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ABSTRACT

Coherent reflection of an acoustic plane wave
from rough interfaces in a horizontally-stratified
medium, within which the sound-speed  distribution
subject to a small and random perturbation, is consid-
ered in this paper.  The general formulation based upon
the theory for rough-interface scattering in a stratified
medium, in conjunction with that for random medium is
derived.  The Green’s function for a random medium
bounded by two surfaces, which serves as generic solu-
tion of the problem, is obtained.  The formulation is then
applied to a simplified seabed environment to study the
e f f e c t s  o f  s u r f a c e  r o u g h n e s s  a n d  m e d i u m
inhomogenieties on the coherent reflection.  The nu-
merical results demonstrate that both the rough-surface
scattering and medium scattering distract the energy
from the coherent field, making the coefficient of the
coherent reflection reduced with an amount, depending
upon the degree of roughness and randomness measured
by the relevant parameters.  Furthermore, the character-
istics of the distribution for the reflection coefficient
with respect to incident angle show distinct feature,
potentially allowing identification of dominant scatter-
ing mechanism.

INTRODUCTION

This paper considers coherent reflection of an
acoustic plane wave impinging upon rough interfaces in

a horizontally-stratified medium, within which the sound
speed is subject to small and random perturbation; the
schematic diagram of the physical model is shown in
Figure 1.  This is an important and fundamental problem,
in that the surface roughness and the medium
inhomogenieties represent two basic types of perturba-
tion interfering wave propagation in a bounded region.
Furthermore, in many realistic applications, particu-
larly for wave propagation in an oceanic waveguide, the
surfaces bounding the media are rough, and the media
supporting the waves are in general  randomly
inhomogeneous.  As a result, two important aspects of
the wave fields are affected, i.e., the transmission loss
and the coherency of the sound field. For a wave propa-
gating in such an environment, its energy may be attenu-
ated due to scattering incurred by the rough boundaries
as well as the random inhomogenieties inside the media,
resulting in a severe loss of energy in addition to that
due to traditional mechanisms such as geometric spread-
ing and volumetric absorption.  Moreover, the spatial
distribution of the sound field no longer remains well-
correlated, making the processing of acoustic signal a
more difficult problem.

The surface roughness under consideration is due
to boundary i rregular i t ies ,  while  the medium
inhomogenieties may originate from various sources,

Fig. 1. Environmental model: a plane wave incident upon rough interfaces
in a horizontally-stratified medium, within which the sound-speed
distribution is subject to a small and random perturbation.
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including random distributions of sound speed and/or
density resulted from inhomogeneous constituents or
dynamical perturbation of different origins, such as
oceanographic mixing and turbulence. In the present
analysis, attention is given only to the random sound-
speed variations, in view of the fact that the distribution
of the sound speed is often a greater concern than that of
density for acoustic wave propagation in an oceanic
environment.  Evidently, the present problem involves
two types of analysis, i.e., acoustic wave propagation in
random media and wave interaction with rough surfaces;
these two problems are traditionally treated separately.
It is the main theme of this paper to consider the com-
bined effects on acoustic reflection.

The analysis shall be based upon the theories for
wave propagation in a horizontally-stratified medium,
in combination with those for rough-surface and ran-
dom-medium scattering; all of these disciplines are very
broad subjects, and have attracted a great deal of inter-
est for the researchers in the area.  Related references on
the above-mentioned subjects are so abundant that we
place no intent to give an extensive survey, except to
name a few that are most relevant to the present analysis.
With respect to the theory on scattering from rough
interfaces embedded in a horizontally-stratified media,
a unified formulation developed by Kuperman and
Schmidt [16, 17, 18] has been proved to be accurate and
efficient, so that it is adopted here.  As for wave scatter-
ing due to medium inhomogenieties, a working formula
for the mean-field solution for wave in a random slab
similar to that due to Tang and Frisk [10, 27] for wave
in a semi-infinite space shall be developed in this
analysis.  A few excellent books, such as those by
Ewing, et al. [9], Brekhovskikh [4], and Jensen, at al.
[15] for waves in stratified media, and those by Chernove
[5], Ishimaru [13], Uscinski [28] for waves in random
media, offer a comprehensive treatment on the subjects,
and therefore serve as general references for this study.

In the following sections, we shall first present the
general formulations, including the Green’s functions
and mean-field solution in the random media, and the
coherent reflection from rough interfaces in a stratified
medium, then the formulation is applied to a canonical
problem to demonstrate the fundamental mechanisms.
Many numerical results for the coherent reflection coef-
ficient are generated and analyzed.

FORMULATIONS

Consider a monotonic acoustic plane wave with
time dependence eiwt, impinging upon rough surfaces on
and/or embedded in a horizontally-stratified fluid
medium, within which the sound-speed distribution is
subject to a small and random perturbation as shown in

Figure 1.  The sound speed in layer i is:

      ci = ci + ci
'(r, z) (1)

where <ci> is the ensemble average over the layer i, and
      ci

'(r, z) is the random variation of the sound speed, which
has zero mean and is assumed to be small compared with
<ci>; the density in layer i is taken to be a constant value
ρi.  Furthermore, each layer i is bounded by two rough
surfaces (except for the upper and lower most semi-
infinite media) at zi − 1 and zi with random elevations,
respectively, equal to z = ζ i − 1(r) and z = ζ i(r), which are
also assumed to have zero means, and their magnitudes
and slopes are small compared with the acoustic
wavelength.

Under the above assumptions, the Helmholtz equa-
tion and the boundary conditions for the generic prob-
lem represented by layer i may be shown to satisfy the
following equations:

   
∇ 2 pi + k i

2
1 –

2ci
'

ci

pi = 0 (2)

pi − 1(r, ζ i − 1) = pi(r, ζ i − 1) (3)

wi − 1(r, ζ i − 1) = wi(r, ζ i − 1) (4)

pi(r, ζ i) = pi + 1(r, ζ i) (5)

wi(r, ζ i) = wi + 1(r, ζ i) (6)

where pi’s and wi’s are respectively the pressure and
vertical displacement in the i-th medium, and the term
involving wavenumber in Equation (2) is obtained by
invoking the following approximation:

   
k i

2 = ω
ci + ci

'

2
∼ ω

ci

1 –
ci

'

ci

2

   
∼ k i

2
1 –

2ci
'

ci

(7)

It should be noted that ci
'  in Equation (2) and ζ i − 1,

ζ i in Equations (3) — (5) are stochastic variables, and in
the most general case, they may be correlated.  However,
in this study, we shall assume that each randomness
originates from different physical processes, and there-
fore they are assumed to be statistically independent.

The complete analysis for the acoustic fields in
various layers is intrinsically complicated, in that the
scattered field in each layer is a result of full reverbera-
tion in the waveguide.  Although formally possible in
terms of theoretical formulation, the solution of the
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problem becomes intractable even with a most powerful
computational facility, because it involves a spectrum
of waveguide incident components, each of which is
scattered into all spectral components according to
waveguide propagation.  However, in the present study,
we are primarily concerned with reflection of the coher-
ent part of the sound fields.  Under this consideration,
only the first-order mean fields (to be defined below)
are involved in the analysis.  Therefore, the solution
approach is first to obtain the mean-field solution in the
various layers, then followed by the analysis of mean-
field reflection from rough surfaces; that is the proce-
dure to be developed below.

Green’s function and mean-field solutions in random
media

Here, we first derive the solution for wave propa-
gation in a random slab, which constitutes the generic
structure of this analysis.  Following the common prac-
tice for wave propagation in a random medium, the
solution for Equation (2) may be decomposed into a
coherent mean field <pi>, and an incoherent scattered
field  pi

s:

  pi = pi + pi
s (8)

where it is assumed that   pi
s << pi .   Substituting

Equation (8) into Equation (2), and then taking the
ensemble average results in the wave equation for the
mean field:

    ∇ 2 pi + k i
2

pi = – k i
2
nipi

s (9)

Furthermore, subtracting Equation (9) from Equa-
tion(2), then dropping the higher-order terms, yields the
wave equation for the scattered field:

    ∇ 2 pi
s + k i

2
pi

s = – ni k i
2

pi (10)

where    ni = – 2ci
' / ci  represents the randomness of the

sound-speed variations.  It is noted that the term on the
right-hand-side of Equation (9), though high order in
magnitude, must be retained so that the system is able to
maintain consistency with the fact that the energy ex-
tracted from the coherent field by scattering may be
appropriately accounted for.

Applying the Green’s formula on Equation (10),
and then substituting the resulted formulation into Equa-
tion (9) yields the equation for mean field and scattered
field, respectively, given by

        
∇ 2 pi + k i

2
pi = –

k i
4

4π ni(R')ni(R)
V(R')

      pi(R') Gi(R; R') dV(R') (11)

        
pi

s(R) =
k i

2

4π ni(R')
V(R')

pi(R') Gi(R; R') dV(R')
(12)

where R = (r, z), and Gi(R;R′) is the Green’s function in
the random slab. It is seen that the mean field is gov-
erned by an integro-differential equation, and scattered
field, which is excited by the mean field, may be derived,
once the mean field is obtained.  In the present study, we
are primarily concerned with the coherent field so that
only the solution for Equation (11) is in order.  Equation
(11) shows that, in order to obtain the solution for the
mean field, it is necessary to derive the Green’s function
in the slab, which in present case requires to solve the
following system of equations:

       (∇ 2 + k i – 1
2 ) Gi – 1(R; R') = 0, z < 0 (13)

       (∇ 2 + k i
2
) Gi(R; R') = – 4πδ(R – R'), 0 < z < d

(14)

       (∇ 2 + k i – 1
2 ) Gi + 1(R; R') = 0, z > d (15)

subject to the following boundary conditions:

      Gi – 1 (R; R')
z = 0

= Gi (R; R')
z = 0

(16)

       1
ρi – 1

Gi (R; R')
z = 0

= 1
ρi

∂
∂zGi (R; R')

z = 0
(17)

      Gi (R; R')
z = d

= Gi + 1 (R; R')
z = d

(18)

       1
ρi

∂
∂zGi (R; R')

z = d
= 1

ρi + 1

∂
∂zGi + 1 (R; R')

z = d
(19)

Without loss of generality, the solution in each
layer may be expressed by generalized Fourier integral:

       Gi – 1(R; R') = A
0

∞
eik z, i – 1zJ0(k rr)k rdk r (20)

       Gi(R; R') =
0

∞ i
k z, i

(Bek z, oz + Ce– ik z, iz

  + eik z, i z – z' )J0(k rr)k rdk r (21)

       Gi + 1(R; R') = D
0

∞
e– ik z, i + 1(z – d)J0(k rr)k rdk r     (22)

where   k z, i = k i
2

– k r
2

1 / 2
 is the vertical wavenumber

in the ith layer.  The unknown constants, A, B, C, D, may
be obtained by invoking the boundary conditions, lead-
ing to a system of linear equations which may be solved
by the existing software such as Mathematica [29].  The
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solutions may be shown to be:

    B = (k z, iρi – 1 + k z, i – 1ρi)
D 1

D
(23)

    C = eik z, id(k z, i + 1ρi + k z, iρi + 1)
D 2

D
(24)

with D, D1, and D2 given by

    D = k z, ik z, i + 1ρi + e2ik z, idk z, ik z, i + 1ρi – 1ρi

   – k z, i – 1k z, i + 1ρi
2 + e2ik z, idk z, i – 1k z, i + 1ρi

2

   – k z, i
2 ρi – 1ρi + 1 + e2ik z, idk z, i

2 ρi – 1ρi + 1

   + k z, i – 1k z, iρiρi + 1 + e2ik z, idk z, i – 1k z, iρiρi + 1     (25)

    D 1 = – ei(k z, id + k z, i d – z' )k z, i + 1ρi + eik z, i z' k z, i + 1ρi

   – ei(k z, id + k z, i d – z' )k z, iρi + 1 – eik z, i z' k z, iρi + 1  (26)

   D2 = – eik z, i d – z' k z, iρi – 1ei(k z, id + k z, i z' )k z, iρi – 1

   + eik z, i d – z' k z, i – 1ρi – ei(k z, id + k z, i z' )k z, i – 1ρi  (27)

A similar derivation may be applied to obtain the
Green’s function for the semi-infinite random medium,
and in fact it is much less involved.  For example, the
Green’s function for the lower most half-space, repre-
sented by GN, can be expressed as:

       GN(R; R') =
0

∞ i
k z, N

(eik z, N z – z'

   + µeik z, N z' – ik z, Nz)J0(k rr)k rdk r (28)

where µ is the reflection coefficient given by

   µ =
ρN – 1k z, N – ρNk z, N – 1

ρN – 1k z, N + ρNk z, N – 1
(29)

With the Green’s function derived above, Equa-
tion (11) is an integro-differential equation whose com-
plexity depends upon the spatial correlation of the me-
dium randomness, represented by <n i(R′)n i(R)>.  In the
most general case, the solution may only be possible
using numerical method.  However, in some specific
cases, a semi-analytic solution may be obtained, one of
which is to be discussed in a later section.

Coherent reflection from rough surfaces

Once the mean-field solutions for various layers
are obtained, it is appropriate to consider the effects of
surface roughness on wave propagation.  It is conceiv-
able that the mean-field solution in each layer consists
of a particular solution corresponding to the non-homo-

geneous term on the right-hand-side, and a homoge-
neous solution containing unknown constants, which
are awaiting for further determination.  These unknown
constants may be determined by employing the bound-
ary conditions at each interface, resulting in a global
system of linear equations, which then are solved for the
unknowns.  For the case of flat interfaces, the above
procedure is straightforward, however, for rough
interfaces, it requires further developments, which fall
into the area of rough surface scattering.

One of the standard treatments for scattering from
randomly rough surfaces is the method of small
perturbation, which is suitable for the case when the
roughness is small compared with the acoustic
wavelength, and the magnitude of the gradient of the
roughness is much less than one [3].

Under the framework of perturbation analysis, the
effect of roughness may be represented by several op-
erators which in effect are to account for surface eleva-
tion and orientation. In this regard, the formulation
developed by Kuperman and Schmidt [18], for the case
of scattering from rough interfaces in a horizontally-
stratified media such as the present analysis, was found
to be most convenient in terms of formula presentation
and numerical computation.

According to the procedure for Kuperman-
Schmidt’s formulation, first, it is necessary to establish
the linear system for the unknown amplitudes of wave
components in various layers for the case of flat
interfaces.  With respect to this, it may be shown that, by
applying the boundary conditions, the linear system
may be conveniently expressed as

B(kr, 0)<χ(kr, 0)> = C(kr, 0)

where B is the coefficients of the unknown amplitudes,
and <χ> is a vector containing the unknowns in each
layer, and C is for the source-related terms; the argu-
ment kr, 0 represents the horizontal wavenumber of the
incident plane wave.

Next, Equation (30) must be modified to account
for surface roughness.  This may be furnished by em-
ploying the boundary-perturbation analysis; the essence
of which is to conduct a series of perturbation expansion,
along with a sequence of algebraic manipulations asso-
ciated with Fourier representation in order to arrive at a
facilitating formulation.  The process of derivation is
shown in Ref. [18], and the resulting formulation is as
follows:

    
B(k r, 0) +

ζ i
2

2
∂2B(k r, 0)

∂z2 + L(k r, 0) χ(k r, 0) = C(k r, 0)

(31)
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in which the operator L is defined as

    
L(k r, 0) = –

ζ i
2

2π dqPi(q

    
– k r, 0)

∂B(q)
∂z – i(k r, 0 – q)B s(q)

    
× B – 1(q)

∂B(k r, 0)
∂z – i(q – k r, 0)B s(k r, 0)   (32)

where the matrix Bs stands for the effect of boundary
orientation, and Pi is the roughness power spectrum of
the ith interface.  In comparison between Equations (30)
and (31), it is found that the second and the third terms
in Equation (31) are newly-developed operators ac-
counting for rough surface elevation and rotation; ex-
amples for these operators shall be given in the follow-
ing section.

COHERENT REFLECTION FROM ROUGH
SEABED: A CANONICAL MODEL

The above formulation is completely general in
nature, in terms of the dimensionality of surface rough-
ness and/or the distribution of medium randomness.
However, it is clear from Equations (11) and (31) that,
for higher-dimensional rough surfaces and/or arbitrary
distribution of medium inhomogenieties, the computa-
tional effort required to obtain the complete solution for
the mean field and subsequently that for the coherent
reflection is conceivably too immense to fulfill, so that
appropriate simplification becomes necessary.  Here,
we shall consider a canonical problem representing a
simplified version of of the seabed environment, i.e., a
sediment layer overlying a rough seabottom, both as-
sumed to be fluid medium for simplicity, as shown in
Figure 2.  Although artifactitiously simple, this model is
suitable for the simulation of plane-wave interaction
with an unconsolidated seabed, within which the shear
modulus is less significant.

Furthermore, the two rough surfaces representing
water/sediment and sediment/seabot-tom are assumed
to be one-dimensional, with random elevation z = ζ i(x).
On the other hand, both the sediment layer and the
seabottom are assumed to be anisotropic, with high
correlation in the horizontal direction and low correla-
tion in the vertical direction, so that the correlation
function may be expressed as [14, 30]:

       ni(R)ni(R') = 4σ i
2Ni(r)Mi(z), (i = 2, 3) (33)

where σi represents RMS randomness of   ci
' / ci , and

      r = r1 – r2 ,    z = z1 – z2 ;    Ni(r)  a n d    Mi(z)  a r e ,
respectively, the horizontal and vertical correlation func-

tions of the random sound-speed variations.
Substituting Equation (33) into Equation (11), the

equation governing the mean field becomes

       
∇ 2 pi + k i

2
pi =

k i
4σ i

2

π
V(R')

Ni(r')Mi(z')

      pi(R') Gi(R; R')dV(R') (34)

For practical purposes, the horizontal and vertical
correlations are taken to be Gaussian and Dirac-delta
function, respectively, i.e.,

  Ni(r) = e– r2 / L0, i
2

(35)

   Mi(z) = z0, iδ(z) (36)

where L0, i is the horizontal correlation distance for
layer i, and z0, i is a constant.

In the sections followed, we shall first derive the
mean-field solutions for the sediment layer (i = 2) and
the seabottom (i = 3), and then formulate the coherent
reflection from the rough seabed.

Mean-field solutions in random sediment layer and
seabottom

Inserting Equation (36) into Equation (34), and
considering the fact that the incoming plane wave lies
on x − z plane and the roughness is one-dimensional so
that there shall have no out-of-plane wave component,
the solution for <pi>, being independent of y, may be
expressed as

  pi(x, z) = e– ik r, 0xqi(z), (i = 2, 3) (37)

Substituting Equations (36) and (37) into Equation
(34), and assuming that z0, i << λ , where λ is the acoustic
wavelength, Equation (34) may be analytically simpli-
fied to become [27]

Fig. 2.  A simplified version of seabed environment.
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   d2

dz2 + k i
2

– k r, 0
2 qi(z) = – 2 k i

4σ i
2z0, iqi(z)

0

∞
Ni(ξ)

   J0(k r, 0ξ)Gi(ξ , z; z') (38)

The above equation was derived under the as-
sumptions that qi(z′ ) and Gi(x, z; x′ , z′ ) embedded in
Equation (34) are slowly varying functions over z′  so
that it was set to be equal to z, and then subsequently
taken out of integral with respect to z′ .

Based upon Equation (38), we are here to derive
the mean-field solution in the random media.  To further
simply the formulation, with z′  = z, Equation (21) for i
= 2 is rewritten as

       G2(R; R') = –
0

∞ 1
ik z, 2

(B1e2ik z, 2z + C1e– 2ik z, 2z

  + B2 + C2 + 1)J0(k rr)k rdk r (39)

where

    B1 = (k z, 2ρ1 + k z, 1ρ2)(k z, 3ρ2 – k z, 2ρ3) 1
D

(40)

    B2 = – (k z, 2ρ1 + k z, 1ρ2)(k z, 3ρi + k z, 2ρ3) e2ik z, 2d

D
 (41)

    C1 = (k z, 3ρi + k z, 2ρ3)(k z, 1ρ2 – k z, 2ρ1) e2ik z, 2d

D
   (42)

    C2 = – (k z, 3ρ2 + k z, 2ρ3)(k z, 1ρ2 – k z, 2ρ1) e2ik z, 2d

D
(43)

Further substitution of Equations (35) and (39)
into Equation (38), and via some algebraic manipula-
tions result in a nonhomogeneous second-order ordi-
nary differential equation:

    d2q2

dz2 + η 2
2q2 = – F 2(z)q2 (44)

where

    F 2(z) = 2 k 2
4σ2

2z0, 2
0

∞ i
k z, 2

H 2(k r, k r, 0)

  (B1e2ik z, 2z + C1e– 2ik z, 2z)k rdk r (45)

with relevant parameters and functions defined as
follows:

   
η 2

2 = k 2
2

1 –
k r, 0

2

k 2
2 + c2(k r, 0) (46)

   c2(k r, 0) = 2 k 2
2σ2

2z0, 2
0

∞ i
k z, 2

H2(k r, k r, 0)(B2

  + C2 + 1)k rdk r (47)

    H 2(k r, k r, 0) =
0

∞
N2(ξ)J0(k r, 0ξ)J0(k rξ)ξdξ       (48)

  = 1
2L0, 2

2 e– (k r, 0
2 + k r

2)L0, 2
2 / 4I0(k r, 0k rL0, 2

2 / 2)
(49)

Due to the fact that     F 2(z) << η 2
2 ,  Equation (44)

may be solved by first dropping the right-hand-side to
obtain the first-iteration solution, and then solving the
full equation by the method of variation of parameter [2]
to yield:

  q2(z) = A1 y1(z) + A2 y2(z) (50)

where

    
y1(z) = e– iη 2z – 1

2iη 2
e– iη 2z

z

0
F 2(z')dz'

    
+ eiη 2z

d

z
F 2(z')e– 2iη 2z'dz' (51)

    
y2(z) = eiη 2z – 1

2iη 2
e– iη 2z

z

0
F 2(z')e2iη 2z'dz'

    
+ eiη 2z

d

z
F 2(z')dz' (52)

So, the desired solution for the mean-field inside
the sediment layer is

  p2(x, z) = A1 y1(z) + A2 y2(z) e– k r, 0x (53)

A similar procedure may be applied to obtain the
mean-field solution for the seabottom half-space, and
the results may be shown to be:

    
p3(x, z) = T e– iη 3(z – d) – eiη 3(z – d)

2iη 3

    

– ∞

z – d
F 3(ξ)e– i2η 3ξdξ – e– iη 3(z – d)

2iη 3
e– ik r, 0x      (54)

where

    F 3(ξ) = 2 k 3
4σ3

2z0, 3
0

∞ iµ32
k z, 3

e– i2k z, 3ξH 3

  (k r, k r, 0)k rdk r (55)

   
η 3

2 = k 3
2

1 –
k r, 0

2

k 3
2 + c3(k r, 0) (56)
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    c3(k r, 0) = 2 k 3
2σ3

2z0, 3
0

∞ i
k z, 3

H 3(k r, k r, 0)k rdk r

(57)

   H 3(k r, k r, 0) = 1
2L0, 3

2 e– (k x, 0x + k z, 1z) + R 1 e– i(k x, 0x – k z, 1z)

(58)

Furthermore, since the upper half-space is
homogeneous, their solutions may be expressed as

   p1(x, z) = e– i(k x, 0x + k z, 1z) + R 1 e– i(k x, 0x – k z, 1z)    (59)

Coherent reflection: boundary operators

The coherent reflection may be obtained by solv-
ing the linear system shown in Equation (31).  Here, we
present the relevant operators such as B and its
derivatives, and Bs, for the specialized problem under
consideration as shown in Figure 2.  The derivation,
although a bit of tedious, is rather straightforward.

The operator B may be derived from the mean-
field solutions, Equations (53), (54), and (59) by em-
ploying the appropriate boundary conditions, yielding

    

B(k r, 0) =

1 – 1
2iη 2

(2iη 2 – h 21)

ik z, 1

ρ1ω2
1

2ρ2ω2 (2iη 2 + h 21)

0 – e– iη 2d

2iη 2
(2iη 2 – h 22)

0 – e– iη 2d

2ρ2ω2 (2iη 2 – h 22)

(60)

   
– 1

2iη 2
(2iη 2 – h 22) 0

– 1
2ρ2ω2 (2iη 2 – h 22) 0

eiη 2d

2iη 2
(2iη 2 – h 23e

– 2iη 2d) – 1 +
h 3

2iη 3

eiη 2d

2ρ2ω2 (2iη 2 + h 23e
– 2iη 2d) 1

2ρ3ω2 (2iη 3 + h 3)

  (61)

    χ = [ R , A1 , A2 , T ]
T

(62)

   
C = – 1,

ik z, 1

ρ1ω2 , 0, 0
T

(63)

with h21, h22 and h23, h3, being function of kr, 0, defined
as follows:

    h 21
h 22
h 23

=
d'

0
F 2(z')

e– 2iη 2z'

1
e2iη 2z'

dz' (64)

    

=
0

∞
H 2

*(k r, k r, 0)

B1
e2id(k z, 2 – η 2) – 1

k z, 2 – η 2
– C1

e– 2id(k z, 2 + η 2) – 1
k z, 2 + η 2

B1
e2ikk z, 2d – 1

k z, 2
– C1

e– 2ikk z, 2d – 1
k z, 2

B1
e2id(k z, 2 + η 2) – 1

k z, 2 + η 2
– C1

e– 2id(k z, 2 – η 2) – 1
k z, 2 – η 2

k rdk r

(65)

   
h 3 =

– ∞

0
F3(z')e– i2η 3z'dz' (66)

    =
0

∞
H 3

*(k r, k r, 0)
µ32

k z, 3η 3
k rdk r (67)

where 
    

H 3
*(k r, k r, 0) = –

k i
4σ i

2z0, i

k z, i
H i(k r, k r, 0),  (i = 1, 2).

Furthermore, the operators     ∂B
∂z (k r, 0)  and     ∂2B

∂z2 (k r, 0) ,
appeared in Equations (31) and (32), may be obtained
from the mean-field solutions by differentiating with
respect to z, and then rearranging with an order corre-
sponding to coefficient matrix, Equation (60), in the
linear system.  The results may be shown to be:

    

∂B
∂z (k r, 0) =

ik z, 1 iη 2 +
h 21

2

–
k z, 1

2

ρ1ω2
1

ρ2ω2(η 0
0 +

iη 21h 21
2 + F 2(0)

0 e– iη 2d( – iη 2 +
h 22

2 )

0 e– iη 2d

ρ2ω2 ( – η 2
2 –

iη 2h 22
2 – F 2(d))

    
– iη 2 +

h 22
2 0

1
ρ2ω2(η 2

2 +
iη 2h 22

2 + F 2(0) 0

e iη 3d(iη 2 +
iη 2h 22

2 + F 2(0)) iη 3 +
h 3
2

e iη 2d

ρ2ω2 ( – η 2
2 –

iη 1e– i2η 2dh22
2 ) 1

ρ3ω2(η 3
2 +

iη 3h 3
2 + F 3(0)

(68)

    

∂2B
∂z2 (k r, 0) =

ik z, 1
2 η 2

2 +
iη 2h 21

2 + F 2(0)

–
ik z, 1

3
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ρ2ω2(iη 2

3 +
η 2

2h 21(k r, 0)
2 + iη 2F 2(0) – F 2

' (0)

0 – e iη 2d(η 2
2 +

iη 2h 22
2 + F(d))

0 e– iη 2d

ρ2ω2 (iη 2
3 +

η 2
2h 22(k r, 0)
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    η 2
2 +

iη 2h 22
2 + F 2(0)

– 1
ρ2ω2(iη 2

3 +
η 2

2h 22(k r, 0)
2 + iη 2F 2(0) – F 2

' (0)

– e iη 2d(η 2
2 +

iη 2h 23
2 + F(d))

eiη 2d

ρ2ω2( – iη 2
3 +

η 2
2h 23(k r, 0)

2 + iη 2F 2(0) – F 2
' (0)

    
0

0

η 3
2 +

iη 3h 3
2 + F(0)

– 1
ρ2ω2(iη 3

3 +
η 3

2h 3
2 + iη 3F 3(0) – F 3

' (0))

(69)

The matrix Bs(kr, 0) represents the effect of surface
orientation of the rough surface, which in reference to
the general formulation given in Reference [18] may be
shown to yield the following result for the present case:

    

B x(k r, 0) =
ik r, 0
ρ2ω2

0 0
ρ2
ρ1

– 1 +
h 21
2iη 2

0 0

0 e– iη 2d – e– iη 2dh22
2iη 2

   0 0

– 1 +
h 22
2iη 2

0

0 0

e– iη 2d – e– iη 2dh23
2iη 2

–
ρ2
ρ1

(1 –
h 3

2iη 3
)

(70)

Finally, the power spectrum for the rough surface
embedded in Equation (32) is also taken to be Gaussian
for convenience:

   Pi(k) = 2π ie– k 2
i
2 / 2, (i = 1, 2) (71)

Here, i  represents the correlation length of the
roughness.  The linear system, Equation (31), may now
be solved for <R> to obtain the coherent reflection
coefficient.

RESULTS AND DISCUSSION

In this section, we shall employ the above formu-
lations and generate numerical results for the reflection
coefficient.  Since the incident wave is taken to be a unit
amplitude, so that the parameter <R> is the reflection
coefficient.  It is noted that <R> stands for the ensemble
average of the reflected field, therefore it represents the
coherent component.

There are many parameters involved in this
problem, including averaged acoustic properties of the
media, ρi, <ci>, surface-roughness properties, ζ i, i ;
medium-randomness properties, z0, i, L0, i; frequency f
and sediment thickness d.  Since the parameters are too
many to make a complete analysis for every one of
them, we only choose those characterizing the surface
roughness and medium randomness to examine their
effects on the coherent reflection coefficient.  A com-
bined parameter, defined as kd, where k = 2πf/c is the
acoustic wavenumber, representing the ratio of sedi-
ment thickness and wavelength (thickness-to-wave-
length ratio, for short) is a controlling parameter of this
analysis.  Unless otherwise restated in the text or in the
legends of figures, the following parameters are chosen
as given below: c1 = 1500 m/s, ρ1 = 1000 kg/m3; <c2> =
1800 m/s, ρ2 = 1300 kg/m3; <c3> = 2000 m/s, ρ3 = 1500
kg/m3; L0, 2 = L0, 3 = 5.0 m; z0, 2 = z0, 3 = 1.0 m;   0, 2  =   0, 3

= 10 m.  It is to be noted that the values employed are
merely intended to demonstrate the fundamental mecha-
nisms of this analysis, so that they may not reflect the
true values in a realistic environment, such as those data
surveyed by Hamilton [12].

Figure 3 shows the result for f = 200 Hz, d = 20 m,
(or kd = 16.75, which represents a large value of thick-
ness-to-wavelength ratio), and the surface roughness
and medium randomness are chosen, respectively, as ζ1

= ζ1 = 0.4 m, σ2 = σ3 = 0.15.
The figure shows that, for the case of flat inter-

faces and uniform media, the distribution of the reflec-
tion coefficient (dotted curve) oscillates and increases
in average when the incident grazing angles decreases
from normal incident toward shallower angles, and
arrives at the value of unity as it reaches the critical
angle, which in the present case is θc =  cos−1 (1500/
2000) = 41.4°.  The oscillatory behavior is obviously
due to multiple reflection inside the sediment layer.

Fig. 3.  Reflection coefficient for f = 200 Hz, d = 20 m.
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If the interfaces are randomly rough, the result
shown by the dashed curve illustrates that in general the
coefficient is less than that for the smooth-and-uniform
case.  On the other hand, if the sound-speed distribution
inside the media is subject to random perturbation, the
reflection coefficient (dashed-and-dotted curve) is also
decreased, particularly in the total reflection region;
both results show that there exists no total reflection.
This is readily understood in that either interface rough-
ness or medium inhomogenieties shall develop a scat-
tering field, extracting part of coherent energy and then
spreading  in to  var ious  non-specular  angles ;
subsequently, the coherent reflection coefficients are
reduced.  The overall effect of both surface roughness
and medium inhomogenieties are shown by the solid
curve, which indicates that the reduction is larger than
each individual.  It is interesting to notice that the
behavior of the distributions between the two curves are
distinctively different in the neighborhood of the criti-
cal angle, indicating that the variation of overall curve
near the critical angle offers a potential means for
identifying the dominant scattering mechanism of the
problem.

Figure 4 shows the results for a lower frequency f
= 125 Hz, and the rest of the parameters are the same as
those for Figure 3.  It is seen that as the frequency
becomes lower the difference between the curve for the
flat-and-uniform case and those for other cases reduces,
indicating that the significance of the scattering effects
becomes less.  This is due to the fact that for lower
frequency the relative magnitudes of surface roughness
and medium randomness with respect to wavelength are
smaller, which in turn reduce the intensity of the scatter-
ing field.  It is expected that if the frequency continues
to decrease, the scattering field shall diminish, and
eventually all curves tend to overlap, as shown in  Fig-
ure 5 for f = 75 Hz.

As mentioned previously, the combination of kd is
a controlling parameter which measures the signifi-
cance of sediment layer.  When kd is large, the proper-
ties of the sediment layer will dominate the scattering
effect, for the wave is unable to sense the properties of
the bottom layer.  However, it is to be noticed that the
same values of kd does not guarantee to have the same
results.  Figure 6 shows the result for f = 150 Hz and d
= 10 m, which apparently has the same value of kd as
that for Figure 5, but the two results show a clear
difference.  For the later case, the thickness is thin
enough so that the bottom layer begins to play effect,
and when it is compared with Figure 3, it is conceivable
that the multiple reflection inside the sediment layer
becomes less significance.

Figure 7  examines the effect  of  medium
inhomogenieties on the reflection coefficient.  The pa-
rameters employed are the same as those in Figure 3,
except that the parameter σ2 varies to yield three curvesFig. 4.  Reflection coefficient for f = 125 Hz, d = 20 m.

Fig. 5.  Reflection coefficient for f = 75 Hz, d = 20 m

Fig. 6.  Reflection coefficient for f = 150 Hz, d = 10 m
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represented by dotted, dashed, and solid lines, corre-
sponding to σ2 = 0.0, 0.15, 0.2, respectively.  The results
show that the degree of randomness inside the sediment
layer significantly affect the reflection coefficient, with
the expected variations that the higher degree of ran-
domness (represented by larger σ2) the lower the coher-
ent reflection.  If the same situation is applied to the
seabottom layer, the result is shown in Figure 8.  It is
seen that the increment of σ3 in this case only produces
a small effect near the area of critical angle.  Of course,
this does not imply that the randomness in the seabottom
layer is immaterial, it simply indicates that for the set of
parameters chosen, in particular, large kd (kd = 16.75),
the variation of seabottom layer is relatively insensitive.
When kd is small due to thin sediment layer and rela-
tively high frequency, then the parameter σ3 should be
expected to be significant.

CONCLUSIONS

This paper considers the coherent reflection of an
acoustic plane wave from rough interfaces in a horizon-
tally-stratified random fluid medium.  The general for-
mulation incorporating the general theory for wave
scattering from stratified media and that for scattering
in random media is derived, and then applied to an
oceanic environment to study their effects on the coher-
ent reflection.  Many efforts are spent to derive the
Green’s function in a random slab, which constitutes a
generic formulation of the problem.

Many numerical results for a simplified version of
seabed environmental model are generated and analyzed.
It has been found that due to the generation of scattering
field, attributed to either the surface roughness or me-
dium inhomogenieties. the coherent reflection decreases
to some extent depending upon the degree of randomness.

These findings are consistent with the general theory of
scattering, in that the scattering field acts to distract
energy from specular reflection, resulting in a loss of
the coherent energy.

It is also interesting to note that the variation of the
distribution for the coherent reflection as function of the
incident grazing angle shows a distinct characteristic
with respect to scattering mechanisms, particularly in
the neighborhood of the critical angle.  This feature may
be served as a basis for identifying the dominant scatter-
ing mechanisms in the problem.

To further current study, it is possible to include
the consideration of the density perturbation.  Moreover,
the averaged acoustic properties, such as <ci> and <ρi>,
in general vary with respect to depth coordinate. Also,
the scattering field for the problem under consideration
is also an important issue.  These problems shall be
investigated in the ensuing study, with the foundation
laid by the present analysis.
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