s) 10�3 10�9 10�3

saturated moisture content 0.50 0.32 0.50
residual moisture content 0.11 0.03 0.11
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when the amount of unsaturated flows reach the
interface with the high permeable soil (layer A), the

amount of unsaturated flows to layer A may be
dissipated easily due to the high conductivity of the
layer A, as depicted in Fig. 12.

4.3. Twoedimensional infiltration process in an
unsaturated multielayered soil

The last application example under investigation
is a twoedimensional infiltration problem in
multielayered soil, as depicted in Fig. 13 (a). The
length and the height of the soil are considered to be
20 and 90 m. In the case of multielayered soil, we
consider the thickness of layer A, layer B, layer C,
layer D, layer E, layer F and layer G to be 8, 6, 14, 9,
10, 10, and 33 m, as shown in Fig. 13 (a).
In this example, the soil type of layer A and layer

D are considered to be coarse sand, the soil type of
layer B and layer G are considered to be fine sand,
the soil type of layer C and layer E are considered to
be clean gravel, and the soil type of layer F are
considered to be clay. We consider the saturated
permeability of clean gravel, coarse sand, fine sand,
and clay to be 10�2, 10�4, 10�5 and 10�9 m/s,
respectively. The parameters for saturated

Fig. 11. The computed results for the twoedimensional infiltration
problem.

Fig. 12. The pressure head profiles for the twoedimensional infiltration problem.
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permeability of soils are listed in Table 3. The pore
size distribution parameter, the saturated and re-
sidual moisture contents of each layer are set to be
4� 10�3, 0.46, and 0.14.
The boundary conditions including G1, G2,…, G28

are shown in Fig. 13 (a). The top and bottom
boundaries are Dirichlet boundary conditions and
the lateral boundary condition to be noeflow
imperious boundary condition, which can be writ-
ten as following equations.

bJðx; z¼LÞ¼ð1� eaJdÞ on G28; ð56Þ

bJðx; z¼0Þ¼0 on G2; ð57Þ

v bJðx¼ 0; zÞ
vz

¼0 on G1; G5; G9; G13; G17; G21 and G25;

ð58Þ

v bJðx¼ a; zÞ
vz

¼0 on G3; G7; G11; G15; G19; G23 and G27:

ð59Þ
At interfaces, the boundary conditions must

satisfy the following equations.

bJjG4
¼ bJjG6

;
v bJ
vn

jG4
¼v bJ

vn
jG6

at G4 and G6; ð60Þ

bJjG8
¼ bJjG10

;
v bJ
vn

jG8
¼v bJ

vn
jG10

at G8 and G10; ð61Þ

Fig. 13. Illustration of example 4.3.

Table 3. Unsaturated soil parameters.

layer soil type permeability (m/s)

layer A coarse sand 10�4

layer B fine sand 10�5

layer C clean gravel 10�2

layer D coarse sand 10�4

layer E clean gravel 10�2

layer F clay 10�9

layer G fine sand 10�5
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bJjG12
¼ bJjG14

;
v bJ
vn

jG12
¼v bJ

vn
jG14

at G12 and G14; ð62Þ

bJjG16
¼ bJjG18

;
v bJ
vn

jG16
¼v bJ

vn
jG18

at G16 and G18; ð63Þ

bJjG20
¼ bJjG22

;
v bJ
vn

jG20
¼v bJ

vn
jG22

; at G20 and G22; ð64Þ

bJjG24
¼ bJjG26

;
v bJ
vn

jG24
¼v bJ

vn
jG26

; at G24 and G26: ð65Þ
In this example, the shape parameter is 2:4�

10�3. The boundary and inner point numbers are
840 and 567, respectively as depicted in Fig. 13 (b).
Fig. 14 depicts the profile of the pressure head in a
multielayered unsaturated soil computed by the
proposed method.
It is found that our proposed method can still

achieve reasonable results even if the infiltration
problem in the multielayered soil with different

Fig. 14. The computed pressure head distribution for the
twoedimensional infiltration problem.

Fig. 15. The pressure head profiles for the twoedimensional infiltration problem.
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physical property contrasts is considered, as depic-
ted in Fig. 15. The results further demonstrate that
the method could be implemented to simulate
twoedimensional infiltration process in the unsat-
urated multielayered soil with large physical con-
trasts in permeability.

5. Conclusions

In this study, we propose a meshless method
with the RBF for solving unsaturated layered het-
erogeneous flow in two dimensions. An exponen-
tial model is introduced in the Richards equation
such that we obtain the linearized Richards equa-
tion for the unsaturated soil. Numerical imple-
mentations are established to validate the
proposed method. Several application examples
are carried out for modeling the twoedimensional
hydrological process in the multielayered unsatu-
rated soil. Findings from this article are summa-
rized as follows.

1. The meshless method with the RBF for solving
flow movement in unsaturated layered hetero-
geneous soils using the Richards equation with
the exponential model is developed. Our
method may provide an alternative from other
meshebased methods for modeling the
appearance of unsaturated layered heteroge-
neous soils.

2. The validity of the proposed method is achieved
for several numerical implementations including
onee and twoedimensional unsaturated flow
problems. Our proposed method can simulate
the hydrological process in unsaturated layered
soils with high accuracy. Furthermore, numeri-
cal results indicate that the method can easily
implement unsaturated multielayered problems
with large contrasts in which the problems are
usually illeposed and difficult to be solved in the
past.

3. Results obtained demonstrate that the proposed
approach utilizing the Richards equation with
the Gardner exponential model is highly accu-
rate to deal with unsaturated flow in heteroge-
neous porous media in two dimensions. It is
expected that the findings obtained in this study
may be applicable for solving the
threeedimensional unsaturated flow problems
in heterogeneous porous media.
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