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ABSTRACT

The effects of aggregate volume fraction on the void ratio and the
elastic modulus of mortar were studied.  Cylindrical specimens with
six volume fractions (a/t = 0., 0.05, 0.1, 0.2, 0.3, and 0.4) of fine
aggregate and various water/cement ratios (w/c = 0.3, 0.4, and 0.5)
were cast and tested.  Double inclusion model for three-phase com-
posite (matrix, aggregate, and void) was used to predict the volume of
total void based on the properties and quantities of the components
and composites.  Based on this study, when higher volume fraction of
aggregate is used in the mix, the elastic modulus of the composite
should be computed by introducing a third phase (void) into the
composite.  For the mix with lower volume fraction of aggregate,
because the volume of void is relatively small in comparison with the
volume of other components, two-phase approach is appropriate for
evaluating the elastic moduli of the composites.

INTRODUCTION

Cement-based materials contains air voids, capil-
lary voids, and interlayer space in C-S-H.  Air void have
diameter usually larger than a few micrometers which
includes both entrapped and entrained voids.  Capillary
voids represent the space not filled by the hydrated
cement paste.  The void size associated in the C-S-H
structure is too small to have an adverse effect on the
strength and permeability of the hydrated cement paste
[1].

Portland cement-based material is a multiphase
and porous material.  Prediction of the elastic moduli of
cement based materials is complicated by the heteroge-
neous microstructure.  The properties of cement-based
materials are influenced by the volume fraction of the

components (cement paste and fine aggregate).  In
addition, considering the matrix with micropores, the
study of cement-based materials becomes more com-
plex and the cement-based materials are usually consid-
ered as a three-phase composite which consists of buck
cement paste, aggregate, and void, and each phase has
its own elastic modulus.

Manning and Hope [2] investigated the influence
of porosity on the elastic modulus of polymer impreg-
nated concrete.  Hasselman et al. [3] reported that pore
shape is an important factor affecting the elastic behav-
ior of polymer-impregnated porous ceramics.  Beandoin
et al. [4] presented a critical literature review on the
pore structure effects. Zimmerman et al. [5] investi-
gated the influence of porosity on the elastic moduli of
mortar and comparing their experimental results with
theoretical result.

Hirsch [6] pointed out that the elastic modulus of
cement paste is influenced by the water/cement ratio
and the age of cement paste and also derived an equation
to express the elastic modulus of mortar and concrete
using an empirical constant.  By considering concrete as
a two-phase material, Aitcin and Mehta [7], Baalbaki et
al. [8] demonstrated that the elastic modulus of concrete
was influenced by the elastic properties and volume
fraction of aggregates.  Stock et al. [9] also obtained
some experimental results for the elastic moduli of
mortar and concrete with different aggregate volume
fractions.  In the past, the overall mechanical behavior
of composite materials has been extensively studied.
Voigt's [10] approximation yielded the parallel model
and the Reuss's [11] approximation yielded the series
model of the average elastic moduli.  Hashin and
Shtrikman [12] proposed the variational principle to
find bounds on the average elastic moduli of composite
materials which were superior to the Voigt and Reuss
models.  Hansen [13] developed a mathematical models
to predict the elastic moduli of composite materials
based on the individual elastic modulus

 
and volume

fraction
 
of the components.  Mori and Tanaka [14]

applied the concept of average field to analyze macro-
scopic properties of composite materials.  The average
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field in a body contains inclusions with eigenstrain.  In
addition, the shape effect of dispersoids was introduced
in Eshelby's [15] method to assess the properties of
composite materials.  The recent development of evalu-
ating overall elastic modulus and overall elastic-plastic
behavior was reviewed by Mura [16].

In this study, the elastic moduli of cement paste
and mortars were obtained in the laboratory.  The esti-
mated elastic modulus of the fine aggregate was calcu-
lated by single inclusion model [17] for the mortar with
a w/c ratio of 0.3.  Yang and Huang's double inclusion
model [18] for three-phase composite (matrix, aggregate,
and total void) was used to predict the volume fraction
of void (air voids, capillary voids, and the voids within
interlayer space in C-S-H) for the mortar with various
w/c ratios and fine aggregate volume fractions.

EXPERIMENTAL PROGRAM

In this study, the mortar was composed of cement
paste, fine aggregate, and void.  Mortars were made
with ordinary Type I cement, and fine aggregate.  The
fine aggregate (sieve size between #16 and #30) was
used.   The proportions of the mortar are summarized in
Table 1; three different mortars, A, B, and C were made
with water-cement ratios of 0.3, 0.4 and 0.5, respec-
tively (See Table 1), and the superplasticizer was ad-
justed to keep the same flow of the paste.  In order to
study the effect of different concentrations of fine ag-

gregate on the elastic modulus and total void of mortar,
six volume fractions (volume of fine aggregate/volume
of cement-based materials, a/t = 0., 0.05, 0.1, 0.2, 0.3,
and 0.4) of fine aggregate were considered in the mix
proportions.  Notation for the specimens is that the first
letter indicates w/c ratio A, B, and C and the number is
the volume fraction of aggregate.

Cylindrical specimens (φ 100 × 200 mm) were cast
and cured in water.  At the age of 28 days, all cylinders
were ground and polished before testing to achieve
smooth end surface.  For determining the elastic moduli
of the mortars, two axial LVDTs (linear variable differ-
ential transducers) were mounted on opposing sides of
specimen to measure the compressive strains.  The
compressive test was conducted using a 1000-KN uni-
versal testing machine according to the specification of
ASTM C 469-81 (ASTM Test Method for Static Modu-
lus of Elasticity and Poisson's Ratio of Concrete in
Compression).  The load was applied at a constant rate
within the range of 0.14 ~ 0.34 MPa/sec.  Continuous
measurements were recorded to obtain the stress/strain
curves and the secant modulus was determined from the
stress/strain curves.

RESULTS AND DISCUSSIONS

In this study, the mortar was considered as a three-
phase (cement paste, aggregate, and void) composite
materials, the shape of fine aggregate and total void

Table 1.  Mix design and volume fraction of aggregate

Notation w/c Water Cement SP Aggregate *Volume
(kg/m3) (kg/m3) (kg/m3) (kg/m3) ratio, (%)

A00 461.6 1591.6 15.9 0 0
A05 438.0 1510.4 15.1 129.7 5
A10 0.3 414.5 1429.2 14.3 259.3 10
A20 367.4 1266.8 12.7 518.6 20
A30 320.3 1104.4 11.0 777.9 30
A40 273.2 941.9 9.4 1037.2 40
B00 540.2 1367.6 6.8 0 0
B05 512.6 1297.8 6.5 129.7 5
B10 0.4 485.1 1228.0 6.1 259.3 10
B20 430.0 1088.5 5.4 518.6 20
B30 374.8 949.0 4.7 777.9 30
B40 319.7 809.4 4.0 1037.2 40
C00 599.4 1198.8 0 0 0
C05 568.8 1137.7 0 129.7 5
C10 0.5 538.3 1076.5 0 259.3 10
C20 477.1 954.2 0 518.6 20
C30 415.9 831.8 0 777.9 30
C40 354.8 709.5 0 1037.2 40

*(the volume of sand)/(the volume of mortar)
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were modeled as sphere and fine aggregate and void
were considered as spherical shape.  The inclusions
(fine aggregate and void) were considered as randomly
embedded in the cement paste.  Two-stage calculation
was performed.  Firstly, the estimated elastic modulus
of fine aggregate was calculated by two-phase compos-
ite model (cement paste and fine aggregate) for the
mortar..  Secondly, double inclusion model for a three-
phase composite (cement paste, fine aggregate, and
void) was used to calculate the volume of void for the
mortar with various w/c ratios.

Elastic modulus of fine aggregate

By considering the mortar (w/c = 0.3) as a two-
phase material (cement paste and aggregate), Yang et
al. [17] proposed a theoretical model based on Mori-
Tanaka theory and Eshelby's method in which the stress
disturbance due to inhomogeneities under the applied
compressive stress.  The inhomogeneities can be simu-
lated by the eigenstress caused by the fictitious misfit
strain.  The fictitious misfit strain (eigenstrain) was
introduced to simulate the inhomogeneity effect.  The
model (single inclusion model) can approximate the
average elastic relationships of the cement-based mate-
rials with spherical inhomogeneities.  In the pervious

work, the overall average elastic moduli tensor of ce-
ment-based materials   C  was given by [17]

  

C = C – 1 + f 1 – f C * – C S – f C – C * + C
– 1

– 1

  C – C * C – 1 , (1)

where C  and   C * are the elastic moduli tensor of matrix
and inclusion, respectively.  f is the volume fraction of
inclusion, and S  is the Eshelby's tensor.  The Eshelby
tensor is a function of the geometry of the inclusion and
Poisson's ratio of the matrix (see Appendix A).

For mix A, the elastic moduli of cement pastes and
mortars were obtained directly from the test results and
presented in Table 2.  For the computation of the elastic
modulus tensor of the matrix and the mortar, the Poisson's
ratio of cement paste and aggregate was assumed to be
0.2 and 0.3 [18], respectively.  Equation (1) was used to
calculate the elastic modulus of the fine aggregate based
on single inclusion model.  The average elastic modulus
of fine aggregate (Ea) is 80 GPa.  Figure 1 shows the
experimental results and calculated results when the
mortar is considered as a two-phase (cement paste and
aggregate) composite.

Table 2.  Elastic modulus of mortar, measured and calculated results

Elastic modulus, (GPa)

*Ec   E    E – E c

E c
× 100 (%)

Notation w/c (Experimental) (Theoretical)

A00 22.41
A05 23.65 23.71 0.25
A10 0.3 25.01 25.08 0.28
A20 27.57 28.09 1.89
A30 30.40 31.50 3.62
A40 34.14 35.41 3.72
B00 17.92
B05 19.00 19.10 0.53
B10 0.4 20.16 20.35 0.94
B20 21.90 23.13 5.63
B30 24.22 26.34 8.75
B40 26.09 30.09 15.32
C00 17.08
C05 17.92 18.23 1.73
C10 0.5 19.18 19.45 1.40
C20 20.59 22.17 7.66
C30 22.92 25.32 10.48
C40 23.96 29.03 21.14

*Average of five specimens
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Two-phase composite (cement paste and aggregate)

For calculation the overall elastic modulus of two
phase composite, the volume fraction of void is consid-
ered to be 0 and the aforementioned elastic properties of
cement paste and aggregate are applied to obtain the
elastic moduli of mortar from eqn (1).

Figure 2 shows the experimental results and the
calculated results when the mortar is considered as a
two-phase (cement paste and aggregate) composite.

The corresponding experimental results are also illus-
trated in the figure.  The figure illustrates the relation-
ship between volume fraction of aggregate and elastic
modulus of mortar.  It can be seen from the figure that
increase in aggregate volume fraction improve the mor-
tar elastic modulus.  For mix B and C, experimental
results are less than the calculated results which was
obtained based on a two-phase model.  The difference
between the experimental data and the theoretical results,
because more significant when higher aggregate vol-
ume fraction is used.  It appears that the volume fraction
of aggregate increases, the void structure (third phase)
affects the elastic modulus of mortar is more prominent.
Therefore, it is reasonable to consider the third phase
(void) in the analytical process.

Three-phase composite (cement paste, aggregate, and
void)

Consider two types of spherical inhomogeneities,
Ωα(α  = 1, 2)  randomly embedded in an infinite matrix
with the elasticities C .  The elasticities of Ωα are   C 1

* and
  C 2

*, respectively, and the volume fraction of Ωα are f1

and  f2.  the stress disturbance in the applied compres-
sive stress,  σ o , due to inhomogeneities can be simulated
by the eigenstress caused by the two types fictitious
misfit strain (Fig. 3).  In this study, the fictitious misfit

Fig. 1.  Elastic modulus vs. volume fraction curve (two-phase model).

Fig. 2.  Elastic modulus vs. volume fraction curves (two-phase model).

Fig. 3. Aggregates and voids are modeled as spherical shape which em-
bedded in matrix.
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strains (eigenstrain),  ε1
* and  ε2

*, were introduced to
simulate the inhomogeneity effect.  By use of the equiva-
lent inclusion method [16] and represent Mori-Tanaka
theory [14], the average stress    σ o + σ Ω1  in the Ω1 and

   σ o + σ Ω2  in the Ω2 can be as follows

   
σ o + σ Ω1 = C C – 1 σ o + σ M + S 1 ε1

* – ε2
*

   
= C 1

* C – 1 σ o + σ M + S 1 ε1
* ,          (2)

   
σ o + σ Ω2 = C C – 1 σ o + σ M + S 2 ε2

* – ε2
*

   
= C 2

* C – 1 σ o + σ M + S 2 ε2
* ,          (3)

where "  " is the notation for the average and    σ o + σ M

is the average stress in the matrix.  The Eshelby tensors,

 S 1 and  S 2 (see Appendix A) are the ellipsoidal inclusion
when it isolately exists in an infinite homogeneous
medium.

The average eigenstrains and the average stress of
inclusions are evaluated.  Therefore, the overall elastic-
ity tensor   C  is given by [18]

   C = C – 1 + f 1α + f 2β
– 1

. (4)

α  and β are shown in Appendix B.
In this study, for calculation the overall elastic

modulus of three-phase cement-based materials with
void, the elastic modulus and Poison's ratio of void were
assumed to be 0.  The aforementioned elastic modulus
and Poisson's ratio of cement paste were used.  The
overall elastic modulus of three-phase cement-based
materials were calculated from eqn. (4).  For computing
the volume fraction of total void, substitute elastic
moduli tensor of aggregate   C 1

*, elastic moduli tensor of
void   C 2

*, elastic moduli tensor of cement paste C , vol-
ume fraction of aggregate f1, the average elastic moduli
tensor of mortar   C , Eshelby tensor for aggregate  S 1

(see Appendix A), and Eshelby tensor for void  S 2  into
eqn (4), the volume fraction of total void f2 can be
obtained.  The calculated volume fractions of total void
for mix B and C are shown in Table 3.  It shows that the
volume fraction of void increases as water cement ratio
increases.  Figure 4 illustrates the relationship between
volume fraction of aggregate and volume fraction of
void.  It also appears that the volume fraction of void
increases as volume fraction of aggregate increases.

CONCLUSIONS

The elastic modulus of cement-based composite

Table 3.  The elastic modulus and volume fraction of components

Elastic modulus, (GPa) Volume fraction, (%)
Cement

National paste Aggregate *Mortar Aggregate *Total void

B05 19.00 5 0.26
B10 20.16 10 0.48
B20 17.92 80 21.90 20 2.70
B30 24.22 30 4.10
B40 26.09 40 6.80
C05 17.92 5 0.82
C10 19.18 10 0.67
C20 17.08 80 20.59 20 3.70
C30 22.92 30 4.90
C40 23.96 40 9.20

*Average of five specimens

Fig. 4.  Volume fraction of total void vs. aggregate curves.
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are influenced by the elastic properties and volume
fraction of the matrix, aggregate, and void.  The elastic
modulus of cement-based composite increases with in-
creasing volume fraction of aggregate.  The volume of
void depends on the volume fraction of aggregate and
water cement ratio.  When higher volume fraction of
aggregate is used in the mix, the elastic modulus of the
composite should be computed by introducing a third
phase (void) into the composite.  For the mix with lower
volume fraction of aggregate, because the volume of
void is relatively small in comparison with the volume
of other components, two-phase approach is appropri-
ate for evaluating the elastic moduli of the composites.
It seems that Double-Inclusion method and Mori-Tanaka
theory can be properly used to estimate the elastic
moduli of mortar consisting of three different phases of
cement paste, aggregate and void.
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APPENDIX A

The Eshelby's tensor S  for sphere inclusion is
listed below [16].

  S 1111 = S 2222 = S 3333 =
7 – 5v

15(1 – v)
.

  S 1122 = S 2233 = S 3311 = S 1133 = S 2211 = S 3322 =
5v – 1

15(1 – v)
.

  S 1212 = S 2323 = S 3131 =
4 – 5v

15(1 – v)
.

APPENDIX B

The calculation of parameters α  and β

  A = (1 – f 1)C + f 1C 1
* S 1 – I – C 1

*S 1
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  B = (1 – f 2)C + f 2C 2
* S 2 – I – C 2

*S 2

  M = C 1
* – C S 2 – I

  N = C 2
* – C S 1 – I

   ε1
* = – I – f 1f 2A – 1MB– 1N

– 1
A – 1 f 2MB– 1 C 2

*C – I

   + C 1
*C – I σ o

   = ασ o

   
ε2

* = B– 1 f 1N I – f 1f 2A
– 1MB – 1N

– 1
A– 1

   
f 2MB– 1 C 2

*C – I – C 1
*C – I + C 2

*C – I σ o

   = βσ o
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