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RESEARCH ARTICLE
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Taiwanese Large-scale Longline Fishery in the
Indian Ocean
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Sheng-Ping Wang c, Wen-Pei Tsai d,*

a National Sun Yat-sen University, Department of Marine Biotechnology and Resources, Kaohsiung, Taiwan
b National Sun Yat-sen University, Department of Oceanography, Kaohsiung, Taiwan
c Department of Environmental Biology and Fisheries Science, National Taiwan Ocean University, Keelung, Taiwan
d National Kaohsiung University of Science and Technology, Department of Fisheries Production and Management, Kaohsiung, Taiwan

Abstract

The silky shark, Carcharhinus falciformis, is widely distributed in tropical and temperate waters, and it is a common
bycatch species for tuna longline fisheries. This study examined the distribution of and presents relative abundance
indices of the silky shark in the Indian Ocean by using logbook and observer data from the Taiwanese large-scale tuna
longline fishery between 2005 and 2019. Due to the high zero catch rate, a zero-inflated negative binomial (ZINB) model
was used to standardize catch per unit effort. Due to a lack of detailed targeting information, the fishery strategy was
identified by using cluster analysis based on catch composition and then incorporated as an explanatory variable related
to the target species in the ZINB model. Size segregation was observed for males and females in the Indian Ocean.
Juveniles were mostly concentrated between 10� S and 10� N. Cluster analysis results revealed five fishing clusters based
on catch composition that explained the variance in the ZINB models. Our integrated approach improves the under-
standing of spatiotemporal silky shark dynamics in the Indian Ocean and can be used to derive relative abundance
indices for stock assessment and management.

Keywords: Silky shark, CPUE standardization, Indian ocean

1. Introduction

E lasmobranchs (sharks, rays, and skates) are
crucial to the marine ecosystem [1,2]. These

apex predators balance trophic interactions [3] and
sustain the dynamics [4] of the marine community
[2,5,6]. Changes in the abundance of top predators
influence the composition of species in the food web
[1,7,8]. Numerous studies [1,9e11] have demon-
strated that reductions in the number of sharks and
rays lead to a trophic cascade that affects every level
of the food chain. Most elasmobranchs are

considered k-selected species characterized by low
fecundity, late sexual maturity, slow growth, and
long lifespans [12]. Due to these characteristics,
elasmobranchs are more vulnerable to over-
exploitation than teleost fish are. Moreover, if these
species are overfished, their populations require
longer recovery times [2,4,13]. According to the re-
sults of the International Union for Conservation of
Nature (IUCN) Red List assessment [14], more than
249 elasmobranch species are threatened, and
insufficient data existed to classify 487 species. Thus,
one-quarter of ray and shark species are classified
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as threatened (critical, endangered, and vulnera-
bledVU) and data are insufficient for nearly half of
the elasmobranch species [15].
The silky shark, Carcharhinus falciformis, is an

oceanic shark with global distribution found be-
tween tropical and temperate areas [16,17]. It is a
common bycatch species of longline tuna fisheries
and the purse seine fishery in the open ocean
[18e20]. In many regions, silky shark populations
have declined dramatically over the past few de-
cades due to pressures from fishing [21e23]. Like
other elasmobranchs, the silky shark has low
fecundity, late sexual maturity, and slow growth,
which cause it to be vulnerable to anthropogenic
activity and inhibit population recovery [18]. In 2015,
the silky shark was listed as VU on the IUCN Red
List [24]. In 2016, based on its population, it was
listed on the Convention on International Trade in
Endangered Species of Wild Fauna and Flora
(CITES) Appendix II [25], indicating that the species
is vulnerable. Stock assessments revealed that the
silky shark population declined by 46e50% in the
Atlantic Ocean between 1992 and 2009 and by 30%
in the western Indo-Pacific Ocean between 1995 and
2009 [21,23]. Therefore, retention of the silky shark is
banned by International Commission for the Con-
servation of Atlantic Tunas (ICCAT) and Western
and Central Pacific Fisheries Commission. At pre-
sent, studies on the silky shark in the Indian Ocean
are at the preliminary stage, and consequently, the
shark's status is uncertain. The stock assessment
and management and conservation actions are still
inadequate [26].
Inadequate data are a common problem for shark

stock assessment. Due to the low commercial value
of the shark, the systemic fishery information
needed for modeling is seldom available [27].
Moreover, data are often undermined by high zero
catch rates [28,29]. Because the process of collecting
fishery-independent data is often costly and diffi-
cult, most Regional Fisheries Management Organi-
zations (RFMOs) rely heavily on catch per unit effort
(CPUE) obtained from commercial fishery activity as
an indicator of the relative abundance index [28]. To
address this issue, the population trends of bycatch
species are commonly estimated by using either
delta lognormal models [30] or by using zero-infla-
ted models [29,31,32]. However, a number of factors
influence the CPUE of target or nontarget species
including fishing gear, fishing strategies, and fishing
operation methods. CPUE standardization is often
used to reduce the effects of factors confounding the
CPUE index results [33e36]. Lack of data regarding
fishing strategies leads to incorrect or biased results.
Therefore, cluster analysis based on catch

composition is commonly used to detect changes in
fishing strategies [37] and has been widely applied
for CPUE standardization by certain RFMOs, such
as the Indian Ocean Tuna Commission and ICCAT
[38,39].
Insufficient data exist regarding the age distribu-

tion, growth, and reproductive biology of the silky
shark in the Indian Ocean [40]. By using logbook
data from Taiwanese vessels operating in the Indian
Ocean, we examined the spatiotemporal distribu-
tion of the species and calculated its abundance
indices. Both of these measures are critical for stock
management in the Indian Ocean. This study used a
zero-inflated negative binomial (ZINB) model to
perform CPUE standardization. The Taiwanese tuna
longline fishery data based on catch composition
between 2005 and 2019 were clustered to examine
fishing strategies and target effects. Observer data
were also used to analyze the spatiotemporal dis-
tribution of sex and body length. The results derived
from this study provide comprehensive information
for stock assessment and management of the silky
shark in the Indian Ocean.

2. Materials and methods

2.1. Data collection

Logbook and observer data from the Taiwanese
large-scale tuna longline fishery (LTLL) between
2005 and 2019 were obtained from the Overseas
Fisheries Development Council of the Republic of
China. The logbook data of 499,981 longline opera-
tions comprising the vessel ID, operation time,
operation area, number of hooks, and catches of 18
species including five major tunas, five major bill-
fishes, three sharks, and other species were used to
analyze and calculate CPUE (Table 1). The Taiwa-
nese LTLL fishery operates across the Indian Ocean,
and therefore, these fishery statistics are a primary
source of information regarding the population
status of pelagic sharks. This study also determined
biological data for 1591 silky shark individuals ob-
tained by an onboard observer program between
2005 and 2019. The observer data cover an average
of 5.67% of all Taiwanese large-scale longline op-
erations in the Indian Ocean and comprise opera-
tion time, operation area, and the fork length (FL) of
the silky shark. Sex was also determined by exam-
ining the external sex organs.

2.2. Spatiotemporal distribution

Catch, effort, nominal CPUE (catch per 1000
hooks), and sex ratio were calculated, and the data
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were then grouped using 5� � 5� latitude and
longitude grids. Hall et al. [34] suggested that the
life history parameters of the silky shark are as fol-
lows: neonates (0e1 year): 65.98 cm FL; juveniles
(age >1 but immature): 76.98e177.51 cm FL for fe-
males and 78.35e170.88 cm FL for males; adults
(mature, females age >15 and males age >13):
>177.51 cm FL for females and >170.88 cm FL for
males.
The Indian Ocean was divided into four fishing

areas based on the effort distribution and fishing
grounds of the target species [41]: (1) Northwest
Indian Ocean (north of 10� S, east of 70� E); (2)
Northeast Indian Ocean (north of 10� S, 70� E�120�

E); (3) Southwest Indian Ocean (south of 10� S, 20�

E�60� E); (4) Southeast Indian Ocean (south of 10� S,
60� E�120� E; Fig. 1). The annual lengthefrequency
distribution by sex and fishing area was analyzed,
and the catches, effort, and nominal CPUE distri-
bution were compared by using both logbook and
observer data. Estimates of the sex ratio, life stage,
and lengthefrequency distribution were based on
observer data only.

2.3. Cluster analysis

Cluster analysis was based on species composi-
tion from logbook data. These species were albacore
(ALB), bigeye tuna (BET), yellowfin tuna (YFT),
southern bluefin tuna (SBT), billfish, sharks, and
others. A two-step method suggested by He et al.
[37] was applied to process the numerous data sets

(499,981 sets). The data were aggregated by week
and by set to avoid excessive noise caused by clus-
tering operational data. The clusters were then
merged with operational set-by-set data by using
columns of vessel ID and operation date (year,
month, and week) to identify the targeted fishing
operations.
For the two-step method, nonhierarchical cluster

analysis (K-means method; [42]) was first applied to
group the datasets into 42 clusters based on catch
composition (P7

2 ¼ 42; two species can be chosen
with priority from seven species). Ward's agglom-
erative hierarchical cluster analysis was applied to
the dissimilarity matrix to calculate the squared
Euclidean distances based on the mean species
composition from the 42 nonhierarchical clusters. In
this study, the clusters were defined as groupings
such that the difference in the relative variance be-
tween groups and within group was >50% [43].

2.4. CPUE standardization

The silky shark is a bycatch species of the
Taiwanese LTLL fishery. As shown in Table 2, the
logbook datasets contain a high proportion of zero
catches (95.67% on average), which may lead to bias
during CPUE standardization. To prevent such bias,
we adopted a ZINB model.
The probability distribution of a ZINB variable Y

is given by
(Equation (1): Binomial model; Equation (2):

Count modeldnegative binomial, link ¼ logit)

PrðY¼0Þ¼uþ ð1�uÞð1� klÞ1=k ð1Þ

PrðY > 0Þ¼ð1�uÞ Gðyþ 1=kÞ
Gðyþ 1ÞGð1=kÞ

ðkmÞy
ð1þ klÞyþ1=k ð2Þ

where k is the negative binomial dispersion
parameter; l is the mean of the underlying negative
binomial distribution; and u is the probability of an
observation being drawn from the constant distri-
bution that always generates zero.
To remove spatiotemporal influences, several

factors were considered including 15 fishing years
(2005e2019), four calendar quarters, and four fish-
ing areas. Operational variables such as the number
of hooks between floats (deep set: �15 hooks;
shallow set: <15 hooks) [36] and vessel size (Vessel:
CT5, CT6, CT7) were also considered and incorpo-
rated into the cluster results as effects in the CPUE
standardization models. All factors were considered
to be categorical variables and were evaluated as
explanatory variables for ZINBs.

Table 1. Summary of data analyzed for this study by year including the
number of sets, total hooks, silky shark catches, and the percentage of
silky shark catches among total tuna catches, billfish catches, and
observer coverage for Taiwanese large-scale tuna longline vessels in the
Indian Ocean from 2005 to 2019.

Year Set Hooks Silky shark
catches

observer
coverage rate

2005 72,205 229,107,476 7591 0.83%
2006 51,782 165,372,576 2484 1.21%
2007 43,926 140,968,756 2234 5.55%
2008 31,729 102,126,017 3106 5.61%
2009 39,921 128,268,580 4025 5.47%
2010 29,856 97,611,849 1684 7.65%
2011 22,418 72,349,298 929 4.21%
2012 25,206 76,576,911 1935 4.81%
2013 23,719 75,796,412 3069 8.29%
2014 18,475 58,376,963 3098 8.95%
2015 22,535 70,889,449 206 5.99%
2016 31,540 101,456,183 2320 5.34%
2017 29,946 99,221,840 2228 6.32%
2018 28,032 93,060,320 3245 7.53%
2019 28,691 89,907,590 6123 7.25%

Average 33,332 106,739,348 2952 0.06
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A stepwise method was adopted to choose the
best-fit model based on the Akaike information
criterion (AIC) [44] and Bayes information criterion
(BIC) [45]. A decrease in AIC or BIC indicated a
better fit for the ZINB model. The best model was
then used in subsequent analysis. Kleiber and

Zeileis [46] proposed using rootograms for model
diagnostics to improve the assessment of the fit of a
count regression model. We therefore examined our
model through a residual analysis using the rooto-
gram function in the R software package “countreg”
[47].
The yearly standardized CPUE series was derived

by using the adjusted means (i.e., least squared
means) of the year effect parameters. The confi-
dence intervals of the standardized CPUE were
calculated by using a bootstrap resampling method
based on the best model. The number of bootstrap
subsamples was determined by the CPUE sample
size each year (Table 1). The 95% confidence in-
tervals for each year were computed by using a bias-
corrected percentile method with 10,000 replicates
[48]. The statistical analysis and plotting in this
study were performed using R 3.6. [47]. Cluster
analysis was computed using the “kmeans” and
“hclust” functions in the R software. ZINB models
were implemented by using the “zeroinfl” function
of the “pscl” package.

3. Results

3.1. Sex and length distribution

Spatial differences in the catch and CPUE be-
tween logbooks and observer records are displayed

Fig. 1. Area stratification used in this study based on Taiwanese large-scale tuna longline effort distribution and targeted species as recorded by
observers (ALB ¼ albacore; YFT ¼ yellowfin tuna; BET ¼ bigeye tuna; SBT ¼ southern bluefin tuna).

Table 2. Zero catch and immature percentage of silky shark caught by
Taiwanese large-scale tuna longline vessels in the Indian Ocean from
2005 to 2019.

Year Zero catch percentage Immature
percentage

Logbook
data

Observer
data

Observer data

Female Male

2005 94.49 98.31 42.86 33.33
2006 97.22 87.98 73.08 65.63
2007 97.59 88.53 57.14 52.80
2008 97.02 94.55 65.22 46.51
2009 95.69 95.24 87.80 87.04
2010 96.97 94.50 92.11 83.13
2011 97.60 97.51 100.00 84.62
2012 95.97 96.84 62.50 92.31
2013 94.67 99.75 91.30 80.00
2014 93.74 100.00 93.75 92.86
2015 99.57 99.36 88.89 80.00
2016 97.52 98.63 96.08 89.80
2017 95.72 99.79 100.00 84.21
2018 92.61 98.91 89.29 50.00
2019 88.68 99.62 94.39 91.46

Average 95.67% 96.63% 82.29% 74.25%
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in Fig. 2. The logbook data had better spatial
coverage than the observer data sets. Logbook data
revealed the fishing distribution of Taiwanese LTLL
vessels operating between 25� N and 45� S in the
Indian Ocean from 2005 to 2019 (Fig. 2). The highest
concentration of fishing effort occurred in equatorial
areas (20� Ne20� S), whereas the highest number of
silky shark catches occurred in the Northwest In-
dian Ocean (Fig. 2). The nominal CPUE indicated
that the silky shark was spatially distributed in the
north and southwest Indian Ocean. In the South-
west Indian Ocean, high catch frequency occurred
throughout the year.

A total of 1591 silky shark specimens (799 females
and 792 males) were recorded by onboard fishery
observers (Fig. 3). FL ranged from 52 to 332 cm; most
females were 120e170 cm and most males were
120e178 cm (Fig. 4). Average annual immaturity for
females and males was 82.29% and 74.25%, respec-
tively (Table 2). Despite a high proportion of
immature individuals, a clear trend in the size dis-
tribution of the silky shark was not observed during
the study period (Fig. 5). Additionally, no clear sex
segregation was observed (Fig. 6). The sex ratio
deviated from 1:1 between 20� N and 20� S, and a
significant difference was observed in sex ratios for

Fig. 2. Silky shark catches, effort, and nominal CPUE distribution of Taiwanese large-scale tuna longline vessels recorded by logbook (a) and observer
data (b) in the Indian Ocean from 2005 to 2019.

JOURNAL OF MARINE SCIENCE AND TECHNOLOGY 2021;29:673e684 677



sharks in the south Indian Ocean (Fig. 6; chi-square:
23.9, df ¼ 3, p < 0.001).

3.2. Cluster analysis

Due to the numerous data sets contained in the
logbooks, two-step cluster analysis was necessary to
classify the data sets according to target species and
fishing strategy. Cluster analysis was used to group
the data into five distinct fishing clusters according
to the percentage of target species (Fig. 7). Table 3
displays the species composition of each cluster:
Cluster 1: Other fishes (OTH); Cluster 2: Yellowfin
tuna (YFT); Cluster 3: Bigeye tuna (BET); Cluster 4:
Albacore (ALB); Cluster 5: bigeye tuna (BET) and
other fishes (OTH). Cluster 2 decreased during the
study period, whereas Cluster 4 increased from 2008
onward (Fig. 8).

3.3. CPUE standardization

ZINB was applied to standardize the CPUE. The
best model was selected according to the AIC and
BIC. The best-fit model of ZINB was the model with
the lowest AIC (234,536) and BIC (235,170) values.
This model incorporated all effects. The AIC and
BIC values used for model selection are displayed in
Table 4. DAIC and DBIC indicated the reduction in
the absolute value of AIC and BIC between the best-
fit ZINB model and each other scenario. All vari-
ables were statistically significant. The most influ-
ential effect was year, followed by area. The smallest
effect was observed for quarter. The annual stan-
dardized CPUE and nominal CPUE values are dis-
played with 95% confidence intervals in Fig. 9 and
Table 5. Similar trends were observed: a steady rise
between 2011 and 2014, a sharp decrease in 2015,
and then a rapid increase from 2016 to 2019. The
residual plots indicated that the ZINB models had
an excellent fit with the bycatch data (Fig. 10).

4. Discussion

4.1. Distribution patterns

The silky shark has a variety of habitats and is
often captured on the continental shelf and in the
open ocean. The shark prefers waters above 23 �C
[17]. The majority of silky sharks observed in this
study were captured in the north and northwestern
Indian Ocean between 20 �N and 20 �S and had a
high rate of both female and male immature in-
dividuals. Previous studies have indicated that the
silky shark exhibits some size segregation [18,49].
Newborns and young juveniles are demersal,

Fig. 3. Distribution of female and male silky sharks by life stage in the
Indian Ocean as recorded by observers.

Fig. 4. Size frequency distribution of male and female silky sharks
recorded by observers in the Indian Ocean. Vertical lines represent
median size at maturity (solid line: female; dashed line: male).
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tending to stay in shelf water nursery areas and
deeper parts of the continental and insular shelves,
whereas adults are pelagic, moving beyond the
continental shelf and returning to shelf waters
seasonally to feed and reproduce [50,51].
A high rate of immaturity was observed across our

study area. Except for male samples in 2018, average
body size decreased steadily from 2012 to 2019.
Hutchinson [52] indicated that numerous juveniles
(<190 cm Total Length) and adults caught by tuna
and billfish fisheries were captured at higher lati-
tudes [11,53,54], which is consistent with our find-
ings. However, no clear size segregation was
observed in our study. The lack of size segregation
may be due to our relatively small sample size from

observer data or due to different gear selection or
bait types in the areas observed [55]. Data from a
longer time series and broader geographical
coverage are necessary to understand the reason for
this discrepancy.
Larger silky shark specimens of both sexes were

found in the southern Indian Ocean, whereas
smaller specimens were more frequently observed
in tropical and temperate areas. The seasonal
movement of the silky shark has been documented.
For example, in the Pacific Ocean, Strasburg [11]
demonstrated that silky sharks tend to move from
the equator toward higher latitudes in summer. In
the Indian Ocean, numerous silky sharks were

Fig. 5. Size distribution of silky sharks in the Indian Ocean by year from 2005 to 2019. Horizontal lines represent median size at maturity (solid lines:
female; dashed lines: male).

Fig. 6. Sex ratio distribution of silky sharks in the Indian Ocean from
2005 to 2019.

Fig. 7. Dendrogram of 42 nonhierarchical clusters for 499,981 longline
sets of the Taiwanese large-scale tuna longline fishery in the Indian
Ocean from 2005 to 2019.
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observed in the Gulf of Aden during the late spring
and summer [56]. Additionally, a tagging study of
the silky shark indicated sexual segregation and
distinct habitat usage among individuals [55]. In our
study, a larger number of males were captured in
the southwestern Indian Ocean than females were.
Neither logbook nor observer data were available
for the southeastern Indian Ocean where Bonfil [56]
found silky shark in great abundance. Additional
research aiming to refine estimates of abundance
and to ascertain movement patterns would

considerably improve the understanding of silky
shark population dynamics in the Indian Ocean.

4.2. CPUE standardization

The logbook and observer data provided valuable
spatiotemporal information related to fishing activ-
ities. Because logbook data have wider coverage
than observer data, the CPUE of the silky shark was
standardized based on the logbook data. To ensure
that CPUE is proportional to abundance, possible
confounding factors must be removed. A variety of
methods are available for this task. In a study of
oceanic whitetip shark bycatch of the Hawaiian
pelagic longline fishery, Brodziak and Walsh [57]
applied five different standardization models: Pois-
son, negative binomial, zero-inflated Poisson, ZINB,
and deltaegamma. The results indicated that a zero-
inflated model is more suitable when the zero catch
rate of shark is high. Due to insufficient catch pro-
cess information and a large observed zero catch
rate, the ZINB model was deemed appropriate for
this study.
Although delta models have also been widely

applied for CPUE standardization of nontarget
species with high zero catch rates [36], these models
were not used in our study because zero-valued
observations may be incorrectly pooled [29]. In this

Table 3. Species composition percentage of each cluster from the Taiwanese large-scale tuna longline fishery in the Indian Ocean (2005e2019).

Species group Cluster

1 2 3 4 5

Albacore (ALB) Thunnus alalunga 9.71 1.63 8.17 56.87 13.61
Bigeye tuna (BET) T. obesus 6.53 20.30 39.88 6.49 19.76
Yellowfin tuna (YFT) T. albacares 2.64 56.48 21.24 3.17 10.67
Southern bluefin tuna (SBT) T. maccoyii 0.93 0.02 0.37 3.86 1.04
Swordfish (SWO) Xiphias gladius 1.46 3.81 4.95 1.52 3.09
Shark 1.77 2.09 3.83 1.94 3.31
Others 76.96 15.68 21.57 26.15 48.51
number of sets 180,016 73,267 145,148 15,561 85,968
% of Sets 36.01 14.65 29.03 3.11 17.19

Fig. 8. Annual catch and effort distribution of the five clusters reflecting
the targeting strategy of the Taiwanese large-scale tuna longline fleet
from 2005 to 2019. Cluster 1: Other fishes (OTH); Cluster 2: Yellowfin
tuna (YFT); Cluster 3: Bigeye tuna (BET); Cluster 4: Albacore (ALB); and
Cluster 5: Bigeye tuna (BET) and other fishes (OTH).

Table 4. Deviance table for the ZINB model of the silky shark in the
Indian Ocean. The absolute value of the AIC and BIC for the null model
was 246,223 and 236,190, respectively.

Zero-inflated negative binomial

Source Df Chisq Pr(>Chisq) DBIC DAIC

Year 14 689.369 <2.2e-16 �6113.5 �6424.9 ***
Quarter 3 91.594 <2.2e-16 �98.9 �165.6 ***
Area 3 65.137 4.69E-14 �2467.2 �2533.9 ***
Cluster 4 132.723 <2.2e-16 �498 �586.9 ***
NHBF 1 103.583 <2.2e-16 �403.3 �425.5 ***
Vessel 2 14.441 0.0007316 �359.4 �403.8 ***

Signif. codes: 0 '***', 0.001 '**', 0.01 '*', 0.05 '.', 0.1' ', 1.
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study, year was observed to have the most signifi-
cant influence and thus was the most important
factor. However, no clear difference was observed
between nominal and standardized CPUE. The lack
of difference may be due to the small number of
years in the data sets and the lack of a homogeneous
fishing strategy distribution both spatially and
temporally [58].
Recent studies [59e62] have suggested that

spatiotemporal models (e.g., the vector autore-
gressive spatiotemporal model) may yield more
precise, biologically reasonable, and interpretable
estimates of abundance than conventional methods
such as generalized linear models (GLMs) or delta-
generalized linear mixed models. Although these

models may reduce bias associated with sample
selection and fill in spatial gaps associated with
fishery-dependent data [63,64], the model configu-
rations and results of such sophisticated methods
are complex and may be difficult to understand [61].
The simple ZINB model adopted in this study gen-
erates results that are easily interpreted and
understood.
Longline fisheries often adopt different strategies

for different target species. Strategic changes
include different hook size, gear, operational time,
location, and depth. When this detailed information
is not available or recorded, cluster analysis is useful
to separate the data into different groups based on
target species [65]. Our results indicate that cluster
was an important factor explaining the variance of
ZINB models. Our integrated approach can be used
to understand the fishery strategies for other shark
species and to derive relative abundance indices for
stock assessment and management.

4.3. Stock status in the Indian Ocean

Little research has been conducted on the CPUE
of the silky shark in the Indian Ocean. Two studies
in the eastern Indian Ocean (the main operational
area of the Indonesian fishery) [66,67] calculated
relative abundance indices of the silky shark by
using a GLM to estimate the standardized CPUE.
Jatmiko [66] analyzed observer data for the Indo-
nesian longline fleet from 2006 to 2017, and Simeon
[67] conducted research investigating two fishing
ports from 2015 to 2016. Simeon's study [67] indi-
cated that the silky shark population increased be-
tween 2015 and 2016. However, the study also
demonstrated higher juvenile mortality associated
with smaller fishing vessels operating in coastal

Fig. 9. Nominal and standardized CPUEs (per 1000 hooks) with 95%
confidence interval for a ZINB model of silky shark abundance.

Table 5. Estimated nominal and standardized CPUE (per 1000 hooks) of the ZINB for silky shark caught by the Taiwanese large-scale tuna longline
fishery in the Indian Ocean.

Year Original Values Bias-corrected bootstrap confidence intervals

Nominal Standardized Lower CI Upper CI Mean STD CV

2005 0.11139 0.11825 0.11047 0.11127 0.13452 0.00669 0.04975
2006 0.05171 0.05043 0.04446 0.05281 0.05441 0.00338 0.06209
2007 0.05591 0.05440 0.04557 0.06153 0.05585 0.00413 0.07388
2008 0.10776 0.09849 0.09408 0.09547 0.11814 0.00975 0.08251
2009 0.11097 0.10731 0.09919 0.11948 0.10495 0.00557 0.05308
2010 0.06202 0.06489 0.06052 0.06302 0.07479 0.00470 0.06291
2011 0.04645 0.05465 0.04681 0.05829 0.05949 0.00460 0.07726
2012 0.08761 0.08878 0.07773 0.09786 0.08973 0.00509 0.05675
2013 0.14505 0.13510 0.13537 0.14061 0.12172 0.00627 0.05153
2014 0.18423 0.17042 0.15960 0.20791 0.15746 0.01268 0.08051
2015 0.00990 0.00915 0.00774 0.01194 0.00820 0.00113 0.13774
2016 0.08182 0.08056 0.06864 0.09451 0.08038 0.00658 0.08184
2017 0.08325 0.08367 0.07635 0.09393 0.08297 0.00435 0.05248
2018 0.12764 0.12909 0.12277 0.14180 0.12653 0.00449 0.03546
2019 0.23153 0.24614 0.24681 0.25240 0.22976 0.00735 0.03200
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areas. These two studies notwithstanding, detailed
information is insufficient, and therefore, stock as-
sessments of the silky shark in the Indian Ocean
remain uncertain.
By using data from the Taiwanese large-scale

longline fishery from 2005 to 2019, this study is the
first to investigate the population abundance of the
silky shark across the entire Indian Ocean. The
catch number was observed to decrease from 2008
to 2012 (lowest value in 2015) but then increase to a
maximum in 2019 (Fig. 9). In the southwestern In-
dian Ocean, high catches of silky sharks were
frequent throughout the year, with silky sharks
caught as bycatch by LTLL targeting oilfish (Ruvettus
pretiosus) and escolar (Lepidocybium flavobrunneum).
Because catches of both silky shark and other spe-
cies (primarily oilfish and escolars) were lower in
2015 than in other years, the low catches of silky
sharks in 2015 may be due to particularly low fishing
effort in the southwestern Indian Ocean. However,
these results may reflect only partial stock status
because our spatial coverage may be insufficient to
judge the entire stock status. Additionally, only

commercial fishing records were used to calculate
relative abundance indices in this study. Although
the indices were derived by using standardized
procedures, fishery-independent data, such as sur-
vey data, would be more accurate because there
would be no catch bias due to discard, release, or
nonreporting, which are typical occurrences for
bycatch species such as sharks. Further fishery-in-
dependent studies are necessary to better evaluate
the status, ecology, and distribution of the silky
shark in the Indian Ocean. For future management
of the silky shark, Tsai [27] suggested that sex-spe-
cific and immature shark protection strategies are
the most efficient conservation method. Because
global shark catches and landings are increasing,
the monitoring of silky shark populations is neces-
sary to ensure the protection of this species in the
Indian Ocean.
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