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Prediction of Remaining Useful Life of Wind Turbine
Shaft Bearings Using Machine Learning

Jinsiang Shaw “"*, Bingjie Wu *

@ Institute of Mechatronic Engineering, National Taipei University of Technology, Taipei, Taiwan
b Research Center of Energy Conservation for New Generation of Residential, Commercial, and Industrial Sectors, National Taipei
University of Technology, Taipei, Taiwan

Abstract

Wind turbines are a major trend in the current green energy market. Wind energy is abundant, and if utilized
properly, can result in significant reductions in carbon emissions. Therefore, the development of wind power systems is
urgently required. However, wind turbines are mainly built in unmanned areas. Regular inspections require substantial
manpower and material resources, and doubts regarding the accuracy of the inspected data may occur. Therefore, it is
necessary to establish an automatic diagnostic method for determining the remaining useful life (RUL) of a wind turbine
to facilitate predictive maintenance. In this study, a multi-class support vector machine (SVM) and a convolutional
neural network (CNN) were employed for fault diagnosis and RUL prediction of the shaft bearings used in wind tur-
bines. During the multi-SVM process, the vibration signal of the shaft bearings was converted into a 15-parameter
feature vector input for training and prediction; we achieved a resulting classification accuracy of 95.33%. For the CNN
process, the spectrogram of the vibration signal from the wind turbine shaft bearings was used to train a CNN; here, we
achieved a resulting classification accuracy of 100%.

Keywords: CNN, SVM, RUL, Machine learning

1. Introduction a challenge. The repair of failed equipment is time
consuming and a considerable amount of financial

nvironmental awareness, including carbon  resources i§ spent on res‘toring power generatign.

E emission restrictions, has increased in recent Therefore, it 1s extremely important to be aware if a
years. The demand for electricity has increased with ~ fault occurs in advance. Such faults were detected
industrial developments and additional power manua!ly m 'the early days. 'R.ecently, m’;elhgegt
plants are required to provide stable electricity. To fault diagnosis [11] aqd Pl_'edmtlve fa1'11t diagnosis
address the environmental impact, policies for [23]) have garnered significant attention and can
regulating air pollution and the use of nuclear reduce the manpower required to evaluate and
power have been implemented. In addition, coun- prO\{lde t1m.e1y forecasts of impending malfunctions.
tries are actively considering alternative energy An increasing amount of re'segrch has be'en con-
sources such as geothermal, hydraulic, tidal, solar, du.cted on the fiamage Predlctlon of rotating ma-
and wind. Wind power has garnered significant ~chinery, including bearings and gears. In early
attention and is an important source of global en- machine learning, expert systems [6], artificial neu-
ergy. Wind turbines are built on stable wind farms ~ ral networks (ANNS) [1,16,20] and support vector
and generally on unmanned land. In addition to the machines (SVMs) [9,19,29,31] were used for fault

difficulty of construction, equipment maintenance is diagnosis. However, it is necessary to manually
extract the characteristics of the data, such as time,
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frequency, or time-frequency domain features
[10,12]. These characteristics indicate the health of
the machine. Therefore, they are used as inputs to
the diagnostic model to predict whether the ma-
chine will continue to operate normally. Recently,
deep learning diagnostic models such as stacked
autoencoders [5,13,15], convolutional neural net-
works (CNNs) [28,30], and ResNet [17] have been
employed. Deep learning models can automatically
extract data characteristics, thereby significantly
reducing human labor. In addition, providing
additional training data to the deep learning model
can improve model accuracy.

This study mainly uses a multi-SVM and deep
learning CNN model to develop a health status
diagnosis model. The vibration signals of the
damaged shaft bearings of a wind turbine with a 2
MW power output were collected. The data were
sampled at 97,656 Hz for 6 s per day. A total of fifty
days of data were collected when the shaft bearings
failed on the last day [3]. The objective of our study
is to predict the remaining useful life (RUL) of the
shaft bearings of a wind turbine; for example, five
days of RUL before failure, given the collected vi-
bration signals of a particular day (day 45). Lin [14]
applied a probabilistic neural network (PNN) to
predict the RUL of shaft bearings with an accuracy
of only 23%. By adding the sideband energy ratio
(SER) and sideband power factor (SBPF) in the
feature vector, the classification accuracy attained
was 93.6%. In this study, we employed a multi-SVM
and deep learning CNN model to predict the health
status of the shaft bearings to enable easy deduction
of the RUL of the bearings.

2. Prediction model

2.1. Support vector machine

SVM is a binary classifier. An optimal hyperplane
capable of accurately predicting the data was
investigated for the training data projected into a
high-dimensional feature space. Vapnik and Cher-
vonenkis [22] developed the first SVM model. Later,
Drucker et al. [4] published an SVM based on the
statistical learning theory; the SVM used only a
small dataset to produce a reliable prediction. In
addition, SVMs have been used by several scholars
to successfully classify faults in various mechanical
parts [26,27].

Furthermore, a multi-SVM, which is not limited to
dichotomy but can carry out multiple classifications,
has been proposed [25]. There are two methods for
applying SVMs to multiple classifications. The first
is the one-vs-rest method. To sort the results, the

corresponding n SVMs are established. The data to
be classified are fed into n SVMs as the input.
Finally, the maximum value of the n SVM outputs is
used to determine the classification to which the
data belongs.

The second method is the one-vs-one method.
From n classes of data, any two classes of data must
be chosen to conduct SVM training. This action is
repeated until all categories have corresponding
SVMs. Therefore, n(n—1)/2 SVMs are generated.
Finally, we feed the data to be classified into trained
models. The category with the highest score is
subsequently determined. In this study, we employ
the one-vs-one method for classifying the input
signal of shaft bearings corresponding to which day
it represents, namely from day 1 up to day 50.

2.2. Convolutional neural network

CNNs have two main layers: convolution and
pooling layers. A convolutional layer composed of
3 x 3,5 x5, 0r7 x 7 filters is an important layer for
feature extraction. A convolution operation is
applied to the input image using a mask to obtain
the feature map of the image. The pooling layer is a
powerful tool used by a CNN to compress images
while retaining important information. The pooling
layer can select a different window size and typically
maximum pooling is employed.

CNNs have gained importance in recent years and
have achieved significant performance in image
recognition. CNN debuted in 2012 at the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC),
where the championship model was AlexNet. Since
then, NfNet, VggNet, GoogleNet, and Microsoft
ResNet network models have been applied to image
classification [8]. GoogleNet, used in this study, was
the champion model at the ILSVRC in 2014. It is
connected by a large number of inception struc-
tures, which can reduce the model parameters and
enrich the diversity of the learning characteristics. A
total of 27 layers of GoogleNet model [21] were
compared with a 122-layer ResNet model [7]; it was
found that the training time of GoogleNet was faster
than that of ResNet.

3. Feature extraction

Data from a 6-s vibration signal of a high-speed
shaft bearing of a 2 MW wind turbine were taken as
the training data each day (585,936) for a total of fifty
days, as shown in Fig. 1. It is visible that the trend of
the vibration amplitude increases with time (day);
however, the amplitude does not monotonically in-
crease and exhibits a deteriorating condition until
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Fig. 1. Vibration signal in the time domain.

the last day of breakdown. The root-mean-square
(RMS) amplitude per day is illustrated in Fig. 2,
where the RMS amplitude and time (day) are not
one-to-one.

3.1. Vibration-related characteristics

During the operation of a wind turbine, the rota-
tional speed is slightly time-varying and not in a
stable state. The measured vibration signals include
several characteristics. The fault signal is of an
extremely small amplitude during an early me-
chanical part malfunction and is easily masked by
surrounding noise. Therefore, it is important to
obtain the fault signal in the initial stages. The
characteristics of the vibration signal were extracted
in both time and frequency domains. Each day, the
measured vibration signal was sampled randomly
into ten groups, each with 400,000 data points out of

32 ‘ . : : -

g
®
T

N

(o))
.
—

Amplitude (g)
N
S
—
<
z_

\ Ay V)

L \/\ﬁ\ / ‘o

\ |
\

22

0 10 20 30 40 50
Time (day)

Fig. 2. RMS amplitude of vibration signal.

585,936. The corresponding time and frequency-
domain features for each group were then extracted.
A total of fifteen feature values (eleven and four in
the time and frequency domain, respectively) were
obtained for each group and were fed into a multi-
SVM for training and prediction. The fifteen feature
values that were chosen have been proved effective
in indicating complex bearing faults and are inde-
pendent of shaft speeds and loads [14,18,24].

3.1.1. Time domain

All original data were in the time domain. Statis-
tical features in the time domain can be used as the
basis for identifying the health index. The eleven
chosen feature values are listed in Table 1, where x
is the sampled vibration signal and N is the number
of sampled data points.

3.1.2. Frequency domain

In addition to the time-domain vibration features
listed in Table 1, it is extremely important to include
the frequency-domain features to improve the
effectiveness of fault detection. In this study, fea-
tures related to the spectral kurtosis (SK) of the vi-
bration signal x were added. The value of SK(f),
defined in Eqn. (1), increases with the intensity of
the fluctuations in the impulse amplitudes. Conse-
quently, the value of SK can be used to indicate the
severity of the damage. The SK of a signal x(t) is
defined as the kurtosis of its spectral components

Table 1. Statistical time-domain features.
Feature

Mean N

Expression

Standard Deviation

Root Mean Square XN
RMS = | =Y |x)
N
Skewness (x—p)?
decy
14
Kurtosis —w?*
E {(x 4#)
a
Ener, N
8y S
i=1
Peak to Peak XMax — XMin
Crest Factor XMax
RMS
Shape Factor RMS
Mean(|x|)
Impulse Factor *Max
Mean(|x|)
Margin Factor XMax
Mean(|x|)?
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and can be defined as a normalized fourth-order
spectral moment as:

K(f) _w_z, (1)

()

where () represents the time-frequency averaging
operator, X*(t,f) and X?(t,f) are the fourth- and
second-order cumulants, respectively, of a band-
pass filtered signal x(t) around f [2,18].

Once SK(f) is obtained, its skewness, kurtosis,
average, and standard deviation can be calculated
and included in the feature vector to predict the
degradation of the wind turbine shaft bearings.

3.2. Spectrum plot

As shown in Fig. 2, the root-mean-square (RMS)
amplitude per day cannot be used alone to deter-
mine the health status of the bearings owing to non-
monotonicity. Here, a fast Fourier transform (FFT) is
used to obtain the frequency content of the vibration
signal. For each day, a total of thirty spectrograms
were generated, each with randomly chosen 500,000
data points for the FFT. A few samples of the
resulting spectrograms are shown in Fig. 3. In the
subsequent section, a trained CNN is employed to
predict the day that a particular spectrogram
represents.

4. Experimental results

4.1. Support vector machine

The multi-SVM input data is a feature vector.
Feature extraction was performed to obtain fifteen
feature values for each sampled time signal, as
mentioned in Section 3.1. Seven out of the ten
groups on each day were used for multi-SVM
training. After completion of training, the remaining
three groups were tested each day. The classification
accuracy achieved was 95.33% (143/150).

The confusion matrix is listed in Table 2, where
the recall rates of days 3 and 4 of the trained multi-
SVM are both zero. The precision rate for day 5 was
only 33.33% (3/9) because the health conditions on
days 3 and 4 were all misjudged as those of day 5;
this mainly accounts for the loss of accuracy. On day
36, the recall rate was only 66.67% (2/3) because one
health condition of day 36 was misjudged to that of
day 44. The precision rate on day 44 was 75% (3/4).
Note that only seven errors existed in the multi-
SVM predictions: three health conditions each of
day 3 and day 4 misclassified as that of day 5; one
day 36 health condition misclassified to that of day
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Fig. 3. Spectrogram of vibration signals.

44. The predicted RUL values of these seven cases
were shorter than the true RUL values, which is
acceptable in terms of predictive maintenance. It
would be undesirable if the health condition of a
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Table 2. Confusion matrix of multi-SVM.

635

certain day is misjudged as that of an earlier day,
which is more likely to cause maintenance prob-
lems. However, this does not occur in proposed
multi-SVM model.

4.2. Convolutional neural network

2D images of the spectrogram, such as those dis-
played in Fig. 3, were used as the input for the CNN

model to predict the health status that it would
correspond to (with corresponding output labels as
Day 1, Day 25, and Day 50, respectively). Thirty
images per day were collected, resulting in a total of
1500 images as the dataset for the CNN. The Goo-
gleNet model and transfer learning were employed
here for the fifty days of classification. 70% of the
images (1050 images) were used for training, and
the remaining 30% (450 images) were used for
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testing. The training process run in the MATLAB
package is shown in Fig. 4; 100% accuracy was ob-
tained for the training data. Finally, the accuracy
achieved of the testing images of the trained Goo-
gleNet model was 100%. In other words, by trans-
forming the measured vibration signal of any day to
a spectrogram using FFT, the GoogleNet model can
correctly identify the health condition of that spe-
cific day.

5. Conclusion

Both multi-SVM and GoogleNet CNN models
were used to successfully predict the health condi-
tion of wind turbine shaft bearings in terms of the
number of days for RUL. For the SVM model, an
accuracy of 95.33% was obtained from the classifi-
cation results. This result is superior to that ach-
ieved by Lin [14], who used a PNN model and
achieved an accuracy of 93.6%. CNN classifiers only
need to transform the measured time series data
into a spectrogram using FFT to classify the RUL
with 100% accuracy; whereas SVM and PNN models
require additional data preprocessing to extract
time and frequency characteristics. Hence, it is ad-
vantageous to use CNN. Moreover, compared to
PNN and SVM, CNN models are capable of
achieving improved accuracy and reliability for
wind turbine health identification. The scope of our
future study involves the application of a long short-
term memory network (LSTM) to predict the RUL of
the shaft bearing by directly using the sampled time
series data as the input feature vector.
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