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ABSTRACT

The model of single degree of freedom perfectly elastoplastic
structures under external loading is treated in this paper.  It is analyzed
and pointed out that for the perfectly elastoplastic structure the
equation of motion is nothing but a two-phase linear system with an
on-off switch.  Then the exact solutions of the dynamic responses are
derived for sinusoidal loadings.  For such loading we prove that no
matter how large the amplitude is, the structure is impossible under-
going a permanent plastic motion; conversely, the long term behavior
exhibits either stable hysteresis loop and limit cycle, or elastic
shakedown.  A phase plane estimation method of the steady response
is developed, which includes not only the formulae for calculating the
amplitude of displacement and two time lags, but also the identifica-
tion of the parameters’ values for elastic shakedown and the maximum
size of dissipation loop.  The accuracy of the formulae is confirmed by
comparing with the exact solutions.  The mean displacement however
depends on the initial conditions, a transient response, not being
determined by the steady state estimation.

INTRODUCTION

Structures may exhibit linearly elastic behavior
under moderately small loading; however, when sub-
jected to severe excitations such as strong earthquake
ground motion, they would respond inelastically and
exhibit hysteretic behavior.  Hysteretic models have
been used for the inelastic earthquake-resistant design
of structures [1].  Recently, some kinds of nonlinear
hysteretic isolators [2-5] have gotten a lot of applica-
tions due to their good hysteretic property for the energy
dissipation.  Both the analytical modeling and response
prediction of hysteretic systems have been an area of
ever-increasing interest.

It appears that most types of relatively mild

nonlinearities can be dealt with successfully by equiva-
lent linearization techniques [6-8].  But these tech-
niques do not succeed in capturing the essence of strongly
nonlinear hysteretic behavior, i.e., energy dissipated
through the development of plastic displacement.

The most commonly used model for describing the
nonlinear hysteretic restoring force-displacement be-
havior is the perfectly elastoplastic system.  For the
proposed nonlinear models the differential equations of
motion are used to analyze the responses of the modeled
structures under external loading.  Those equations are
usually solved by the step-by-step integration techniques.
In this paper a rigorously correct formulation of per-
fectly elastoplastic model is presented and the dynamic
responses of such a single degree of freedom (SDOF)
elastoplastic structure under external loading is treated
and the exact solutions of the responses are derived.
Since the exact solutions are available the dynamic
characteristics of the perfectly elastoplastic structure
are investigated in depth.

Even the perfect elastoplasticity is one of the most
important models to assess the structure inelastic be-
havior under external loading, in the open literature
there still lacks a simple method to study the long term
behavior in the steady state of the structure under peri-
odic loading.  Thus, some important issues such as
developing a simple yet effective formula for predicting
the oscillation amplitude, the selection of suitable
parameters’ values for elastic shakedown, and also the
best parameters’ values for maximizing the size of
dissipation loop, are all not yet solved.  Therefore, we
would propose a phase plane estimation method to
resolve these problems.

PERFECTLY ELASTOPLASTIC STRUCTURE

1. Equation of Motion

Let us consider a single degree of freedom (SDOF)
structure, schematically shown in Fig. 1, which is sub-
jected to an external loading p(t).  The equation of
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motion of the structure can be written as

  mx(t) + r(t) = p(t), (1)

which together with some prescribed initial conditions
x(ti) and   x(t i) constitute an initial value problem.  Here,
t is time and ti is an initial time; a superposed dot
represents a time differentiation; m and r are the mass
and constitutive force of the structure, respectively; and
x(t) is the displacement.  This oscillator called elastic-
plastic oscillator comprises three parts: the mass, the
slider and the elastic spring.

2. Perfectly Elastoplastic Model

In this paper the non-linearity of the structure is
reflected in a perfectly elastoplastic model for the rela-
tionship of constitutive force and displacement, which
is schematically shown in Fig. 2.   For perfect
elastoplasticity the following postulations are adopted
[9]:

  x = xe + xp, (2)

  r = kxe, (3)

   λr = r y xp, (4)

|r| ≤ ry, (5)

  λ ≥ 0, (6)

   r λ = r yλ. (7)

It is a special case of the bilinear structure model
studied in [10].  The two constants, namely the elastic
stiffness k and the yield strength ry, are assumed to be
positive.  Here x, xe, xp and r are the displacement,
elastic displacement, plastic displacement and constitu-
tive force, respectively; λ  is a scalar named equivalent
plastic displacement, which is closely related to the
dissipated energy through the power of dissipation    r yλ.
All x, xe, xp, r, and λ  are functions of one and the same
independent variable, time t.

If one replaces the series connection of the slider
and the elastic spring in the elastic-plastic oscillator by
a parallel connection of that two components, one will
obtain a Coulomb oscillator with the friction bound ry :
= mgµ, where g is the constant of gravitation and µ is the
dynamic friction coefficient; see, e.g. [11].  However,
because the two oscillators have slightly different ar-
rangement of the mechanical components, their behav-
iors will be seen rather different although they have the
same mechanical components and also the same values
of the parameters.

3. Switch of Elasticity and Plasticity

Combining Eqs. (2)-(4), we have

   r + k
r y

λr = kx. (8)

Fig. 1.  Perfectly elastoplastic structure subjected to external loading.

Fig. 2. The relationship of constitutive force and displacement for perfect
elastoplasticity.
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The complementary trios (5)-(7) enable the model to
possess an elastic-plastic switch, the switching criteria
of which are derived right below.  The product of r and
Eq. (8) is

   rr + k
r y

λr 2 = krx, (9)

which, due to the constancy of ry and the positivity of k,
asserts that

   r = r y ⇒ r yλ = rx. (10)

Upon recalling the positivity of ry the following
elastic-plastic switching criteria can be proved:

   

λ =

1
r y

rx > 0 if r = r y and rx > 0,

0 if r < r y or rx ≤ 0.
(11)

According to the complementary trios (5)-(7), there
are just two phases: (i)   λ > 0 and |r| = ry, and (ii)   λ = 0
and |r| ≤ ry.  From the criteria (11) it is clear that (i)
corresponds to the plastic phase while (ii) to the elastic
phase.

4. Two-phase Linear System

Note that

PLASTIC     r(t) = r(ti) (12)

in the plastic phase, if ti is chosen to be the switched-on
time; hence, Eq. (1) becomes

PLASTIC       mx(t) = p(t) – r(t i). (13)

In the elastic phase, i.e.   λ = 0,  Eq. (4) requires xp be
frozen and Eqs. (2) and (3) reduce to   r = kx, integrating
of which from ti to t yields

ELASTIC     r(t) = r(ti) + k[x(t) − x(ti)], (14)

such that Eq. (1) changes to

ELASTIC         mx(t) + kx(t) = p(t) – r(t i) + kx(t i). (15)

During the elastic phase the motion of the elastic-
plastic oscillator is described by Eqs. (14) and (15), and
we call it elastic motion.  Conversely, in the plastic
phase the motion of the elastic-plastic oscillator is
governed by Eqs. (12) and (13), and we call it plastic
motion.  Indeed, it is a two-phase linear system with an
elastic-plastic switch to decide which motion alived in

the subsequent time interval.

RESPONSE TO SINUSOIDAL LOADING

In what follows the driving force is taken to be
harmonic with a single driving (angular) frequency ωd,

p(t) = p0 sin ωdt, (16)

where p0 is the amplitude of periodic excitation on
mass.

1. Exact Solutions

For the above input the responses of the elastic
motion and plastic motion are derived, respectively, as
follows:

(A) Elastic motion:

   x(t) = x(t i) +
x(t i)
ωn

sin ωn(t – t i) –
r(t i)

k
 [1

− cos ωn (t − t1)] + A [sin ωdt − cos ωn (t

− ti) sin ωdti − rw sin ωn (t − ti) cos ωdti],  (17)

where    ωn = k / m  is the natural angular frequency of
the structure,

  A: =
p 0

k(1 – r w
2 )

, (18)

and

   r w: =
ωd
ωn

> 0 (19)

is the frequency ratio.  The constitutive force r appeared
in the above should be supplemented by Eq. (14).

(B) Plastic motion:

   
x(t) = x(t i) + x(t i) +

r(t i) t i
m +

p 0
mωd

cos ωdt i (t – t i)

   –
p 0

mωd
2

[sin ωdt – sin ωdt i] –
r(t i)
2m

(t 2 – t i
2).     (20)

The constitutive force is simply given by r(t) =
r(ti).  Unlike the elastic motion, which will be resonant
when rw = 1, the plastic motion as shown in Eq. (20)
never occurrs plastic resonance.  However, for the bilin-
ear elastoplastic model it may has plastic resonance
[10].
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2. Transitions between Elastic and Plastic Motions

The transition points between elastic and plastic
motions are determined by the on-off switch criteria
derived in Eq. (11).

2.1 Determination of the onset of plastic motion

Given the initial values r(ti) and   x(t i) at an initial
time ti, the transition time from elastic motion to plastic
motion can be determined by solving the equation
|r(t)| = ry, where r(t) is obtained by substituting Eq. (17)
into Eq. (14),

   
r(t) = r(t i) cos ωn(t – t i) +

kx(t i)

ωn

sin ωn (t – t i)

   + kA[sin ωdt – cos ωn(t – t i) sin ωd t i

   – r ω sin ωn(t – t i) cos ωd t i]. (21)

The resulting equation is transcendental in nature
so that a numerical method may be invoked to calculate
the switch-on time t = ton.

2.2 Transition from plastic motion to elastic motion

When a plastic motion interval is switched off at a
time moment, that is, |r| < ry or    rx ≤ 0, the structure will
be switched to an elastic motion interval according to
the switching criteria (11).  The end time of the plastic
motion is determined by solving   x(t) = 0 for t with the
following equation:

   x(t) = x(t i) –
r(t i)
m (t – t i) –

p 0

mωd

[cos ωdt – cos ωd t i]

 = 0, (22)

which is also a transcendental equation still requiring a
numerical method to calculate the switch-off time t =
toff.

Furthermore we can prove that there exists at least
one solution t for the equation   x(t) = 0.  If   x(t i) > 0 we
have r(ti) = ry > 0 by criteria (11).  Thus,

   
x(t i) –

r(t i)
m (t 1 – t i) +

p 0

mωd

cos ωd t i =
– p 0

mωd

should hold for some t1 > ti, that is,

   
t 1 = t i + m

r(t i)
x(t i) +

p 0

mωd

cos ωd t i +
p 0

mωd

.

At this moment we have

   
x(t 1) = x(t i) –

r(t i)
m (t 1 – t i) –

p 0

mωd

[cos ωd t 1 – cos ωd t i]

   = –
p 0

mωd

[1 + cos ωd t 1] ≤ 0,

which together with   x(t i) > 0 implies the conclusion that
there exists at least one solution t for   x(t) = 0  in the
interval (ti, t1].  Similarly, if   x(t i) < 0 we have r(ti) = − ry

< 0 by criteria (11).  Thus,

   
x(t i) –

r(t i)
m (t 1 – t i) +

p 0
mωd

cos ωd t i =
p 0

mωd

should hold for some t1 > ti, that is,

   
t 1 = t i + m

r(t i)
x(t i) +

p 0
mωd

cos ωd t i –
p 0

mωd
.

At this time t1 we have

   
x(t 1) = x(t i) –

r(t i)
m (t 1 – t i) –

p 0
mωd

[cos ωd t 1 – cos ωd t i]

   =
p 0

mωd
[1 – cos ωd t 1] ≥ 0,

which together with   x(t i) < 0 implies the conclusion that
there exists at least one solution t for   x(t i) = 0 in the
interval (ti, t1].  Therefore, we have proved that the
considered structure when subjecting to the periodic
loading (16) no matter what the amplitude p0 and driv-
ing frequency ωd are, will not always stay in the plastic
motion.

3. Responses

Now by piecing together the above two solutions
(17) and (20) of elastic and plastic motions, the exact
responses of the elastic-plastic oscillator are obtained.
The dynamics of the model depending on the loading
history, however, switches between the two motions.
Two typical responses are shown in Fig. 3, one for
smaller loading amplitude, p0 = 100 N, and the other for
larger loading amplitude, p0 = 250 N.  For both cases the
driving frequencies are taken to be ωd = 2π, and the
other parameters are ωn = ωd/2 = π rad/s, m = 10 N s2/cm,

   k = mωn
2  = 10 π2 N/cm, and ry = 50 N.  The plastic

displacement is given by xp(t) = xp(ti) + x(t) − x(ti) in the
plastic motion, and xp(t) = xp(ti) in the elastic motion.
We set xp(t0) = 0 initially.  For the first case it can be
seen that the response settles down to a stabilized 1/2-
subharmonic motion with pure elastic motion after the
initial plastic motion in the first one and half cycles.
Conversely, for the second case it can be seen from
Fig. 3(g) that the response tends to a stabilized hyster-
esis cycle with finite area inside the loop, so that energy
is dissipated constantly unless input loading is
terminated, and from Fig. 3(h) that in the phase plane
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  (x, x) the orbit tends to a limit cycle.  Figure 3(f) shows
a typical phase transition of the responses in some time
interval, in which xp is constant in the elastic motion and
is varying in the plastic motion.  From this plot it can be
seen that the transitions from one type motion to another
type motion occur frequently and regularly.  Due to such
peculiarity of the switch of the responses the steady
state analyses usually employed in the elastic system
are no longer suitable for the dynamic analyses of the
elastoplastic system, since the frequent switch renders
the responses not always stay in one of the two motions.
In the next section we are going to study the steady
responses via a new phase plane method.

As mentioned earlier although the Coulomb oscil-
lator and the elastic-plastic oscillator both have the
same mechanical components, but their arrangement of
these components are slightly different.  For this reason
we may interest on the difference of their behaviors.  We
compare the behaviors of the two oscillators in Fig. 4

with the following same parameters: ωn = π rad/s, m =
200 kN s2/m,    k = mωn

2  = 200π2 kN/m, ry = 200 kN, and
the same loading p0 = 1000 kN and ωd = 2ωn = 2π rad/
s, as well as the same initial conditions x(ti) = 0 and   x(t i)
= 0.  Figs. 4(a)-(d) display the results for the elastic-
plastic oscillator and Figs. 4(e)-(h) for the Coulomb
oscillator.  It can be seen that the two oscillators respond
very different in every aspects.  Especially we call
attention to the following points:
(i) The elastic-plastic oscillator has a positive mean

displacement oscillating in the positive side x > 0
with the amplitude slightly smaller than the one of
the Coulomb oscillator, whose mean displacement
is zero.

(ii) The elastic-plastic oscillator has a constant r = ry

= 200 kN during plastic motion, but in the sliding
motion of the Coulomb oscillator the constitutive
force r is increased up to the value 800 kN.

(iii) During sticking phase the displacement of the

Fig. 3. Two typical responses of the elastic-plastic oscillator with elastic
shakedown of (a)-(d) under smaller loading force, p0 = 100 N, and
steady dissipation loop of (e)-(h) under larger loading force, p0 =
250 N.

Fig. 4. Comparison of the responses for the elastic-plastic oscillator and
the Coulomb oscillator under the same values of the parameters of
the mechanical components, the same loading condition and also
the same initial conditions.
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Coulomb oscillator is simply given by x(t) = x(ti),
while in the sliding phase the displacement is
given by Eq. (17) (see also Eq. (27) in [11]).  That
is in the sliding phase of the Coulomb oscillator
the governing equation of which is the same as the
elastic motion of the elastic-plastic oscillator.

(iv) After initial sticking the Coulomb oscillator ex-
ecutes subsequently a sliding-sliding type motion
as shown in Fig. 4(g); however, the elastic-plastic
oscillator always moves with the manner of elastic
motion-plastic motion as shown Fig. 4(c).

ESTIMATION OF THE STEADY RESPONSES

There are two closed loops as shown in Figs. 3(g)
and 3(h), one for the hysteretic loop and the other for the
limit cycle.  Under what conditions of the parameters
and the inputs that the loops exist?  Let us consider a
steady motion of the elastic-plastic oscillator and as-
sume the phase curve of the steady motion in the phase
plane   (x, x) to be symmetrical with respect to the point
(xm, 0), where xm is the mean of the displacement in the
steady state.  Therefore, the phase curve is closed in the
phase plane and it suffices to consider only one half of

the curve, say the upper branch.  Referring to Fig. 5(a),
which is the steady part of Fig. 3(h), let xm + ∆ denotes
the maximum displacement of the steady motion, t2 the
transition time between elastic motion and plastic
motion, and t1 the starting time of elastic motion, such
as to match the exact solutions of the steady response of
the elastic-plastic oscillator.  Because of the periodicity
of the input and the symmetry with respect to (xm, 0) of
the steady motion, we may assume

   t 3 = t 1 + π
ωd

, (23)

and estimate the three parameters, namely the ampli-
tude of displacement ∆, and the time lags t1 and t2.

1. An Estimation of the Steady Loops

In the time interval t1 ≤ t ≤ t2, the constitutive force
in view of Fig. 5(b) (the steady part of Fig. 3(g)) is given
by

r = −ry + k(x − xm + ∆).

Substituting it into Eq. (1) we obtain

   mx(t) + kx(t) = r y + k(xm – ∆) + p 0 sin ωdt, (24)

whose general solution is given by

x1(t) = A sin ωdt + xy + xm − ∆ + a1 sin ωn(t − t1)

+ b1 cos ωn(t − t1), (25)

where

  x y : =
r y

k
(26)

is the yield displacement.  In the above xm is the mean
drift of the displacement; see Fig. 5(a).  Similarly, in the
time interval t2 ≤ t ≤ t3 we have

   x 2(t) = B sin ωdt –
r y

2m
(t – t 3)

2 + a 2(t – t 3) + b 2,    (27)

where

  B: = 1 – 1
r w

2
A = –

p 0

krw
2

. (28)

The four constants a1, b1, a2 and b2 can be deter-
mined using the following four conditions:

x1(t1) = xm − ∆,   x 1(t 1) = 0,  x2(t3) = xm + ∆,   x 2(t 3) = 0.
(29)

As a result we obtain

Fig. 5. A typical steady-state response with (a) limit cycle in the phase
plane of displacement-velocity, (b) dissipation loop in the plane of
displacement-constitutive force; t1, t2, and ∆ are all to be determined.
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x1(t) = A[sin ωdt − rw cos ωdt1 sin ωn(t − t1)]

− (xy + A sin ωdt1) cos ωn(t − t1) + xy + xm − ∆,
(30)

x2(t) = B[sin ωdt − sin ωdt3 − ωd(t − t3) cos ωdt3]

  –
r y

2m
(t − t3)2 + xm + ∆. (31)

Both the constitutive force r(t) and the external
force p(t) are continuous at the transition time t2 from
the elastic motion to the plastic motion, which due to
Eq. (1) renders that the acceleration   x(t) is also continu-
ous at this transition time t2.  The continuities of x  and
x are obvious by integrating x  and x,  respectively.  Thus
with Eqs. (30), (31) and (23) the following three
conditions:

x1(t2) = x2(t2),    x 1(t 2) = x 2(t 2), x 1(t 2) = x 2(t 2),      (32)

become the following three equations:

(A − B) sin ωdt2 − (A sin ωdt1 + xy) cos ωn(t2 − t1)

− Arw cos ωdt1 sin ωn(t2 − t1) + xy − B sin ωdt1

− Bωd (t2 − t1 − π/wd) cos ωdt1 +   r y

2m
(t2 − t1

− π/wd)2 − 2∆ = 0, (33)

(A − B) cos ωdt2 +   1
r w

 (A sin ωdt1 + xy) sin ωn(t2

− t1) − A cos ωdt1 cos ωn(t2 − t1) − B cos ωdt1

+   r y

mωd
 (t2 − t1 − π/ωd) = 0, (34)

(B − A)   r w
2  sin ωdt2 + (A sin ωdt1 + xy) cos ωn(t2

− t1) + Arw cos ωdt1 sin ωn(t2 − t1) + xy = 0.
(35)

In principle, we can combine Eqs. (33)-(35) to-
gether utilizing numerical method to determine the three
unknowns t1, t2, and ∆.  However, these equations are
too complicated to give us proper information about t1,
t2, and ∆ and their influence factors.  We below put these
equations into a more concise form, such that in terms of
the identified parameters the closed-form representa-
tions of t1, t2, and ∆ are available.  Thus further analyses
can be proceeded.

2. Formula for the Amplitude of Displacement

Adding Eqs. (33) and (35), we obtain

2∆ = − B(sin ωdt1 + sin ωdt2)

− Bωd(t2 − t1 − π/ωd) cos wdt1

   +
r y

2m
(t 2 – t 1 – π / ωd)2 + 2xy, (36)

where   (A – B) (1 – r w
2 ) = – B  has been used.  Upon the

solutions of t1 and t2 are available, from the above
formula ∆ can be determined.  In fact, Eqs. (34) and (35)
can be used to calculate t1 and t2 numerically.  However,
for these equations if we replace cos ωdt2 and sin ωdt2,
respectively, by

cos ωdt2 = cos ωd(t2 − t1) cos ωdt1

− sin ωd(t2 − t1) sin ωdt1, (37)

cos ωdt2 = sin ωd(t2 − t1) cos ωdt1

+ cos ωd(t2 − t1) sin ωdt1, (38)

we obtain the simultaneous equations for cos ωdt1 and
sin ωdt1 as follows:

a cos ωdt1 + b sin ωdt1 = c,

b cos ωdt1 + e sin ωdt1= f (39)

where

    a : = r w
2 + r w

2 cos ωn(t 2 – t 1) – [1 + cos ωd(t 2 – t 1)],
(40)

b : = sin ωd(t2 − t1) − rw sin ωn(t2 − t1), (41)

   
c : =

r w(1 – r w
2 )

r f
[sin ωn(t 2 – t 1) + ωn(t 2 – t 1 – π / ωd)],

(42)

e : = cos ωd(t2 − t1) − cos ωn(t2 − t1), (43)

   
f : =

1 – r w
2

r f
[1 + cos ωn(t 2 – t 1)], (44)

and

  r f : =
p 0
r y

> 0 (45)

is the force ratio.  Solving cos ωdt1 and sin ωdt1 from Eq.
(39) and substituting them into the identity cos2 ωdt1 +
sin2 ωdt1 = 1, we obtain a single equation as follows:

(ce − bf)2 + (af − bc)2 = (ae − b2)2. (46)

Solve t2
 − t1 using this equation and solve t1 using
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the following equation:

   t 1 = 1
ωd

arctan
af – bc
ce – bf

(47)

due to Eq. (39).  Here the admissible range of ωdt1 is [0,
π).  Then substituting the above two results into Eq. (36)
we obtain ∆.

In terms of xy, rf and rw, ∆ can be expressed as

 2∆ =   x yr f

r w
2

 [sin ωdt1 + sin ωdt2 + ωd(t2 − t1

− π/ωd) cos ωdt1] 
   

+
xyωn

2

2
 (t2 − t1 − π/ωd)2

+ 2xy. (48)

We are interest to know the variation of ∆ with
respect to rf as well as rw for some fixed value of xy.  For
this purpose let

y : = ωd(t2 − t1),  0 < y ≤ π (49)

be the independent variable, and thus by solving Eq.
(46) for rf we obtain

  
r f =

(ce – bf)2 + (af – bc)2

[ae – b 2]
2

, (50)

where the nondimensionalized coefficients are now read
as

  a : = r w
2 + r w

2 cos
y

r w
– (1 + cos y), (51)

  b : = sin y – r w sin
y

r w
, (52)

   
c : = r w(1 – r w

2 ) sin
y
r e

+
y

r w
– π

r w
, (53)

  e : = cos y – cos
y

r w

, (54)

  f : = (1 – r w
2 ) 1 + cos

y

r w

. (55)

Notice that

   r f → ∞ if y → 0,

r f = 1 – r w
2 if y = π.

(56)

From Eqs. (48), (37)-(39) and (49) it follows that

   ∆
xy

= 1
2r w

2
(1 + cos y)

af – bc

ae – b 2
+ 1

2r w
2

(y + sin y

   – π)
ce – bf

ae – b 2
+ 1

4r w
2

(y – π)2 + 1. (57)

For fixed value of rw, the variation of ∆/xy with
respect to rf can be evaluated as follows: First, it can be
seen that ∆/xy depends on two parameters rw and y.
Second, for each rw fixed we establish the relation
between y and rf via Eq. (50).  This relation is an
homeomorphism between rf and y, since d(1/rf)/dy > 0.
For example, in Fig. 6(a) we show some curves of 1/rf

with respect to y for rw = 0.6, 0.8, 1.1, 1.4 and 1.7.  The
homeomorphism between rf and y renders us very easily
to construct the response curves as shown in Fig. 7(a)
for rw = 0.6, 0.8, 1.1, 1.4 and 1.7.  Conversely, we fix rf

and search the relation between rw and y.  Similarly, due
to the good property of homeomorphism, one and only
one solution of y exists for each rw, and so it is easy by
directly applying the Newton-Raphson numerical
method to Eq. (50) to depict the relation between rw and
y; for example, in Fig. 6(b) we show some curves of rw

versus y for rf = 2, 4, 6, 8 and 10.  In Fig. 7(b) the
variation of ∆/xy with respect to rw are plotted for rf = 2,
4, 6, 8 and 10.  In order to assess the validity of formula
(57) we also compare the results calculated by it with
the exact results calculated by the exact solutions
as shown in Eqs. (17) and (20) for different rw’s in
Fig. 7(a), and for different rf’s in Fig. 7(b).  From these
two plots we confirm that formula (57) is very accurate

Fig. 6. The force ratio rf is homeomorphic with y when rw is fixed; we plot
the variation for five values of rw in (a). Conversely, when rf is fixed
we plot the variation of rw versus y for five values of rf in (b).
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to calculate the oscillating amplitude of the elastic-
plastic oscillator in the steady state.

3. Dissipation Loop Size

For the engineering benefit we may concern the
energy dissipation capacity of the considered structure.
From Fig. 5(b) the area of energy dissipation loop is
found to be

   a = 4r y(∆ – xy), (58)

and thus with the help of Eq. (57) we can assess the
influence of the two control parameters rf and rw on   a.
For this purpose let us introduce the following two
nondimensionalized variables for the size of the dissi-
pation loop:

   Λ 1: =
k a

p 0
2

= 4
r f

2
∆
xy

– 1 , (59)

   Λ 2: =
mωd

2
a

p 0
2

=
4r w

2

r f
2

∆
xy

– 1 . (60)

Some remarks are given in order for the above two
formulae: (i) The left-hand side of the first equation

Fig. 7. (a) The variation of xy/∆ with respect to the force ratio rf for five
values of rw; (b) The variation of xy/∆ with respect to the frequency
ratio rw for five values of rf.

may be understood as the dissipation per unit elastic
energy, since p0/k is the static displacement of the
elastic response and   p 0

2 / k  is the elastic energy. (ii) The
term ∆/xy − 1 on the right-hand side of the first equation
decreases with respect to 1/rf for each rw as shown in
Fig. 7(a); conversely, the term   1 / r f

2  increases with
respect to 1/rf.  Therefore, there exists a best rf to
maximize Λ1 for each rw. (iii) Assuming    mωd

2 : = k d , the
left-hand side of the second equation may be written as

  a / (p 0
2 / k d); corresponding to (i), it may be understood

as the dissipation per pseudo elastic energy with a
pseudo elastic stiffness kd. (iv) The term ∆/xy − 1 on the
right-hand side of the second equation is known to be
decreased with respect to rw for each rf as shown in
Fig. 7(b); nevertheless, the term   r w

2  is increased with
respect to rw.  Hence, there exists one best rw to maxi-
mize Λ2 for each rf.

Equation (59) is used to investigate the variation
of the nondimensionalized size of the dissipation loop
with respect to rf, when k, p0 and rw are fixed, that is, the
influence of the yield strength ry on the size of the
dissipation loop.  In Fig. 8(a) the variations of   k a / p 0

2

with respect to 1/rf are plotted for rw = 0.6, 0.8, 1.1,
1.4 and 1.7.  For the isolation purpose of the building
structure we usually choose the best rf to maximize the
dissipation loop size.  Under this rf the isolator will
achieve the best performance to dissipate as much en-

Fig. 8. (a) The variation of the normalized dissipation loop size Λ1 with
respect to the force ratio rf for five values of rw; (b) The variation
of the normalized dissipation loop size Λ2 with respect to the
frequency ratio rw for five values of rf.
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ergy as it can.  Similarly, Eq. (60) is used to investigate
the variation of the nondimensionalized size of the
dissipation loop with respect to rw, when m, p0, ωd and
ry are kept constants, that is, the influence of the elastic
stiffness k on the dissipation loop.  In Fig. 8(b) the
variations of    mωd

2
a / p 0

2 with respect to rw are plotted for
rf = 2, 4, 6, 8 and 10.  For the isolation purpose we may
choose the best rw to maximize the dissipation loop size.

4. Elastic Shakedown

In the case of cyclic loadings the magnitude of the
input is not merely a factor characterizing the structural
safety.  These loads may also result in alternating plastic
displacement increment, after a sufficient number of
cycles lead to low cycle fatigue and cause the failure of
the structure.  Therefore, the structural safety requires
that the plastic displacement increments due to
consecutive load changes should eventually cease, the
structural response of further cycles being fully elastic.
Such a stabilization of plastic displacements is called
(elastic) shakedown or adaptation.  Thus, for the pur-
pose of safety we may hope the structure tend to elastic
shakedown gradually, without induces further plastic
deformation to cause failure of the structure.  This
requires that the plastic dissipating loop as shown in
Fig. 5(a) disappears, which is equivalent to the require-
ment that t3 = t2 = t1 + π/ωd or y = π via Eq. (49).  Under
this condition by Eqs. (57) and (58) it is obvious that

   ∆ = xy, a = 0, (61)

the latter of which indicates that the size of the dissipa-
tion loop is zero.  Moreover, under this condition we
have

  r f = 1 – r w
2

as noted in Eq. (56), and the two time lags are reduced
to t1 = π/(2ωd) and t2 = 3π/(2ωd).  The right-hand side of
Eq. (56)2 supplies a lower bound of rf for elastic
shakedown.  The loading with its rf smaller than   1 – r w

2

will tend to elastic shakedown more quicker than the
one with the critical value   r f = 1 – r w

2 .   Thus, a criterion
for elastic shakedown is obtained as follows:

  r f = 1 – r w
2 . (62)

The determination of the control parameters
allowing for the adaptation is the main goal of the
plasticity theory of shakedown.  Here, Eq. (62) gives a
constraint for the control parameters, under which the
steady response is elastic shakedown.  In Fig. 3 the two
types of motion, shakedown and not shakedown, have

been compared.

CONCLUDING REMARKS

This paper gaven a correct perfectly elastoplastic
model for the relation of constitutive force and
displacement, and obtained the exact solutions of the
SDOF perfectly elastoplastic structure.  However, in
order to obtain the whole responses in the course of
external loading elastic and plastic motions must be
pieced sequentially.  The notions of complementary
trios and switch in the elastoplastic structural system
made the formulation precise and accurate.  It was found
that the equations of motion for the perfectly elastoplastic
structure are a two-phase linear system with an on-off
switch.  Although by itself sufficing to describe the
linear plant of the equation of motion, the state x and x
must be supplemented by the constitutive force r for a
complete state space description of the elastoplastic
system which contains the two-phase linear plant sub-
jected to external excitations.

A new estimate was developed for the steady-state
oscillation responses; the resulting formula (57) can be
used to determine the oscillating amplitude of
displacement.  It supplied very good results when com-
pared with the exact displacement oscillating amplitude.
The formulae for two nondimensionalized sizes of the
dissipation loop were derived.  It is found that for a fixed
frequency ratio there exists a value of the best driving
force amplitude to maximize the dissipation loop size.
The closed-form formula (62) of the criterion for elastic
shakedown was derived.  In view of the detrimental
effect of alternating plasticity on the structure, the
simple formula must be very useful for engineers to
select a minimum driving force amplitude to prevent the
structure oscillating in the plastic range.

REFERENCES

  1. Newmark, N. M. and Hall, J. W., “Earthquake Spectra
and Design,” Monograph published by the Earthquake
Engineering Research Institute, Los Angeles (1982).

  2. Hwang, J. S. and L. H. Shen, “Equivalent elastic seis-
mic analysis of base isolated bridges with lead rubber
bearings,” Engng. Struct., Vol. 16, pp. 201-209 (1994).

  3. Hwang, J. S., Shen, L. H. and J. H. Gates, “Practical
analysis of base-isolated bridges with bi-linear hyster-
esis characteristics,” Earthq. Spectra, Vol. 10, pp. 705-
727 (1994).

  4. Robinson, W. H., “Lead-rubber hysteretic bearing suit-
able for protecting structures during earthquake,” Earthq.
Engng. Struc. Dyna., Vol. 10, pp. 593-604 (1982).

  5. Turkington, D. H. and A. J. Carr, “Development of a
design procedure for bridge on lead rubber bearings,”



Journal of Marine Science and Technology, Vol. 8, No. 1 (2000)60

Engng. Struc., Vol. 11, pp. 2-8 (1989).
  6. Caughey, T. K., “Equivalent linearization techniques,”

J. Acou. Soc. Amer., Vol. 35, pp. 1706-1711 (1963).
  7. Iwan, W. D., “A generalization of the concept of equiva-

lent linearization,” Int. J. Non-linear Mech., Vol. 8, pp.
279-287 (1973).

  8. Nayfeh, A. H. and D. T. Mook, Nonlinear Oscillations,
Wiley, New York (1979).

  9. Hong, H.-K. and Liu, C.-S., “Prandtl-Reuss
elastoplasticity: on-off switch and superposition
formulae,” Int. J. Solids Struct., Vol. 34, pp. 4281-4304
(1997).

10. Liu, C.-S., “Exact solutions and dynamic responses of
SDOF bilinear elastoplastic structures,” J. Chinese Inst.
Engineers, Vol. 20, pp. 511-525 (1997).

11. Hong, H.-K. and Liu, C.-S., “Coulomb friction oscillator:
modelling and responses to harmonic loads and base
excitations,” J. Sound Vib., Vol. 229, pp. 1171-1192
(2000).

�� !"#$%&#'()*+

�� !"#$%

�� �!

�� !"#$%&'()&*+%,-./

�� 

�� !"#$%&'()*'+,-./0

�� !"#$%&'()*+,-./012"3

�� !"#$%&'(�)*+,-./0123

�� !"#$%"&'()*+,-./0123

�� !"#$%&'()*+,-./01234

�� !"#$%&'()*+,-./0%123

�� !"#$%&'()*+,-./01234

�� !"#$%&'�()*+,*-./012

�� !"#$%&'()*+�,-.!/012

�� !"#$%&'()*+,-./012"3

�� !"#$%&'()*+,-./0+-1)

�� !"#$%&'()*#+,-./%012

�� !"#$%&'()�*+,-.%/012

�� !"#$%


	The Steady Loops of Sdof Perfectly Elastoplastic Structures Under Sinusoidal Loadings
	Recommended Citation

	CSL

